
THE RELATIVE INTENSITY OF HARMONICS OF
A LECHER SYSTEM. (THEORETICAL).

By F. C. BLAKE.

In the previous paper Blake and Jackson have shown the
dependence of tone-intensity upon the edge-on distance between
plates. They have found that the optimum condition for each
tone is such that, for a given in-put of energy at the oscillator,
the energy is distributed among the various tones as follows,
the fundamental being taken as 100%: third, 61.63%, fifth
21.92%, seventh 6.57%, ninth 2.21%, eleventh 1.05%. In
this paper a theory is given to account for these results.

Figures 1, 2 and 3

The theory makes use of the Kirchhoff-Abraham generaliza-
tion of Kelvin's formula for the discharge of a condenser. As
given in Abraham's "Theorie der Elektrizitat," Vol. II, 2nd
edition, we consider electric waves coming from the negative X
direction (Figure 1) along two parallel wires that end in a con-
denser. Our experimental arrangement was necessarily dif-
ferent from that, but if we fix our attention upon the receiver
alone and remember that the optimum oscillator-length is
different for each tone it is obvious that, so far as the total
energy on the receiver is concerned, our arrangement (Figure 2)
is identical with Figure 1.
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Later in this paper we shall discuss the conditions under
which the practical case, Figure 2, may be said to conform to
the ideal case, Figure 3. For the moment we shall call them
identical.

Abraham's expression for the potential difference, <j> per
unit length of the wires (Figure 1) is

0 =M Cos (^—y) cos 2TT nt
K \ X /

where A is a constant, K the capacity per unit length, X the
wave-length, y the phase change due to the end-capacity and n
the frequency. We consider the total energy on the receiver
that surges through the thermo-couple as made up of two parts,
that on the wires themselves and that on the condenser. Sup-
pose at a certain moment the condenser plates are charged to
a maximum value. Due to the distributed capacity of the wires
there is also at that moment a charge on them. A moment
later these charges discharge through the thermocouple thus
recharging trie plates and wires with electricity of the opposite
sign. During the half period of the galvanometer, viz., 1.4 sec,
millions of vibrations surge through the thermocouple. The
galvanometer needle moves off until the loss of energy by heat
conduction and radiation from the thermocouple equals the
input of energy. The scale usually moves off in a very vigorous
fashion showing that the losses of energy are not appreciable
till near the end of the half period of the galvanometer. We
shall assume the rate of loss of heat energy by radiation from
the junction to be independent of the frequency of the tone
surging through it, and that Newton's law of cooling holds
with respect to the surroundings.

In order to calculate the energy that surges through the
thermocouple we must get the root-mean-square value of the
potential as it is distributed both as to space and time. If we

substitute —-- for t in the above expression we can say that

the total energy on the wires is given by the expression
o

.=^1 dx
\ x v

si yl
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The distance from the thermocouple to the back of the

receiver plates is -—.

4 2TT/

The energy on the plates is represented by

2 2 \_ K 2TT J 2

The condenser is at the point x = o. In the above expression

for (j> put x = o and we have </> = — cos y per unit length.

The equivalent wire-length of the condenser is ~.
2TT

But the plates are not charged all the while, hence V2 in the
expression for the energy on the plates must be taken

4TT2

„ 1 r 9 + J ± .cos2 7 • —I cos2j/ tdt.
T • '

1 y. T 1 / - 2 T T 7T

Now — I cos2** td t = — 1 cos2 xdx = —.
TJ0 VTJ O VT

But the plates are charged n times a second, and since
v = 2irn and 7iT=l, multiplication by n gives ^ = ^~

where no= frequency of the fundamental tone and s the
frequency number.

Integrating the above expression for the energy on the wires
we get as the expression for the total energy E,

+3 sin 7 cos3 y (1+sin2 y) — 5 sin5 y cos y + 4 sin 7 cos 7 >l .

Now the constant A depends upon the manner of setting
the receiver into vibration. Our case is similar to the acoustical
case treated by Lord Rayleigh.* The disturbing force which

varies as cos —~ is not applied at a single point, but is dis-

tributed over the distance — . The disturbing force over
2TT

one-half of this distance concerns itself with the Lecher system.

* Theory of Sound. Vol. I, p. 189.
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That over the other half has to do with the receiver. Accordingly
we can take

2TT

2irx j A^K . J A o *^o X2 s m 2 X cos 2 X

ax = sin 7 cos 7 and A2 =
cos——ax =~- sin 7 cos7 and A2 =

X 2TT 4TT2

0

Call ° . °- = C. Then our expression for E becomes
16TT 4 K

E = CX4sin27cos2y \sy*cos2 7-0 ^(^-yjU^-yjU cos27+1]

+3 sin 7 cos3 7 (1+sin2 7) —5 sin5 7 cos 7+4 sin 7 cos 7.

Now Abraham's theory for the transmission of electric
waves along a pair of parallel wires does not take into account
the necessary bending of the wires leading up to the plates.
For obvious reasons the ideal case shown in Figure 3 cannot be
realized unless one has a rather large distance between the
Lecher wires, which means a long bridge and larger phase-
changes due to the bridge length. Blake and Sheard have
shown that there are two factors, which they called 6 (y) and
<f>(y) controlling the relation between the edge-on distance
between the plates and the tone intensity. The former rep-
resents the electrostatic leakage to plates of the same circuit,
the latter the phase-changes due to that portion of the wires at
right angles to their main length. They have shown that these
two factors act in opposite directions and the preceding paper
confirms this. Abraham's theory does not consider either of
these factors. We have made no attempt to determine the
nature of either of these functions of y, (though the exper-
imental data of Blake and Jackson are probably sufficient to
determine both). They have determined, however, the opti-
mum value of y for each frequency, that is, the value of y at
which the tone intensity is a maximum. Obviously, this
optimum value of y is that value at which these two factors
nullify each other.

If then we compare the tone-intensities for the various
optimum values of y they should agree with the simple theory
of Abraham that neglects the two factors mentioned above. In
making the theoretical calculations, however, some circum-
spection must be used. For instance, theory and experiment
should not be expected to agree except at or near those values



March, 1918] A Lecher System—Theoretical 167

of y where K0/'K is perceptibly constant, at least so long as the
forms of B{y) and <j>(y) remain unknown.

Now in the work of Blake and Jackson the per cents of error
were least for y = 8, as column 25 of their Table I shows as also
does their Figure 7. We have carried through the calculation of
E for the following values of y: 7.15, 8.0, 9.0, 11.1 cm., and
have collected the results into Table I.

TABLE I.

y
Cm.

7.15

7.15

8.0

9.0

9.0

11.1

11.1

Cm.

442.90
145.81
86.01
60.47
46.43
37.58

442.90
145.84
86.00
60.44
46.34
37.40

440.07
145.14
85.78
60.41
46.41
37.60

441.00
145.62
86.19
60.74
46.71
37.86

440.50
145.60
86.36
60.88
46.82
37.94

440.28
145.68
86.45
61.07
47.01

439.28
145.86
87.00
61.62
47.40

KO/K

Cm.

14.60

14.60
14.64
14.58
14.42
13.71
11.61

13.70

13.17

13.06
13.15
13.58
13.84
14.21
14.48

11.92

11.63
12.08
13.12
14.54
15.33

7

Degrees Min.

11 42.1
32 10.6
46 50.8
56 36.5
63 9.3
67 43.3

11 4.1
30 40.3
45 6.0
54 56.3
61 40.1
66 24.3

10 37.8
29 36.5
43 50.0
53 43.3
60 33.4
65 24.9

9 39.2
27 12.5
40 54.3
50 48.4
57 53.1

EX10"6

Arbitrary
Units (C = l)

3663.2
2143.6
692.4
209.0
71.47
28.77

3107.3
1921.0
683.2
220.6
76.64
32.33

2838.8
1823.5
691.5
234.5
86.20
36.07

2235.6
1551.5
677.8
257.5
98.38

E
Percent.

100.00
58.52
18.90
5.70
1.95
0.78

100.00
58.56
18.89
5.76
2.12
1.13

100.00
61.82
21.99
7.10
2.47
1.04

100.00
64.24
24.36
8.26
3.04
1.27

100.00
65.56
25.32
8.23
2.24
1.12

100.00
69.41
30.32
11.52
4.40

100.00
74.60
34.09
10.97
3.64
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The agreement between theory and experiment is remark-
ably good for r/ = 8.0 cm., or for the mean values for 7/= 7.15,
8.0 and 9.0 cm.*, as shown in Table II. Expressed in per cent
the largest error is nearly eleven per cent, but when, as here,
relative intensities are compared, it seems far more reasonable to
express the error in terms of the fundamental intensity. When
this is done the maximum error is less than one-half per cent.
In the experimental work, although we tried to read to fractions
of a division for small galvanometer throws, nevertheless such
things as the wandering of the zero during a reading, slight
unsteadiness of the zero particularly on windy days, together
with slight errors of experiment, mentioned above but unelim-
inated, served to make the experimental error as high as five
per cent, at least for the tones beyond the fifth.

TABLE II.

y
cm.

7.15

8.0

9.0

Mean

Experimental

ENERGY IN PER CENT

S = l

100

100

100

100

100

3

58.52

61.82

64.24

61.53

61.63

5

18.90

21.99

24.36

21.75

21.92

7

5.70

7.10

8.26

7.02

6.57

9

1.95

2.47

3.04

2.49

2.21

11

0.78

1.04

1.27

1.03

1.05

Expressed in per cent of the fundamental intensity the error
is thus small and we can accordingly say that a satisfactory
theory has been worked out to explain the observed curves of
Blake and Jackson's Figure 6.

* The value of KO/K used in Table II is not exactly the value given in Table I
of Blake and Jackson's paper. The calculation was made taking KO/K = 13.17 cm.,
instead of 13.03 cm. This can affect our results but very little, for a change of
1 per cent in KO/K with its consequent change in X affects the relative intensity
of the various tones from one to three per cent at most. The variation is not
always in the same direction for the different tones, however.

Physical Laboratory, Ohio State University.




