

SEEKING THE SOURCE: CRIMINAL DEFENDANTS’

CONSTITUTIONAL RIGHT TO SOURCE CODE
STEVEN M. BELLOVIN,1 MATT BLAZE,2 SUSAN LANDAU,3

& BRIAN OWSLEY4

The right to a fair trial is fundamental to American jurisprudence. The
Fifth Amendment of the Bill of Rights guarantees “due process,” while
the Sixth provides the accused with the right to be “confronted with the
witnesses against him.” But “time works changes, brings into existence
new conditions and purposes.” So it is with software. From the
smartphones we access multiple times a day to more exotic tools—the
software “genies” of Amazon Echo and Google Home—software is
increasingly embedded in day-to-day life. It does glorious things, such
as flying planes and creating CAT scans, but it also has problems:
software errors.

Software has also found its way into trials. Software’s errors have
meant that defendants are often denied their fundamental rights. In this
Article, we focus on “evidentiary software”—computer software used
for producing evidence—that is routinely introduced in modern
courtrooms. Whether from breathalyzers, computer forensic analysis,
data taps, or even FitBits, computer code increasingly provides crucial

1 Percy K. and Vida L.W. Hudson Professor of Computer Science and affiliate law faculty at
Columbia University.
2 Robert L. McDevitt, K.S.G., K.C.H.S. and Catherine H. McDevitt L.C.H.S. Professor of Law
and Computer Science at Georgetown University.
3 Bridge Professor in Cyber Security and Policy at The Fletcher School and the School of
Engineering, Department of Computer Science, Tufts University.
4 Assistant Professor of Law at University of North Texas Dallas College of Law. From 2005
until 2013, Brian Owsley served as a United States Magistrate Judge for the United States
District Court for the Southern District of Texas.

The Ohio State Technology Law Journal

2 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

trial evidence. Yet despite the central role software plays in convictions,
computer code is often unavailable to examination by the defense. This
may be for proprietary reasons—the vendor wishes to protect its
confidential software—or it may result from a decision by the
government to withhold the code for security reasons. Because
computer software is far from infallible—software programs can create
incorrect information, erase details, vary data depending on when and
how they are accessed—or fail in a myriad of other ways—the only way
that the accused can properly and fully defend himself is to have an
ability to access the software that produced the evidence. Yet often the
defendants are denied such critical access.

In this Article, we do an in-depth examination of the problem. Then,
providing a variety of examples of software failure and discussing the
limitations of technologists’ ability to prove software programs correct,
we suggest potential processes for disclosing software that enable fair
trials while nonetheless preventing wide release of the code.

CONTENTS

I. INTRODUCTION .. 2
II. THE ROOT OF THE PROBLEM .. 17
III. SOURCE CODE AND CONSTITUTIONAL ISSUES 42
IV. CONCLUSION .. 71

I. Introduction

The right to a fair trial is fundamental to a democracy. In the United
States, this right is guaranteed pursuant to the Fifth Amendment, which
ensures “due process,”5 and the Sixth Amendment, which provides the
accused with the right “to be confronted with the witnesses against
him.”6 These legal rights are a hallmark of the judicial process in the
United States. Technology has transformed this, threatening the very

5 U.S. CONST. amend. V.
6 U.S. CONST. amend. VI.

2021] 3

right to a fair trial. The problem arises from the change in what
constitutes a witness. At the time the Bill of Rights was written,
witnesses were people, and it was well understood what it meant “to be
confronted with the witness.”7 But times have changed.

Today we use complex software tools to measure certain types of
activity, such as the level of blood alcohol a person has or how fast a car
is being driven. We then use the results produced by these tools to
provide evidence in court. The Federal Rules of Evidence enable
defendants to question expert witnesses who present testimony on the
validity of the evidence.8 However, these protections do not extend to
“questioning” computer code. Through three largely unrelated
developments, these essential protections are in danger of being sharply
curtailed, and therein lies a serious problem.

The first of the developments is the rise of “evidentiary software,” that
is, software whose output is itself evidence.9 This has happened despite
the prevalence of errors in large software systems, a concern well known
to the computer science community but much less so to the public. The
ubiquity of software errors is the second issue, since citizens may be
convicted on the basis of what amounts to a witness bearing false
testimony. The third arises from the increase of proprietary software;
that and bureaucratic opacity have made it difficult for defendants to
examine this software.10 The result is a miscarriage of justice:
conviction as a result of evidence that the defendants are not able to
cross-examine and which, in fact, may be in error. Lest we lose the
protections of the Fifth and Sixth Amendments, here we examine the
confluence of these three issues.

7 Interactive Constitution, Sixth Amendment: Right to Speedy Trial by Jury, Witnesses,
Counsel, NAT’L CONST. CTR., https://constitutioncenter.org/interactive-
constitution/amendment/amendment-vi [https://perma.cc/LAS7-2HPZ].
8 FED. R. EVID. 702.
9 While there are many examples, the simplest is the breathalyzer: complex software analyzes
the breath sample for its alcohol content. See, e.g., SEAN E. GOODISON ET AL., RAND
CORPORATION, DIGITAL EVIDENCE AND THE U.S. CRIMINAL JUSTICE SYSTEM: IDENTIFYING
TECHNOLOGY AND OTHER NEEDS TO MORE EFFECTIVELY ACQUIRE AND UTILIZE DIGITAL
EVIDENCE (2015), https://www.ncjrs.gov/pdffiles1/nij/grants/248770.pdf.
10 See generally Stephen W. Smith, Policing Hoover’s Ghost: The Privilege for Law
Enforcement Techniques, 54 AM. CRIM. L. REV. 233 (2017).

4 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

Others have discussed concerns about proprietary code11 and the
inability of defendants in civil and criminal cases to access the full
evidence against them. While our fundamental concern is about fairness
and upholding the rights pursuant to the Fifth and Sixth Amendments,
our focus is somewhat different. We are concerned that the evidence is
inaccurate—and because the defendants cannot access the underlying
code, there is no way for the defendants to discover the falsehood of the
“evidence” against them. What this means is that, although case law has
moved to enable a defendant to cross-examine one who bears witness
against him, the failure of the courts to understand the vagaries of
evidentiary software and the great chance of errors in the evidence
means that the right often fails in practice.

We will start our explanation of these issues with a simple example: the
Breathalyzer.12 The scientific principle behind these devices is
straightforward: when someone drinks, alcohol is not digested, but is
simply absorbed into the bloodstream where it does not undergo any
chemical changes. When alcohol-laden blood reaches the lungs, the
alcohol diffuses into the lungs proportionally to the amount in the blood.
Thus, alcohol in exhaled breath provides a way to measure the level of
alcohol in the blood.13 The rest is elementary chemistry.

11 See generally Rebecca Wexler, Life, Liberty, and Trade Secrets: Intellectual Property in the
Criminal Justice System, 70 STAN. L. REV. 1343 (2018).
12 “Breathalyzer” is a live trademark, serial number 72028025. That said, the word is often
used generically; see, e.g., Kashmir Hill, Imagine Being on Trial. With Exonerating Evidence
Trapped on Your Phone., N.Y. TIMES (Nov. 22, 2019),
https://www.nytimes.com/2019/11/22/business/law-enforcement-public-defender-technology-
gap.html [https://perma.cc/4TK5-9L8K] (“Law enforcement agencies get a new investigative
technique — fingerprinting, DNA analysis, breathalyzer tests — and those representing the
accused struggle to play catch-up.”).
13 Certain situations can change the validity of the reading, including whether the person being
tested is diabetic or has been fasting—this may produce acetone, which is measured as
alcohol—or whether they have recently used a mouth freshener, which may contain alcohol.
Dentures can also trap alcohol in the mouth. See MURDO BLACK,
ALCOLIZER TECHNOLOGY WHITE PAPER SERIES, SUBSTANCES THAT CAN AFFECT A BREATH
TEST 3, https://www.alcolizer.com/wp-
content/uploads/2017/01/12660_WhitePaper_Substances-that-Can-Affect-A-Breath-
test_LR.pdf.

2021] 5

The explanation that follows is taken from the Breathalyzer’s14 inventor,
Robert Borkenstein, once a member of the Indiana State Police and later
a professor of forensic studies at Indiana University. The device shuttles
a person’s breath down a tube, eliminating the first portion of the breath.
The breath is then combined with a mixture of sulfuric acid, potassium
dichromate, silver nitrate, and water. The silver nitrate acts as a catalyst
to speed up the chemical reaction transforming alcohol, potassium
dichromate, and sulfuric acid into potassium sulfate, chromium sulfate,
acetic acid, and water. The potassium dichromate and potassium sulfate
are the chemicals to observe. Potassium dichromate is reddish-orange,
while potassium sulfate is green. A photocell measures the decrease in
yellow light, thus revealing the amount of alcohol present in the
sample.15 These systems are called “fuel-cell” breathalyzers.

Diagram taken from How Stuff Works.16

Although this chemistry is simple, chemistry itself is messy; it is much
easier if one can dispense with “wet” devices. The development of
infrared instruments for testing breath alcohol levels did so. The
principle is again straightforward:

14 “Breathalyzer” refers to Borkenstein’s invention. When used with a small “b,” the word
denotes devices that chemically ascertain breath-alcohol levels from a person’s breath. See
A.W. Jones, Physiological Aspects of Breath-Alcohol Measurement, 6 ALCOHOL, DRUGS &
DRIVING 1, 2 (Apr.-June 1990).
15 R.F. Borkenstein & H.W. Smith, The Breathalyzer and Its Applications, 2 MED., SCI. & L.,
13, 14 (1961).
16 Craig Freudenrich, How Breathalyzers Work, HOW STUFF WORKS (Oct. 20, 2000),
https://electronics.howstuffworks.com/gadgets/automotive/breathalyzer.htm
[https://perma.cc/4KWT-DS27].

6 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

Molecules absorb electromagnetic radiation at certain
specific, unique wavelengths. Thus, it may be said that
each molecule has its own ‘infrared fingerprint.’ Ethyl
alcohol absorbs radiation at wavelengths of
approximately 3.00, 3.39, 7.25, 9.18, 9.50, and 11.5
microns. No other compound absorbs radiation at all of
those wave-lengths exclusively.17

Infrared and fuel-cell breathalyzers, which measure the current through
the breath, are the most common types of breathalyzers.18

In order to accept the results of a breath-testing device, the judge and
jury need to answer two questions: How does the device work? Does
the device report alcohol breath levels accurately? The Breathalyzer was
preceded by a simpler tool, the Drunkometer,19 that operated on the
same principles, and in 1955 Edwin Conrad, a senior attorney at the
Federal Communications Commission, looked at how well evidence
from various tools—radar guns, lie detectors, and Drunkometers—was
being accepted by the courts.20 He concluded that “scientific
instrumentality of proof will not be accepted in evidence unless it has
gained sufficient standing and scientific recognition, and has been
demonstrated to be dependable.”21 Accepting the evidence required that
it be:

proved that qualified chemists made the test; the
underlying theory and operation of the Drunkometer be
explained in great detail; the accuracy of the machine in
particular, and the accuracy of the method in general,

17 AM. PROSECUTORS RSCH INST., BREATH TESTING FOR PROSECUTORS: TARGETING HARDCORE
IMPAIRED DRIVERS 11 (2004), https://cdn.ymaws.com/mcaa-
mn.org/resource/resmgr/files/tsrp/Resources/Breath_Testing_for_Prosecuto.pdf.
18 3 Types of Breathalyzers, ELAWTALK, https://elawtalk.com/types-of-breathalyzers/
[https://perma.cc/AKT9-SY3L].
19 Barron Lerner, How Police Nab Drunk Drivers: From Drunkometer to Breathalyzer,
WBUR (Dec. 31, 2012), http://hereandnow.legacy.wbur.org/2012/12/31/breathalyzer-history
[https://perma.cc/DAR6-LQLM].
20 Edwin Conrad, Push-Button Evidence, 41 VA. L. REV. 217, 218 (1955).
21 Id. at 219.

2021] 7

were outlined by eminently qualified experts, and finally,
the results of the test were interpreted medically.22

What constitutes such scientific “recognition”? The Federal Rules of
Evidence Rule 702 on Testimony by Expert Witnesses states:

A witness who is qualified as an expert by knowledge,
skill, experience, training, or education may testify in the
form of an opinion or otherwise if:
(a) the expert’s scientific, technical, or other specialized
knowledge will help the trier of fact to understand the
evidence or to determine a fact in issue;
(b) the testimony is based on sufficient facts or data;
(c) the testimony is the product of reliable principles and
methods; and
(d) the expert has reliably applied the principles and
methods to the facts of the case.23

Pursuant to 1993 Daubert v. Merill Dow Pharmaceuticals, Inc., the trial
judge must determine “whether the testimony's underlying reasoning or
methodology is scientifically valid and properly can be applied to the
facts at issue.”24 In other words, the trial judge is the gatekeeper of
scientific evidence determining what is admitted and what is excluded.
It is important to note the role breathalyzers play in cases involving
driving under the influence (“DUI”) cases. Blood-alcohol concentration
is what matters in American DUI cases, and thus, the breathalyzer
measurements are critical.25

For breathalyzers, accuracy is determined by state and federal testing.
The Omnibus Transportation Employee Testing Act of 199126 requires
that pilots of various public transportation—aviation, mass transit, and

22 Id. at 228.
23 FED. R. EVID. 702.
24 509 U.S. 579, 580 (1993).
25 Christopher Combs, The Truth About Blood Alcohol Level & the Breathalyzer, COMBS L.
GRP. (June 3, 2018), https://www.combslawstl.com/blog/2018/06/03/the-truth-about-blood-
alcohol-level-the-breathalyzer/ [https://perma.cc/BJ94-WZ3T].
26 Department of Transportation and Related Agencies Act, Pub. L. No. 102-43, 105 Stat. 917,
953 (1992).

8 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

so on—be subject to alcohol testing programs, and the National
Highway Traffic Safety Administration (“NHSTA”) tests “evidential
breath testers” on a regular basis27 and publishes a “Conforming
Products List of Evidential Breath Measurement Devices.”28 While
states are not required to follow the federal list of approved devices,
NHSTA provides funds to purchase approved devices, and thus many
states adhere to the NHSTA list.29 The devices’ accuracy became
trusted, and that trust lasted through several decades of cases.30

But there was always pressure against this trust. DUI cases form a
peculiar subset of court cases; like jaywalking, cheating on income
taxes, and failing to fully separate recyclable goods from trash, DUI is
committed relatively frequently by people who are not considered
criminals in the usual sense of the word. Yet the consequence of a DUI
conviction—it may result in incarceration or the loss of a driver’s
license—can be high.31 Accordingly, many drivers “lawyer up” when
facing a potential DUI conviction. Legal attacks on breathalyzers’
accuracy are thus not uncommon.32

27 Highway Safety Programs; Model Specifications for Devices to Measure Breath Alcohol,
58 Fed. Reg. 48705 (Sept. 17, 1993).
28 See, e.g., Highway Safety Programs; Conforming Products List of Evidential Breath
Alcohol Measurement Devices, 77 Fed. Reg. 35747 (June 14, 2012).
29 U.S. GOV’T ACCOUNTABILITY OFF., GAO-08-477, TRAFFIC SAFETY: IMPROVED REPORTING
AND PERFORMANCE MEASURES WOULD ENHANCE PERFORMANCE OF HIGH-VISIBILITY
CAMPAIGNS (2008).
30 As an example, in 2008 the New Jersey Supreme Court wrote that “[t]he accuracy and
reliability of the breathalyzer itself has remained essentially unquestioned since our decision in
Romano v. Kimmelman, 96 N.J. 66, 474 A.2d 1 (1984).” State v. Chun, 943 A.2d 114, 120
(N.J. 2008).
31 With public transportation being minimal or even non-existent in many parts of the United
States, loss of a driver’s license can have a secondary, very severe penalty: loss of a job. See
Alana Semuels, No Driver’s License, No Job, ATLANTIC (June 15, 2016),
https://www.theatlantic.com/business/archive/2016/06/no-drivers-license-no-job/486653/
[https://perma.cc/QEN6-C5E7]; Dana DiFillippo, The Poverty Penalty:
Should States Suspend Driver’s Licenses for Scofflaws, WHYY (Nov. 27, 2017),
https://whyy.org/articles/poverty-penalty-states-suspend-drivers-licenses-court-scofflaws/
[https://perma.cc/2UKH-X5C3].
32 See generally Ronald MacGregor, Breathalyzers: Defects Then/Failures Still, HG.ORG,
https://www.hg.org/legal-articles/breathalyzers-defects-then-failures-still-30878
[https://perma.cc/L684-SUVE].

2021] 9

Modern devices all depend on software, but software unfortunately
introduces new and potentially hidden failure modes into the
technology. DUI convictions are per se violations based on breathalyzer
results—a rating over .08 blood-alcohol level means the person is
legally drunk33—making device accuracy critical. However, many of
state testing labs were limited in their capabilities; the labs could only
do “black box” testing, providing input to a breathalyzer and seeing the
output, and not directly examining the software. Indeed, in many cases,
even state lab testers lacked access to the code. In cases from Florida,34
to Minnesota,35 to New Jersey,36 to Massachusetts, courts have said the
denial of access to such source code37 in criminal prosecution violates
due process and the Confrontation Clause.38 Thus, examinations of the
software have started, and software in breathalyzers has been found to
have errors.39

One important one was the 2008 New Jersey case of State v. Chun, a
consolidation of twenty cases of individuals charged with DWI.40 The
counsel obtained the source code for the Alcotest 7110 MKIII-C
breathalyzer.41 The device works by using both infrared (“IR”) and
electrical chemical (“EC”) oxidation technology to measure breath-
alcohol levels.42 Subjects are typically tested twice, for a total of four
readings: IR1 and EC1 from the first breath and IR2 and EC2 from the

33 DUI Offense Basics, FINDLAW, https://dui.findlaw.com/dui-charges/dui-offense-basics.html
[https://perma.cc/F74G-G87S] (last updated Oct. 24, 2018).
34 See generally State v. Allen, No. 08-CT-8840, slip op. at 2-3 (Fla. Cir. Ct. Apr. 24, 2009)
(unpublished); State v. Atkins, No. 48-2008-CT-673-E, slip op. at 8-9 (Fla. Orange Cnty. Ct.
June 20, 2008) (unpublished); State v. Lance Conley, No. 48-2012-CT-000017-A/A (Fla. Cir.
Ct. Sept. 22, 2014).
35 State v. Underdahl, 749 N.W.2d 117, 122-23 (Minn. Ct. App. 2008).
36 Chun, 943 A.2d at 170.
37 “Source code” is explained below. See infra Section II.
38 Thomas E. Workman Jr., Massachusetts Breath Testing for Alcohol: A Computer Science
Perspective, 8 J. HIGH TECH. L. 209, 232 (2008); see also Chun, 943 A.2d at 128-31.
39 Stacy Cowley & Jessica Silver-Greenberg, These Machines Can Put You in Jail. Don’t
Trust Them., N.Y. TIMES (Nov. 3, 2019)
https://www.nytimes.com/2019/08/06/nyregion/crash-five-dead-long-island.html
[https://perma.cc/K8PP-LV42].
40 943 A.2d. at 121.
41 Evan Levow, Summary of the Software House Finding for the Source Code of the Draeger
Alcotest 7110 MKIII-C, DWI.COM, https://www.dwi.com/new-jersey/state-v-chun/
[https://perma.cc/URH9-94KC].
42 Chun, 943 A.2d. at 128.

10 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

second breath.43 The measurements from the first breath are compared
to the measurements from the second breath; if the measurements from
the first breath are not within accepted levels of tolerance of the second
breath, then the machine operator requires the subject to take a third
breath; this will again provide two readings.44

The outside examiners noted that, “[w]hen the software takes a series of
readings, it first averages the first two readings. Then, it averages the
third reading with the average just computed. Then the fourth reading is
averaged with the new average, and so on.”45 (Mathematically, that is
not an average, as it weighs the first reading significantly more than the
others, the second less than the first, but more than the others, etc.) The
examiners were concerned that the error detection logic of the device
needed a measurement error to register thirty-two times in a row for an
error message to be displayed; otherwise the error was ignored.46

The court’s special master deemed the device to be scientifically
reliable,47 but the court itself did not.48 The New Jersey Supreme Court
was not bothered by the way the device computed the so-called average,
instead pointing out that what this did was give higher weight to the
portion of the breath from the deepest air in the lung, the portion that
most accurately reflects blood-alcohol levels.49 But the court observed
an error occurred when one of the original four readings fell outside
accepted tolerance of the device.50 In such a case, the subject is asked to
do a third breath into the device,51 and all six readings—two from each

43 Jeffrey Lustick, Getting to Know Washington’s New DUI Breathalyzer: The German Made
Dräger Alcotest 9510, LUSTICK KAIMAN & MADRONE PLLC (Feb. 24, 2016),
https://www.lustick.com/blog/getting-know-washingtons-new-dui-breathalyzer-german-made-
drager-alcotest-9510/ [https://perma.cc/LN99-Q6QL].
44 Id.
45 Levow, supra note 41.
46 Id.
47 Chun, 943 A.2d. at 153; STEPHEN P. SMITH ET AL., IIT RESEARCH INSTITUTE, INDEPENDENT
REVIEW OF THE CARNIVORE SYSTEM, FINAL
REPORT xiii (2000), https://www.epic.org/privacy/carnivore/carniv_final.pdf.
48 Chun, 943 A.2d. at 153.
49 Id. at 156-57.
50 Id. at 157-58.
51 According to the court, as many as 5% of defendants might be tested on a third breath. Id. at
157.

2021] 11

breath—are included in its calculation (or at least, they should be). As
the New Jersey Supreme Court discovered, this did not happen.

If the second EC reading was low—indicating the subject had low
blood-alcohol levels—that evidence was simply ignored by the system.
This was not because of malfeasance, but because of a programming
error “due to [a] buffer overflow error”—an overwriting of the data.52
Buffer overflow errors been known academically since 198153 (and in
practice since 198854). If the defense had an opportunity to examine the
code, this error might have been found, in which case the evidence
would have been dismissed.

That such an error should occur in a breathalyzer marketed in 2008 is
both astonishing and highly disturbing. Avoiding such errors is always
taught in first semester programming classes;55 the existence of such an
error demonstrates a serious lack of quality control by the vendor. An
adversarial audit may have found the problem; without both source code
and a suitable test environment (itself hard to construct without source
code), there would be no way to find it.

The outside examiners found “thousands of programming errors” upon
testing the Alcotest 7110 MKIII-C.56 Drager, the manufacturer, claimed
to have fixed the problems, but in 2019 the New York Times reported
that the state failed to update the software in its devices.57

52 Id. at 157-59.
53 See C.A.R. Hoare, The Emperor's Old Clothes, 24 COMMC’NS ACM 75, 76-77 (1981).
54 Jon A. Rochlis & Mark W. Eichin, With Microscope and Tweezers: The Worm from MIT’s
Perspective, 32 COMMC’NS ACM 689, 689 (1989).
55 Buffer overflows are typically caused by lack of bounds-checking on what are known as
“array indices.” Improper indices are always wrong; using them can cause program crashes,
erroneous results, or security problems. Consequently, all introductory classes and texts stress
this point. See, e.g., ROBERT SEDGEWICK & KEVIN WAYNE, INTRODUCTION TO PROGRAMMING
IN JAVA: AN INTERDISCIPLINARY APPROACH §1.4 (2d ed., 2017) (“When programming with
arrays, you must be careful. It is your responsibility to use legal indices when accessing an
array element.”).
56 Cowley & Silver-Greenberg, supra note 39.
57 Id.

12 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

Programming errors such as these are not limited to breathalyzers. A
particularly striking example comes from Carnivore,58 an FBI program
for analyzing network traffic—this is called a packet sniffer—that was
developed in the late 1990s and used on ISP’s networks. Using filters to
record traffic fitting some predetermined pattern, such as all email to or
from a particular target, Carnivore would collect traffic pursuant to a
pen/trap order or wiretap warrant.59

The software program was not properly designed, however, enabling
incorrect collection of communications traffic. In 2000, an outside
review committee discovered that, “Incorrectly configured, Carnivore
can record any traffic it monitors.”60 The ability to record “any traffic”
should not have been possible. In addition, the system permitted
additional copies of intercepts to be made, even if they had not been
minimized (a requirement for all lawful wiretaps); only FBI “procedures
and professionalism” prevented that from occurring.61

One might imagine that the concerns the oversight committee raised
were theoretical worries; surely the device would not actually exhibit
such flaws in practice. In fact, serious problems occurred in the
collection. An FBI anti-terrorism investigation by the team focusing on
Osama bin Laden used Carnivore.62 According to an internal memo,
“[t]he FBI software not only picked up the E-mails under the electronic
surveillance of the FBI’s target XXX but also picked up E-mails on non-
covered targets. The FBI technical person was apparently so upset that
he destroyed all the E-mail take, including the take on XXX.”63

58 Carnivore was later renamed DCS-1000, for Digital Collection Service 1000. DCS-3000 is
the FBI’s New Carnivore, WIRED (Apr. 27, 2006, 7:04 PM),
https://www.wired.com/2006/04/dcs3000-is-the-/ [https://perma.cc/U6VQ-EUCH].
59 SMITH ET AL., supra note 47.
60 Id. at xii.
61 Id. at 4.2-4.3.
62 The unit was known as the “UBL” unit; they spelled the target’s name “Usama bin Laden.”
Michele Zanini & Sean J.A. Edwards, The Networking of Terror in the Information Age, in
NETWORKS AND NETWARS: THE FUTURE OF TERROR, CRIME, AND MILITANCY, 39 (1999),
https://www.rand.org/content/dam/rand/pubs/monograph_reports/MR1382/MR1382.ch2.pdf.
63 Memorandum from the FBI on FISA Mistakes to Spike Bowman (April 5, 2000) (on file
with Electronic Privacy Information Center) https://www.epic.org/privacy/carnivore/fisa.html
[https://perma.cc/6FND-CHYV]. Context is given in the EPIC press release. See Press
Release, Electronic Privacy Information Center, FBI’s Carnivore System Disrupted Anti-

2021] 13

Carnivore was collecting digital evidence, which makes the fact that the
Carnivore software was improperly designed particularly disturbing.
Breathalyzers test a physical object—a human breath. While it is not
standard to preserve the actual breath sample, it is possible to require
that such samples be preserved until court hearings have occurred; in
fact, the states of Alaska and New Hampshire do exactly that.64
However, the digital artifacts that Carnivore collected were the actual
evidence itself. One aspect of the Carnivore evidence collection
process—overcollection—had gone wrong, but so could other aspects
of collection. This raises the possibility that the collected evidence as
seen by the court could be incorrect or it could appear misleadingly out
of context. This makes clear that the ability of the defendant to cross-
examine the “witnesses”—in this case, the digital code that did the
collection—is crucial.

Computer forensic analysis provides yet a third example of problems
with evidentiary software. Apple forensics expert Jonathan Zdziarski
was hired by the United States Army to examine phone evidence in the
case of a brigadier general who had been accused of sexual harassment,
assault, and making murder threats.65

Terror Investigation (May 28, 2002) (on file with author)
https://www.epic.org/privacy/carnivore/5_02_release.html [https://perma.cc/QM3T-KYBF].
64 Best v. Mun. of Anchorage, 712 P.2d 892, 898–99 (Alaska Ct. App. 1985); Mun. of
Anchorage v. Serrano 649 P.2d 256 (Alaska Ct. App. 1982) (state must preserve a breath
sample). Current New Hampshire law requires the collection and preservation of an additional
blood sample, and that someone who is asked to perform a breath test shall be informed that
they have the right, at their own expense, to have a blood sample drawn and preserved. See In
re Op. of Justices (Eliminating Requirements for Additional Breath Samples), 2 A.3d 1102
(N.H. 2010) (New Hampshire Supreme Court rejected proposed amendment to eliminate the
requirement to save two breath samples). Other states have a duty to preserve, but it is not
constitutionally mandated. Arizona has a duty to preserve breath samples for independent
testing pursuant to its implied consent law. See RSA 265-A:7 II and III; State v. Vannoy, 866
P.2d 874, 878 (Ariz. Ct. App. 1993) (discussing ARIZ. REV. STAT. ANN. § 28-691). Failure to
preserve breath samples did not violate due process or equal protection. See also People v.
Molina, 468 N.Y.S.2d 551, 558 (N.Y. Crim. Ct. 1983) (“basic fairness and the duty to make of
the trial a search for truth informed by all relevant material requires that the police preserve for
the defendant's use a separate breath sample for testing and analysis”); People v. Trombetta,
219 Cal. Rptr. 637 (Cal. Ct. App. 1985).
65 SUSAN LANDAU, LISTENING IN: CYBERSECURITY IN AN INSECURE AGE 145 (2017) (ebook).

14 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

Zdziarski was brought into the case late, just before the trial was to start.
In the course of examining the phone, Zdziarski determined that the
computer forensic tools initially used in the investigation did not work
correctly. Timeline was a crucial issue in the case, and so Zdziarski
needed to look at timestamps for device erasures, backup restores, and
file accesses. The commercial forensic tools had reported these
inaccurately. Problems included incorrect times for app deletion, basing
the time on when the phone was next booted up rather than when the
app was actually removed.66 This meant that the forensic tools were
miscalculating when the app was actually used. Zdziarski’s analysis
changed the case, with the Army dropping the most serious charges.67

Breathalyzers, packet sniffers and wiretaps, and computer forensic tools
are far from the only examples of evidentiary software. Indeed, the
errors we have discussed present but the tip of an iceberg. Other
instances include radar guns, tools for conducting DNA analysis, and
network investigative techniques (the last is government malware used,
pursuant to court order, to intrude onto a system in order to investigate
and/or obtain evidence).68 Moreover, with our drive willy-nilly into the
Digital Revolution, we are moving into a world in which law
enforcement will increasingly rely on evidentiary software. From
automatic toll booths that register when a car enters and exits a highway
to personal devices that record where and when an individual is, the
percentage of cases that rely on evidentiary software is increasing. The
fact that such software may incorrectly report its findings makes cross-
examining source code crucial to the basic protections laid down in the
Bill of Rights.

Yet that capability, so necessary for protecting a defendant’s rights, is
disappearing. Even as we rely on computer software to bear witness, we
are simultaneously moving to a criminal justice system in which “law

66 Jonathan Zdziarski, An Example of Forensic Science at Its Worst: US v. Brig. Gen. Jeffrey
Sinclair, ZDZIARSKI’S BLOG OF THINGS (Aug. 24, 2014),
https://www.zdziarski.com/blog/?p=3717 [https://perma.cc/PR75-FW6A].
67 LANDAU, supra note 65.
68 See, e.g., Jennifer Stisa Granic, Challenging Government Hacking: What’s at
Stake, ACLU (Nov. 2, 2017, 10:00 AM), https://www.aclu.org/blog/privacy-
technology/internet-privacy/challenging-government-hacking-whats-stake
[https://perma.cc/T6HC-FZ27].

2021] 15

enforcement privilege”69 frequently prevents access to the details of
investigative techniques and procedures.

Given the guarantees of the Fifth and Sixth Amendments, it may be
difficult to understand how prosecutors are able to withhold details of
the tools used in evidence gathering. This approach is a relatively new
phenomenon.70 Recently, United States Magistrate Judge Stephen
Smith presented a compelling history of the law enforcement privilege’s
genesis.71 The change began with the 1950 espionage trial of Judith
Coplon, a Department of Justice employee in the Foreign Agents
Registration Division.72 Coplon was also a Soviet spy. The FBI had
become suspicious of her and fed her a false document.73 Coplon was
arrested as she was handing over the fake document—and twenty-eight
classified memoranda—to her accomplice.74

The twenty-eight other memoranda were a problem for FBI Director J.
Edgar Hoover, for they showed evidence that the FBI was illegally
wiretapping.75 In 1937, ruling on the basis of the Federal
Communications Act,76 the Supreme Court deemed it illegal to
“intercept” and “divulge” wired communications.77 Initially, the
Department of Justice interpreted the decision to mean interception and
divulgence of content outside the federal government was unlawful.78
In 1940 President Franklin Roosevelt authorized the practice against
those suspected of subversive activities against the United States
government, urging Attorney General Jackson to limit the investigations

69 Smith, supra note 10, at 233.
70 Id.
71 See generally id.
72 See generally United States v. Coplon, 185 F.2d 629 (2d Cir. 1950).
73 Id. at 632-35.
74 ATHAN G. THEOHARIS & JOHN STUART COX, THE BOSS: J. EDGAR HOOVER AND THE GREAT
AMERICAN INQUISITION 256 (1988).
75 Smith, supra note 10, at 237.
76 47 U.S.C. § 605.
77 Nardone v. United States, 302 U.S. 379, 382 (1937).
78 SELECT COMM. TO STUDY GOVERNMENTAL OPERATIONS WITH RESPECT TO INTELLIGENCE
ACTIVITIES, S. REP. NO. 94-755, 94th Cong., 2d Sess., Book III, at 278 n.25 (letter from
Attorney General Robert Jackson to Rep. Hatton Summers, March 19, 1941).

16 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

to a minimum and “limit them insofar as possible to aliens.”79
Nonetheless, the original restriction of the court still stood. The FBI had
been wiretapping Coplon; although Hoover sought to conceal that fact
during Coplon’s trials, her defense attorney was able to get it into the
record.80 As a result, Coplon’s convictions were overturned.81 The more
significant result from this was Hoover’s response, which was
effectively to hide wiretaps from view.82

The wily FBI director did not stop there. As Stephen Smith has detailed,
Hoover publicly campaigned to establish an “evidentiary privilege
covering law-enforcement techniques and procedures.”83 Evidentiary
privilege was a new idea in 1950. However, as we can see from very
public law-enforcement efforts to keep the techniques of investigative
technologies hidden,84 it is an oft-used practice.

The FBI director’s efforts are not the only ones pushing in favor of
evidentiary privilege. Judge Smith details how a small exemption for
law-enforcement records in the Freedom of Information Act became a
Mack Truck-sized hole that has permitted the withholding of
evidentiary information by multiple courts.85

Sometimes legal problems arise from a single issue, as it did in the
Coplon trial, where the withholding of evidence resulted in an unfair
trial and Coplon’s release. Sometimes legal problems develop from a

79 Id. at 279 (Franklin D. Roosevelt, Confidential Memorandum for the Attorney General,
May 21, 1940).
80 See Smith, supra note 10, at 234.
81 Coplon was tried in the District of Columbia on unauthorized possession of classified
documents and in the Southern District of New York on espionage. The illegal wiretapping
formed the basis for an appeal of Coplon’s second trial, which won her a reversal. Smith,
supra note 11, at 234-37.
82 Wiretap evidence including requests for taps, etc. would be stored separately from the main
files of a case, with only a single copy of the wiretap stored. This was held in a secure area at
FBI headquarters. THEOHARIS & COX, supra note 74, at 259-60.
83 Smith, supra note 10, at 243.
84 Stephanie K. Pell & Christopher Soghoian, Your Secret Stingray’s No Secret Anymore: The
Vanishing Government Monopoly over Cell Phone Surveillance and Its Impact on National
Security and Consumer Privacy, 28 HARV. J.L. & TECH. 1, 33-34 (2014).
85 Smith, supra note 10, at 248-50.

2021] 17

confluence of issues. That is the situation here with the combination of
evidentiary software, evidentiary privilege, and software error.

The issue of software error occupies a large part of computer science
research and practice,86 including security (a high percentage of security
problems are due to buggy code87) and concerns about fairness and
accuracy in machine learning. Here, we have focused narrowly on how
the combination of evidentiary software, evidentiary privilege, and
software error poses a threat to the fundamental right of criminal
defendants to a fair trial. The good news is that, unlike the larger
problem of software error, this problem posed by errors in evidentiary
software appears relatively solvable. While our proposed solution
challenges the present handling of the situation, our recommendation is
technically feasible and is without high financial costs.88

We begin in Section II with an explanation of the nature of software and
thus of coding errors, ending with an explanation of modern techniques
used to find and correct these problems. In Section III we discuss the
three Constitutional concerns that are raised by software errors: Brady
violations (the prosecution must provide exculpatory evidence to a
defendant),89 the implications of the Confrontation Clause, and the Due
Process clause. We conclude in Section IV with our recommendations.

II. The Root of the Problem

The essence of our argument is this: the nature of software, and hence
of computer programming, is such that certain errors are more likely to

86 Buggy code has long been a focus for academics and practitioners alike. “First, one must
perform perfectly. The computer resembles the magic of legend in this respect, too. If one
character, one pause, of the incantation is not strictly in proper form, the magic doesn't work.
Human beings are not accustomed to being perfect, and few areas of human activity demand
it. Adjusting to the requirement for perfection is, I think, the most difficult part of learning to
program.” FREDERICK P. BROOKS, JR., THE MYTHICAL MAN-MONTH 8 (1975).
87 See WILLIAM R. CHESWICK & STEVEN M. BELLOVIN, FIREWALLS AND INTERNET SECURITY:
REPELLING THE WILY HACKER 7 (1994).
88 It is in fact not clear that there will be a net increase in costs, if early audits reduce the need
for future litigation.
89 Brady v. Maryland, 373 U.S. 83, 87 (1963).

18 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

be found by adversarial testing. We start by giving a brief overview of
the nature and limitations of software development.

The software design process typically starts with the creation of
“specifications,” a detailed description of what the system should do.90
It is not enough to say, for example, “measure breath alcohol level.”
What are the expected ranges? (A real breath sample will never consist
of pure ethanol.) How much breath must be sampled? How close should
it come to the results from an actual blood test? What sort of operational
errors should be detected? What should the system do if it encounters
anomalous situations? Should there be internet connectivity, to relay
results immediately? Should there be a camera and a GPS, for better
evidentiary value? If so, what if the device is used in a cellular dead
spot, or if the camera or GPS are not working? How many samples from
how many drivers must the device store?

Errors can creep in at any point. Unexpectedly high readings might
erroneously show up as low because the device was never intended to
handle such values.91 The specification may have omitted important
details, e.g., what to do if the battery voltage is below a certain level.
Programmers use the specifications to guide writing the actual
programs. Testers then use the same specification documents to guide
their tests. An error in the specifications, then, can turn into erroneous
code; such errors will not be detected by the testers, since their job is to
ensure that the program matches the specifications.

Before we explain how coding errors can occur, we provide a brief note
on terminology. As is widely known, computers “understand” only 0s
and 1s. That is, the actual computer hardware is only capable of
understanding “binary”: a way to represent numbers or characters using
only the values 0 and 1, commonly understood as an electrical circuit

90 See, e.g., Barry W. Boehm, Verifying and Validating Software Requirements and Design
Specifications, IEEE SOFTWARE, Jan. 1984, at 76.
91 Extreme values can occur legitimately. For example, in a recent New York criminal case,
the defendant was described as having “the second highest level of marijuana that they’ve ever
seen in a living specimen.” Arielle Dollinger, The Stolen Car Was Going 154 M.P.H. Five
People Ended up Dead., N.Y. TIMES (Aug. 6, 2019),
https://www.nytimes.com/2019/08/06/nyregion/crash-five-dead-long-island.html
[https://perma.cc/3H9S-3E3S].

2021] 19

being off or on. This is the reason that the actual programs run by a
computer chip are often referred to as “binaries” or “executables.”
Programmers, though, almost never directly code actual binary
programs. Instead, they write in “source code,” a (more-or-less) human-
readable language.92 Specialized programs known as “compilers”
translate the source code to executables. While it is possible, with proper
tools and considerable effort, for a human to understand an
executable—indeed, analysis of computer viruses and other malware
relies on this ability93—analysis is far easier and far more complete if
the original source code is available.

A. Computer Programming

It is a truism that computers do only what they are told to do. The
process of “telling” a computer what to do is called programming, and
while programming is no longer the rare, arcane art that it once was,
nevertheless many people have no exposure to it. Then, we explain
programming errors that cause bugs as well as how programmers test to
eliminate such bugs. Finally, we address the necessity of adversarial
audits to safeguard defendants’ rights.
Consider the following program fragment.94

int a, b; /* Reserve two storage locations */

scanf("%d", &a); /* Read the first value */
scanf("%d", &b); /* Read the second */
printf("%d\n", a + b); /* Print their sum */

It reads into two values and prints their sum. There are several things
worth noting about these few lines of code.

92 Some examples of source code are given. See infra Section II.A.
93 See generally MICHAEL SIKORSKI & ANDREW HONIG, PRACTICAL MALWARE ANALYSIS: THE
HANDS-ON GUIDE TO DISSECTING MALICIOUS SOFTWARE (Alison Law et al. eds., 2012).
94 This fragment is written in a language known as C. See generally BRIAN W. KERNIGHAN &
DENNIS M. RITCHIE, THE C PROGRAMMING LANGUAGE (2d ed. 1978). C is the ancestor of many
currently used programming languages. Neil DuPaul, The History of Programming Languages
Infographic, VERACODE (Apr. 15, 2013), https://www.veracode.com/blog/2013/04/the-history-
of-programming-languages-infographic [https://perma.cc/ZPR2-HDR5].

20 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

The first, of course, is that the code itself—the first portion of each
line—is completely incomprehensible to anyone but a programmer. The
second thing to note is that the second half of each line, the portion
enclosed between /* and */, is readable. These are known as
“comments” and are ignored by the computer. This particular example
is artificial, in that not only are there more comments than is customary,
they’re redundant to the code and would be seen as bad practice. That
is, a comment like “Print their sum” is rather useless, since to any
programmer it is apparent that is what the line does.95 A better comment
is one that explains why the sum is being printed, or what the input
values mean.96 Nevertheless, even to experienced programmers
comments can be easier to read than code.

There is another, more subtle point: to a first approximation, every line
of code interacts with every other. For example, in this case the first line
says the storage locations “a” and “b” can only hold integers. It is
straightforward to make them hold numbers with fractional parts, e.g.,
1.5, by writing:

 float a, b;

instead, but that would require certain changes to the corresponding
scanf line to let it read so-called “floating point” numbers. Furthermore,
and less obviously, the printf statement would require certain changes
as well.

95 Even non-programmers can see the root word “print” and “a + b”. These mean exactly what
they appear to mean. H. James de St. Germain, Commenting, JIM’S CS TOPICS,
https://www.cs.utah.edu/~germain/PPS/Topics/commenting.html#:~:text=Comments%20shoul
d%20be%20useful%20high,easy%20to%20read%20as%20English. [https://perma.cc/M5QR-
JE6D].
96 Proper commenting style is routinely taught in introductory programming classes. See id.

2021] 21

Computers derive much of their power from two features: the ability to
choose among alternatives and the ability to repeat activities. Suppose
we wanted to change the above program to subtract two numbers, but
always to subtract the lesser from the greater:

int a, b; /* Reserve two storage locations */

scanf("%d", &a); /* Read the first value */
scanf("%d", &b); /* Read the second */
if (a > b)
 printf("%d\n", a - b);
 else
 printf("%d\n", b - a);

We could also do this repeatedly, for many pairs of numbers:

int a, b; /* Reserve two storage locations */

while (1) {
 scanf("%d", &a); /* Read the first value */
 scanf("%d", &b); /* Read the second */
 if (a > b)
 printf("%d\n", a - b);
 else
 printf("%d\n", b - a);
}

We will forbear explaining these program fragments in detail, save to
note that the last example has a bug: it will run forever, even when there
is no more input available.97

97 See generally KERNIGHAN & RITCHIE, supra note 94. There is an old joke about why
programmers starve to death in the shower: the instructions on shampoo bottles often say
“Lather, rinse, repeat,” with no instruction on when to stop. Computers, after all, take things
literally; programmers, perforce, must learn to do the same. Victor Raskin, Verbal Play in
Computer Jokes, BELB, http://www.belb.info/studenti/mincheva/verbal%20play.htm
[https://perma.cc/662L-P4LB].

22 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

B. Bugginess

Consider the following minor variant of the first programming fragment
shown above, but where the two storage locations are called “k” and “l”
instead of “a” and “b”:

int k, l; /* Reserve two storage locations */

scanf("%d", &k); /* Read the first value */
scanf("%d", &l); /* Read the second */
printf("%d\n", k + 1); /* Print their sum */

In fact, the two are not identical; in the second fragment, the sum printed
is not of the two values, but of the first value, “k”, and the number one.98
Depending on the font used, the difference between the digit one and
the 12th letter of the alphabet can be extraordinarily hard to spot. A
programmer whose eyes see the comment is likely to glance only
fleetingly at the actual code, and thus not spot the error. Errors—and
sabotage—from similarly confusing patterns are by no means unknown
in the real world.99

Simple bugs can have drastic consequences. A missing hyphen
contributed to the loss of Mariner 1, the first space probe launched
toward Venus.100 The first launch of the Ariane 5 rocket, after $7 billion
and a decade of development, failed because of a simple software
error.101 The first launch of the Space Shuttle Columbia, before a
worldwide live television audience, was aborted on the launchpad due

98 One of the authors of this article copied and pasted the code fragments above into an actual
program, to verify that the behavior is as stated.
99 In what is likely the best-documented sabotage incident, Princeton computer science
professor Ed Felten described what was an apparent attempt to plant a back door—a deliberate
security hole known only to its authors—in Linux, relying on just such a trick. Ed Felten, The
Linux Backdoor Attempt of 2003, FREEDOM TO TINKER (Oct. 9, 2013), https://freedom-to-
tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/ [https://perma.cc/5KLY-3J45].
100 David R. Williams, Mariner 1, NASA SPACE SCI. DATA COORDINATED ARCHIVE,
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
[https://perma.cc/2T5J-PMX2].
101 James Gleick, Little Bug, Big Bang, N.Y. TIMES MAG. (Dec. 1,
1996), https://www.nytimes.com/1996/12/01/magazine/little-bug-big-bang.html
[https://perma.cc/4R2K-QGL3].

2021] 23

to a bug.102 Another notable example was a misplaced “break”
statement103 that led to the failure of most of AT&T’s long distance
network.104 These bugs were immediately visible. Some bugs, though,
are silent; one must look (and look hard) for them.105

Bugs are an omnipresent hazard in software. All non-trivial software
packages have bugs;106 even large-scale efforts to prevent them have
their limits. Three of us wrote:

[I]t is important to know a fundamental tenet of software
engineering: bugs happen. In his classic The Mythical
Man-Month, Frederick Brooks explained why:

First, one must perform perfectly. The
computer resembles the magic of legend
in this respect, too. If one character, one
pause, of the incantation is not strictly in
proper form, the magic doesn’t work.
Human beings are not accustomed to

102 John R. Garman, The "BUG" Heard 'Round the World: Discussion of the Software Problem
Which Delayed the First Shuttle Orbital Flight, 6 ACM SIGSOFT SOFTWARE ENGINEERING
NOTES, Oct. 1981, at 3.
103 In computer programs, a fundamental construct is “looping”: repeated execution of a
segment of code, generally until some condition is met. A “break” statement is one way to
terminate execution of a loop. See generally KERNIGHAN & RITCHIE, supra note 95.
104 BRUCE STERLING, THE HACKER CRACKDOWN 35 (1992) (“The ‘break’ was supposed to
‘break’ the ‘if clause.’ Instead, the ‘break’ broke the ‘switch’ statement.”).
105 See, e.g., the descriptions of the Juniper and telnet issues, infra Section II.C.
106 The problem of buggy code has been known since the dawn of computing. STERLING, supra
note 105 (internal citations omitted). See also Tim Menzies & Thomas Zimmermann, Software
Analytics: What's Next?, IEEE SOFTWARE, Sept.-Oct. 2018, at 64, 64-65 (“As soon as people
started programming, it became apparent that programming was an inherently buggy process.
Maurice Wilkes, speaking of his programming experiences in the early 1950s, recalled the
following: . . . the realization came over me with full force that a good part of the remainder of
my life was going to be spent in finding errors in my own programs.”). By the early 1970s,
researchers had developed formulas to predict the number of bugs in a program, based on its
size and complexity. Id. at 65; see also Ronald L Rivest, On the Notion of “Software
Independence” in Voting Systems, 366 PHIL. TRANSACTIONS ROYAL SOC’Y A 3759, 3760
(2008) (“Finding all errors in a large system is generally held to be impossible in general or
else highly demanding and extremely expensive. Our ability to develop complex software
vastly exceeds our ability to prove its correctness or test it satisfactorily within reasonable
fiscal constraints.”).

24 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

being perfect, and few areas of human
activity demand it. Adjusting to the
requirement for perfection is, I think, the
most difficult part of learning to program.

Because computers, of course, are dumb—they do
exactly what they are told to do—programming has to be
absolutely precise and correct. If a computer is told to do
something stupid, it does it, while a human being would
notice there is a problem. A person told to walk 50 meters
then turn left would realize that there was an obstacle
present, and prefer the path 52 meters down rather than
walking into a tree trunk. A computer would not, unless
it had been specifically programmed to check for an
impediment in its path. If it has not been programmed
that way—if there is virtually any imperfection in code—
a bug will result. The circumstances which might cause
that bug to become apparent may be rare, but it would
nonetheless be a bug.107

Although it may be hard for non-programmers to count individual bugs
or the result of efforts to prevent them, computer security
vulnerabilities—which are mostly due to buggy code—are generally
more visible.108

107 Steven M. Bellovin et al., Lawful Hacking: Using Existing Vulnerabilities for Wiretapping
on the Internet, 12 NW. J. TECH. & INTELL. PROP. 1, 27 (2014).
108 All large software products have a “ticketing system” where bug reports and feature
requests are noted. In principle, this could be used to assess the bug rate, and many companies
do this internally. However, this information is often carefully guarded. Ticketing systems for
open source software are often public; however, distilling the data down to useful
information—eliminating the duplicates, figuring out which entries are user error and hence
incorrect, even deciding what is an actual bug and what is simply code that doesn’t work quite
as desired, even if that is the intended behavior—requires a great deal of effort. Clint
Fontanella, What’s a Ticketing System?, HUBSPOT (July 14, 2020),
https://blog.hubspot.com/service/ticketing-system [https://perma.cc/LK8Y-7MY4].
Furthermore, it is unclear if the behavior of open source developers is similar enough to that of
commercial developers. See, e.g., Steven M. Bellovin, The Open Source Quality Challenge,
SMBLOG (Apr. 29, 2009), https://www.cs.columbia.edu/~smb/blog/2009-04/2009-04-29.html
[https://perma.cc/7TN3-HU53]; see also Brooks, supra note 87.

2021] 25

Microsoft provides an excellent case study. By 2001, the company
realized it was in the throes of a security crisis. “‘No Microsoft
executive could have any conversation with any enterprise customer
about anything but Microsoft’s bad security,’ said Steve Lipner, who
was the company’s director of security assurance at the time.”109 The
Gartner Group warned its clients against using IIS, Microsoft’s web
server.110 In response, in 2003, the company initiated a massive effort
to produce more secure software111 and had all of its 8,500 Windows
developers take security training.112 Within months the effort showed
notable successes. Steven Lipner, who was Microsoft’s director of
engineering strategy, told the New York Times, “Some of the tougher
security standards . . . have shown measurable improvement in
Windows Server 2003, which shipped earlier this year. The number of
security vulnerabilities detected so far is half as many as at this stage
after the release of Windows Server 2000.”113 Microsoft’s security
development process has vastly improved the security of the company’s
products (a measure of its effectiveness is that the process has been
emulated by Cisco and Adobe).114 Nonetheless, security flaws (again,
due to bugs) still occur: in August 2018, “Microsoft pushed 17 updates
to fix at least 60 vulnerabilities in Windows and other software,
including two ‘zero-day’ flaws that attackers were already exploiting
before Microsoft issued patches to fix them.”115 In other words,

109 LANDAU, supra note 65, at 64.
110 Jack Kapica, Gartner Slams Microsoft IIS Server, GLOBE & MAIL (Sept. 25, 2001),
https://www.theglobeandmail.com/technology/gartner-slams-microsoft-iis-
server/article22621594/ [https://perma.cc/8ZW2-EHZ6].
111 Steve Lohr, Fixing Flaws, Microsoft Invites Attack, N.Y. TIMES (Sept. 29, 2003),
https://www.nytimes.com/2003/09/29/business/fixing-flaws-microsoft-invites-attack.html
[https://perma.cc/5HWN-4YEX] (“At Microsoft, much more time is now being set aside in the
design cycle of products for security considerations, a mandate approved by senior
management this spring. ‘There is a shift from mainly an emphasis on working features to an
emphasis on trustworthy and secure computing,’ said Steven B. Lipner, director of security
engineering strategy at Microsoft.”).
112 See LANDAU, supra note 65, at 64.
113 Lohr, supra note 111.
114 Tim Rains, The Secret of the SDL, MICROSOFT (July 2, 2014),
https://cloudblogs.microsoft.com/microsoftsecure/2014/07/02/the-secret-of-the-sdl/
[https://perma.cc/9A4Z-W67H].
115 Brian Krebs, Patch Tuesday, August 2018 Edition, KREBS ON SECURITY (Aug. 18, 2018),
https://krebsonsecurity.com/2018/08/patch-tuesday-august-2018-edition/
[https://perma.cc/2K6H-5MER].

26 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

although good software development processes are a significant help,
they are not a panacea; bugs (and security holes) have nevertheless
persisted, more than fifteen years after Microsoft began its initiative.

C. Testing and Assurance

Naturally, software vendors are aware of this problem and try to find
and eliminate bugs. The most common method is testing, which
involves feeding assorted sample inputs to a program to see if the correct
answer is produced. 116 This, however, has limitations. The most
fundamental issue with testing was noted decades ago by Edsger
Dijkstra, an esteemed computer scientist: “Program testing can be used
to show the presence of bugs, but never to show their absence!”117 That
is, a test case might yield an incorrect result, thereby demonstrating a
bug; however, it is impossible to tell if there is a bug that has not been
triggered by a particular set of inputs: there are far too many possible
situations to try them all. In fact, it is mathematically impossible to find
all failures.118

Some problems fundamentally cannot be detected simply by testing.
The most obvious example is encryption. By definition, the output of a
good encryption algorithm is indistinguishable from a random string of
bits.119 Indeed, if an encryption algorithm’s output can be distinguished

116 See generally PAUL AMMANN & JEFF OFFUTT, INTRODUCTION TO SOFTWARE TESTING
(Cambridge U. Press, 2d ed. 2017).
117 Edsger W. Dijkstra, Structured Programming, in SOFTWARE ENGINEERING TECHS. 65, 66 (J.
N. Buxton & B. Randell eds., 1970),
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF.
118 AMMANN & OFFUTT, supra note 116, at 20 (“the problem of finding all failures in a
program is undecidable.”). “Undecidable” is a technical term in computer science and
mathematics; it means that no possible algorithm can always find the correct answer.
Undecidability, U. OF ROCHESTER,
https://www.cs.rochester.edu/u/nelson/courses/csc_173/computability/undecidable.html
[https://perma.cc/RV9A-759Z].
119 The notion that ciphertext should be random is due to C. E. Shannon’s article
Communication Theory of Secrecy Systems, but his phrasing is quite mathematical and does
not quite match current usage. See C.E. Shannon, Communication Theory of Secrecy Systems,
28 BELL SYS. TECH. J. 656, 656-715 (1949). A more accessible reference simply assumes that
randomness is a requirement for a good cipher. JUAN SOTO, JR., U.S. DEPT. COM.,
RANDOMNESS TESTING OF THE ADVANCED ENCRYPTION STANDARD CANDIDATE ALGORITHMS
(1999) (“One of the criteria used to evaluate the Advanced Encryption Standard candidate

2021] 27

from a random string, that algorithm is considered seriously flawed.120
However, the presence of randomness is not itself sufficient for
correctness; the encryption keys must also be chosen properly.121 That
is a result of the principle established by Auguste Kerckhoffs in 1883:
one cannot assume that the encryption algorithm is secret.122 Therefore,
the security of an encryption algorithm must lie in the secrecy of the
key, and ensuring that secrecy is thus critical to an encryption’s
algorithm working appropriately.123 Unfortunately, testing will not
necessarily reveal that secrecy. Two examples better illustrate this point.
The first example concerned an encrypted version of the Telnet
protocol.124 Due to a bug in the key generation mechanism, most of the
time a constant key would be used.125 Anyone who knew this key could

algorithms was their demonstrated suitability as random number generators. That is, the
evaluation of their output utilizing statistical tests should not provide any means by which to
computationally distinguish them from a truly random source.”). The actual modern definition
of encrypting a message, though quite mathematical, assumes that an ideal encryption
algorithm generates a sequence of random bits. See, e.g., Shafi Goldwasser & Silvio Micali,
Probabilistic Encryption, 28 J. COMPUT. & SYS. SCI. 270, 272 (1983) (“More specifically, a
binary message will be encrypted bit-by-bit as follows: a “0” is encoded by randomly selecting
an x such that B(x) = 0 and a “1” is encoded by randomly selecting an x such that B(x) = 1.
Consequently, there are many possible encodings for each message. However, messages are
always uniquely decodable.”).
120 Goldwasser & Micali, supra note 119, at 271.
121 Today, an encryption key is generally a very large number; depending on the particular
encryption algorithm used, the keys can be tens or even hundreds of digits long. Rob Stubbs,
Classification of Cryptographic Keys, CRYPTOMATHIC (Feb. 19, 2018),
https://www.cryptomathic.com/news-events/blog/classification-of-cryptographic-keys-
functions-and-properties [https://perma.cc/JE5Y-ZSCP].
122 Auguste Kerckhoffs, La Cryptographie Militaire, 9 J. DES SCI. MILITAIRIES 5, 12 (1883)
(Fr.) (“Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber entre les
mains de l’ennemi.” [“The system must not require secrecy and can be stolen by the enemy
without causing trouble”]).
123 Id.
124 Telnet, a now-obsolescent protocol, was primarily used for command-line access to remote
computers. Users thus had to enter a login name and password, hence the need for encryption.
Tyson Supasatit, Can You Encrypt Telnet?, EXTRAHOP (Aug. 14, 2019),
https://www.extrahop.com/company/blog/2019/telnet-security-how-to-encrypt-telnet-sessions/
[https://perma.cc/G4P5-2D2F].
125 The fact of the problem was announced in CERT Advisory CA-1995-03, but no details
were provided, though the true situation was well known in the security community. CERT
DIVISION, CARNEGIE MELLON U., 1995 CERT ADVISORIES 20 (Carnegie Mellon U. Software
Engineering I. ed., 2017). According to a comment on a blog, the actual cause was deliberately
obfuscated. John Gilmore, Comment to Vendors Are Bad for Security, LINKS: BEN LAURIE
BLATHERING (May 13, 2008, 2:09 PM), https://www.links.org/?p=327
[https://perma.cc/8NV7-WKSE].

28 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

trivially decrypt the traffic.126 Simple testing would not have found the
problem; the output would have looked random despite the constant
key.127 Only an examination of the code itself would have demonstrated
the problem that the same encryption key was being used for all inputs.

The second incident was more sinister. The problems started with an
algorithm for generating random numbers that was originally put forth
by the National Security Agency (NSA). In NSA’s words, the agency
had “covertly influence[d] and/or overtly leverage[d] . . . commercial
products designs . . . mak[ing] the systems in question exploitable.” 128
The system in question was Dual EC_DRBG, a random number
generator that provided bits for an encryption key.129 Recall Kerckhoff’s

126 CERT DIVISION, supra note 125; Gilmore, supra note 125.
127 Because of technical details of how the encryption actually worked, multiple encryptions of
the same data would look different, despite the fact that the same key was used. See generally,
Mihir Bellare & Phillip Rogaway, Introduction to Modern Cryptography (2005) (collection of
class notes), available at
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf; JASON GARMAN,
KERBEROS (2003); PETER LOSHIN, TCP/IP CLEARLY EXPLAINED 221-35 (4th ed. 2002).
128 Secret Documents Reveal N.S.A. Campaign Against Encryption, N.Y. TIMES (Sept. 5,
2013), https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-
reveal-nsa-campaign-against-encryption.html [https://perma.cc/AYC3-FM5Z].
129 Random numbers are used to generate encryption keys but finding genuinely random
bits—that is to say, bits that are hard to predict—is a computationally difficult problem.
Consequently, a common method instead is to start with some truly random bits, then use a
mathematical function to expand these into a longer sequence of pseudo-random bits. The
Elliptic Curve Digital Random Bit Generator (Dual EC-DRBG) is one such function; it uses
elliptic curves to do so. The curve relies on two default parameters. The choice of these
parameters is crucial, for anyone knowing the arithmetic relationship between the parameters
would be able to predict the “random” numbers generated by the algorithm—making the
random numbers highly nonrandom indeed. In particular, if encryption keys were based on
these “random numbers,” anyone knowing the relationship between the two parameters would
have a significant head start in guessing the bits of the encryption key. Despite early concerns
about a possible cryptographic backdoor—such a backdoor permits a much more efficient
search for the key, making the encryption algorithm far less secure than it would otherwise
be—in Dual EC_DRBG, the National Institute for Standards and Technology recommended
this method for generating random numbers. See DAN SHUMOW & NIELS FERGUSON, ON THE
POSSIBILITY OF A BACK DOOR IN THE NIST SP800-90 DUAL EC PRNG 2-7 (2007),
http://rump2007.cr.yp.to/15-shumow.pdf; see also ELAINE BARKER & JOHN KELSEY, U.S.
DEP’T. COM., NIST SP 800-90, RECOMMENDATION FOR RANDOM NUMBER GENERATION USING
DETERMINISTIC RANDOM BIT GENERATORS 13-67 (2007) (withdrawn in Jan. 2012 and
succeeded by SP 800-90A). This was after RSA Security LLC had made the algorithm the
default random bit generator in its popular BSafe encryption toolkit. Joseph Menn, Exclusive:
Secret Contract Tied NSA and Security Industry Pioneer, REUTERS (Dec. 20, 2013, 4:05 PM)
https://www.reuters.com/article/us-usa-security-rsa/exclusive-secret-contract-tied-nsa-and-

2021] 29

Principle; the security of the system lies in the security of the key. But
the NSA effort meant that the bits of the key were predictable and thus
that any information encrypted through that system could be easily
decrypted by the NSA.

In principle, the communication would, however, be secure against
other interceptors, which did not know the relationship between a
crucial two parameters—and thus could not easily guess the random bits
and determine the encryption key. This situation did not last. A Juniper
firewall used the DUAL_EC_DRBG random number generator.
Apparently, someone switched the crucial parameters in the standard
DUAL_EC_DRBG algorithm with other numbers; possibly, this
allowed the party who did this to have its own back door.130 But simple
testing would not detect the problem. The output would, after all, appear
to be properly encrypted.

But programmers had added a second back door to the Juniper
firewall131 that allowed anyone who knew a secret password to log into
the firewall as a privileged user.132 The password was “<<<

security-industry-pioneer-idUSBRE9BJ1C220131220. The algorithm was widely used,
including in such applications as SSL/TLS, the protocol for securing web transmissions.
Matthew Greene, The Many Flaws of Dual EC-DRBG, A FEW THOUGHTS ON CRYPTOGRAPHIC
ENG’G (Sept. 18, 2013), https://blog.cryptographyengineering.com/2013/09/18/the-many-
flaws-of-dualecdrbg/ [https://perma.cc/6YPJ-F4BA].
130 Stephen Checkoway et al., A Systematic Analysis of the Juniper Dual EC Incident, in
PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS
SECURITY 468. The full story is vastly more complicated and includes other back doors and
bugs. “The Dual_EC generated initial output that was supposed to then be run through the
ANSI generator. The output from the second random generator would theoretically cancel out
any vulnerabilities that were inherent in the Dual_EC output. . . . Except Juniper’s system
contained a bug, according to Willem Pinckaers, an independent security researcher in the San
Francisco area who examined the system with Weinmann. Instead of using the second
generator, it ignored this one and used only the output from the bad Dual_EC generator.” Kim
Zetter, Researchers Solve Juniper Backdoor Mystery; Signs Point to NSA, WIRED (Dec. 22,
2015, 1:29 AM), https://www.wired.com/2015/12/researchers-solve-the-juniper-mystery-and-
they-say-its-partially-the-nsas-fault/ [https://perma.cc/2MEU-5EYW].
131 Sean Gallagher, Researchers Confirm Backdoor Password in Juniper Firewall Code, ARS
TECHNICA (Dec. 21, 2015, 1:15 PM), https://arstechnica.com/information-
technology/2015/12/researchers-confirm-backdoor-password-in-juniper-firewall-code/
[https://perma.cc/H7YQ-GNHT].
132 Checkoway et al., supra note 131, at 468. It is not known if the two back doors were
inserted by the same party or by different parties. Zetter, supra note 131.

30 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

%s(un='%s') = %u,” a value that resembles a string that might be used
for debugging.133 There is no conceivable testing regimen that would
have found this flaw.

There are still other ways that programming bugs may lay hidden.
Sometimes, bugs can be very rare or highly unlikely because they are
timing-dependent. Consider the space shuttle bug.134 The details are
complex; let it suffice to say that it would only occur one out of sixty-
seven times the shuttle’s computers were booted.135 The AT&T network
flaw would only be triggered when certain events occurred within 1/100
of a second of each other.136 Testing would be very unlikely to uncover
this issue.

There have been inexplicable problems in forensic software too. In one
case in Pennsylvania, three different experts concluded there was a
DNA match to the defendant, but their probability estimates—all
derived from software—differed wildly.137 It is impossible to
understand such differences without access to the source code, nor, for
that matter, to know if the problem is a different mathematical model or
simply code that implements the model incorrectly.

The limitations of testing have, of course, led to the development of
other methods for finding and eliminating software bugs. Those have
helped but have not solved the problem. In a previous work, several of
us summarized the issue this way:

We will not recount the myriad techniques other than
testing that have been tried in an effort to eliminate bugs;

133 Gallagher, supra note 131; see also, infra Section II.D. (discussing programmer blindness).
134 See Garman, supra note 102.
135 Id. at 9.
136 See STERLING, supra note 104, at 48.
137 Commonwealth v. Foley, 38 A.3d 882, 887 (2012) (“The experts differed in their estimates
of the probability that someone other than Foley would possess DNA matching the DNA
found in the sample—Conway testified that the probability that another Caucasian could
be the contributor was 1 in 13,000; Dr. Cotton testified that the probability was 1 in 23
million; and Dr. Perlin testified that it was 1 in 189 billion.”); see also Stephanie J. Lacambra
et al., Opening the Black Box: Defendants’ Rights to Confront Forensic Software, CHAMPION,
May 2018, at 28, https://www.eff.org/files/2018/07/30/champion_article_-
_lacambra_forensic_software_may_2018_07102018.pdf.

2021] 31

let it suffice to say there have been many. These include
formal mathematical methods, better programming and
debugging tools, different organizational and procedural
schemes, improved programming languages, and more.
Many of these ideas have helped, but none have proved
a panacea. The ability to produce error-free code is the
Holy Grail of systems development: heavily desired but
unattainable.138

In summary, software as it exists today (and likely for the foreseeable
future) will always have bugs. Consequently, criminal defendants need
access to source code to safeguard their constitutional rights.

D. Adversarial Audits

In light of the axiomatic notion that software will always have bugs, the
question then becomes how courts should address this problem. Our
basic thesis is that adversarial audits—examination and testing of
software by defendants—is necessary for a fair trial. Put another way,
we assert that outside testing will find flaws that the vendor did not.
Why should this be?

In one sense, this is a statement that does not require proof. The
American legal system is fundamentally based on the premise that the
adversarial system is the best way to reach the truth. Indeed, as legal
scholar Ralph Grunewald has written, “[t]he Supreme Court shares the
view that facts are best proven dialectically through a complex process
of persuasion and holds that truth ‘is best discovered by powerful
statements on both sides of the question.’”139 Furthermore, “[t]he very
premise of our adversary system of criminal justice is that partisan
advocacy on both sides of a case will best promote the ultimate
objective that the guilty be convicted and the innocent go free.”140

138 Bellovin et al., supra note 107, at 28.
139 Ralph Grunewald, Comparing Injustices: Truth, Justice, and the System, 77 ALB. L. REV.
1139, 1156 (2014) (quoting United States v. Cronic, 466 U.S. 648, 655 (1984)).
140 Herring v. New York, 422 U.S. 853, 862 (1975).

32 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

Even in technical matters, one side’s expert witness testimony is
rebutted by cross-examination and the other side’s experts, rather than
having the judge appoint and question a neutral witness. There is no a
priori reason why software issues should be handled differently. There
are also several technical reasons to treat software witnesses in the same
manner as human expert witnesses. These include the inability of
programmers to see their own errors, the fact that the program
specifications141 themselves may be in error (and thus although the
program matches the specifications, the program does not do what it
should be doing), inadequacy of testing data, and, finally, the proof
history: too many programs viewed as correct have been shown to
function incorrectly when subjected to adversarial audits that have
uncovered serious errors. We discuss each of these phenomena in turn.

The first is a phenomenon we will call “programmer blindness.” Just as
writers are often bad at proofreading their own text, programmers are
bad at reading their own code. Their eyes will skip over errors. This
deficiency is often countered by peer review when someone else reads
over the code before it is put into the production system,142 but even that
is not a fail-safe method. It is often the case that peers are not truly
independent reviewers because programmers often have similar
training—and thus tend to make the same mistakes.143

Just as there are excellent editors and proofreaders, there are also people
who are skilled at avoiding conventional assumptions about software.
This ability is at the heart of computer security, whether one is trying to
protect a system or break into it.144 Few companies have such people on
their development teams, but a diligent defense attorney could and
should seek one out. Indeed, as we increasingly rely on software for
providing evidence and making decisions, such a person should be part
of any criminal defense team.

141 See discussion of erroneous specifications infra Section II.D.
142 See, e.g., Peter C. Rigby & Christian Bird, Convergent Contemporary Software Peer
Review Practices, in PROCEEDINGS OF THE 2013 9TH JOINT MEETING ON FOUNDATIONS OF
SOFTWARE ENGINEERING 202, 203 (2013).
143 See generally John C. Knight & Nancy G. Leveson, An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming, 12 IEEE TRANSACTIONS ON
SOFTWARE ENG’G 96, 97 (1986).
144 See generally STEVEN M. BELLOVIN, THINKING SECURITY (2016).

2021] 33

Second, software testing is done according to the program’s
requirements and specifications.145 In other words, a party external to
the programming team defines the objective: what the inputs and
outputs should look like, how errors should be handled, how fast the
program must run, etc. The tester’s job is to take each requirement and
verify that it is met. Often, though, the specifications themselves are
faulty. In one study of fifty actual security errors, researchers found that
twenty two of them were due to errors in the requirements or
specifications.146 Ordinary testing will not uncover such problems
because the program matches the specifications; the problem is that the
specifications themselves are incorrect.147

The third reason is the nature of testing in the software development
process. Software testing is not random; rather, the tester carefully crafts
inputs. This testing is done in two ways. The older type is requirements-

145 This is well understood by practitioners, though not always discussed in the academic
literature. But see Gilles Bernot et al., Software Testing Based on Formal Specifications: A
Theory and a Tool, 6 SOFTWARE ENG’G J. 387, 387 (1991) (“With the emergence of formal
specification languages, it becomes possible to also start from the specification to define some
testing strategies in a rigorous and formal framework.”).
146 See Carl E. Landwehr et al., A Taxonomy of Computer Program Security Flaws, 26 ACM
COMPUTING SURV. 211, 216 (1994).
147 Because the specifications for commercial programs are rarely published, and because
these specifications are often extremely technical, we generally learn of such errors only when
a security hole or serious bug is found that can be traced back by outsiders to a specification.
A recently discovered flaw in Microsoft Windows—a flaw that is more than 20 years old—
provides just such an example. In Windows, a program running in one window can send a
message to a program running in another window. These messages can be things like “resize
yourself,” “terminate,”, “open this URL,” “here is some input,” and more. Since some
programs have more privileges than others—software installers need high privileges to change
the system, while browsers (which are vulnerable to nasty web pages) have fewer permissions
than normal—the ability to send such messages is normally restricted. However, Microsoft
implemented the “Text Services Framework” to handle such functionality as Chinese language
input. Obviously, a multilingual input program must be able to talk to all other running
programs, so there were no restrictions for any such messages. This in turn allowed for
improper messages to be sent by an attack program that pretended to be part of this
framework, which in turn led to security problems. See Jim Salter, A Look at the Windows 10
Exploit Google Zero Disclosed this Week, ARS TECHNICA (Aug. 15 2019, 6:45 AM),
https://arstechnica.com/information-technology/2019/08/a-look-at-the-windows-10-exploit-
google-zero-disclosed-this-week/ [https://perma.cc/9ZXF-XBPB].

34 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

based: try inputs that stress or exceed requirements.148 This approach
tries to find what are known as “boundary conditions,” which are places
where the behavior of the program is likely to change.149 For example,
if a certain input field is allowed to be 200 characters long, a tester might
try 199, 200, 201, and 2000 character inputs. Similarly, because
2,147,483,647 is the largest number some programs can handle,
2,147,483,648 is a useful test.150

Another testing strategy is code-based. There are certain technical
aspects of the code that suggest certain inputs should be tried. For
example, it is desirable to exercise as much of the program as possible.
A mechanism known as a “code coverage tool”151 tells the tester which
lines of the software have or have not been exercised. Referring back to
our subtraction example,152 such a tool could verify that both branches
of the “if” statement were tested. However, modern software is so
complex that complete coverage during testing is not possible because
there are just too many possibilities. In a testing trial, though, certain
input values might be fixed to allow testers to vary other inputs in a way
that would not have been feasible during the development process.

The Draeger Alcotest 9510 breathalyzer provides an example of how a
code-based testing strategy affects criminal defendants. According to

148 See AMMANN & OFFUTT, supra note 116, at 150 (“The input domain is defined in terms of
the possible values that the input parameters can have. . . . The tester does not need to
understand the implementation; everything is based on a description of the inputs.”).
149 The optimal strategy for generating good test data is in fact an active research area. See,
e.g., Mats Grindal et al., Combination Testing Strategies: A Survey, 15 SOFTWARE TESTING,
VERIFICATION, AND RELIABILITY 167, 167 (2005) (“A literature search has revealed 16
different combination strategies described through more than 40 papers published between
1985 and 2004.”).
150 Generally, modern computers use 32-bit integers. One bit is used to indicate positive or
negative; the range of integer values therefore ranges from -2,147,483,648 to 2,147,438,647.
See Nickolas T. Lanza, How Do You Get the Maximum and Minimum Values for Integer Data
Types Based on the Operating System?, MEDIUM (Jan. 29, 2018),
https://medium.com/@nickolasteixeira/how-to-explain-to-my-wife-what-i-do-how-do-you-
get-the-maximum-and-minimum-values-for-integer-befdc263a3a2 [perma.cc/9EJ2-26F7].
151 See, e.g., Mustafa M. Tikir & Jeffrey K. Hollingsworth, Efficient Instrumentation for Code
Coverage Testing, 27 SIGSOFT SOFTWARE ENG’G NOTES 86, 86 (2002). The purpose of testing
is, of course, to ensure that the code is correct. If test cases do not exercise certain lines of
code, then the test cases cannot have verified whether those lines of code are correct.
152 See supra Section II.A.

2021] 35

press reports, the unit is sensitive to variations in the outside
temperature.153 An adversarial examination of such a device could test
it at the observed temperature during the police stop, rather than what
was available in the vendor’s test lab.

The fourth reason why software issues should be treated differently is
purely empirical. In other scenarios, adversarial testing has found flaws
in software that had been certified by outside parties. The best-
documented example is voting machines, where outside auditors have
always found flaws.

One of the first published independent audits of election systems was of
leaked code to a Diebold electronic voting system.154 The authors’
conclusion, after analysis, was blunt: “Our analysis shows that this
voting system is far below even the most minimal security standards
applicable in other contexts.”155 They also noted problematic aspects
that could only be learned by looking at the complete source code.156
For example, they found no indications that any formal requirements
documents or ticket tracker were used even though both of these are, as
noted, part of most structured development processes.157

Another well-known example is California’s “top-to-bottom review” of
the electronic voting machines that were to be used in its 2008 elections.
Independent teams were contracted to examine the system source code
for vulnerabilities that might not have been discovered in the
certification process.158 The results cast significant doubt on the

153 See Zack Whittaker, Researchers Say a Breathalyzer Has Flaws, Casting Doubt on
Countless Convictions, ZDNET (May 10, 2018), https://www.zdnet.com/article/draeger-
breathalyzer-breath-test-convictions/ [https://perma.cc/6QER-ZKJN].
154 T. Kohno et al., Analysis of an Electronic Voting System, in PROCEEDINGS OF THE IEEE
SYMPOSIUM ON SECURITY AND PRIVACY 27, 28 (2004), available at
https://ieeexplore.ieee.org/document/1301313.
155 Id. at 27.
156 Id. at 37.
157 Id. at 34.
158 Cal. Secretary of State, Top-to-Bottom Review of Electronic Voting Systems Certified for
Use in California Elections, (draft for public comment Mar. 22,
2007), https://www.sos.ca.gov/elections/ovsta/frequently-requested-information/top-bottom-
review [https://perma.cc/2DM3-F2GJ] (archiving documents related to the review). The
review was initiated by then-Secretary of State Debra Bowen, pursuant to her responsibilities

36 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

integrity of every one of the systems. A review of one evaluated system
explained that “[v]irtually every important software security mechanism
is vulnerable to circumvention.”159 Moreover, the previous certification
processes160 failed to catch bugs that one would expect to have been
caught: “There is evidence in the documentation of vendor-initiated
source code reviews as part of the independent testing process, however
the broken cryptography architecture indicates that more audits by
qualified security experts are required.”161

Subsequent adversarial examinations of voting systems have shown
similar results, as summarized by author Matt Blaze in his 2017
Congressional testimony, which reported that every current voting
system examined over the course of a weekend at the DEFCON hacking
conference was found to suffer from exploitable vulnerabilities due to
unpatched or undetected software defects.162

Computerized voting systems provide interesting parallels to the
software systems used to collect and process evidence in criminal cases.
There is broad consensus among elections experts that modern software

in accordance with California law. Id.
159 MATT BLAZE ET AL., SOURCE CODE REVIEW OF THE SEQUOIA VOTING SYSTEM 82 (2007),
https://votingsystems.cdn.sos.ca.gov/oversight/ttbr/sequoia-source-public-jul26.pdf.
160 There are no national standards for the certification of voting systems. Each state
jurisdiction sets its own requirements, which are often administered on an ad hoc basis.
California requires certification by the Secretary of State, Cal. Elec. Code § 19006(a)
(West 2014) (“All voting systems be certified or conditionally approved by the Secretary of
State, independent of voluntary federal qualification or certification, before they are used in
future elections to ensure that the voting systems have the ability to meet accuracy,
accessibility, and security standards.”). The Federal standards are voluntary. See Help
America Vote Act of 2002, 52 U.S.C. § 20961(b)(1) (2002) (“The Development Committee
shall assist the Executive Director of the Commission in the development of the voluntary
voting system guidelines”); id. § 21001(d) (“Nothing in this subpart may be construed to
require a State to implement any of the voluntary voting system guidelines or any of the
voluntary guidance adopted by the Commission with respect to any matter as a condition for
receiving a requirements payment.”).
161 BLAZE ET AL., supra note 159, at 42.
162 Cybersecurity of Voting Machines: Hearing Before the H. Comm. on Oversight and
Gov’t Reform, Subcomm. on Info. Tech., & Subcomm. on Intergovernmental Affs., 115 Cong.
11 (2017) (statement of Matt Blaze, Assoc. Professor, U. Pa.).

2021] 37

systems are, by virtue of their design, too complex and unreliable to be
relied upon for determining the outcomes of civil elections.163

The consensus that software is inherently unreliable and suspect has led
elections experts to advocate for election system designs that do not
depend on software for the correctness of election outcomes. A widely
recognized statement of this criteria was proposed by computer scientist
Ronald Rivest as Software Independence.164 In particular:

A voting system is strongly software-independent if an
undetected change or error in its software cannot cause
an undetectable change or error in an election outcome,
and moreover, a detected change or error in an election
outcome (due to change or error in the software) can be
corrected without re-running the election.165

At first blush, a requirement for software independence might appear to
preclude the use of any software (or computers) in elections altogether.
But that is not necessarily the case. Software independence simply
requires that any software-based system be designed in a way that
allows for recovery of correct results even if the software had failed in
some way. For example, a voting system that employs paper ballots
(marked by a voter) might perform an initial tally by computerized
scanners, but still retain the ability to use the original paper ballots
(which reflect the true intent of the voters) for recounts and audits,
which can be conducted by hand and without dependence on the
software.166 Such a system uses software, yet is still software
independent under this definition.

163 See generally NAT’L ACADS. OF SCIS., ENG’G, AND MED., SECURING THE VOTE: PROTECTING
AMERICAN DEMOCRACY (2018), https://www.nap.edu/catalog/25120/securing-the-vote-
protecting-american-democracy [https://perma.cc/B9PU-FDEQ].
164 See generally Ronald L. Rivest & John P. Wack, On the Notion of ‘Software Independence’
in Voting Systems, 366 PHIL. TRANSACTIONS SERIES A, MATHEMATICAL, PHYSICAL, AND ENG’G
SCIS. 3759 (2008), https://people.csail.mit.edu/rivest/RivestWack-
OnTheNotionOfSoftwareIndependenceInVotingSystems.pdf.
165 Id. at 3763.
166 See id.

38 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

Flaws in voting systems threaten the integrity of an election; flaws in
DNA analysis software can put the wrong person in jail. In one widely
publicized incident, defense attorneys in New York City were granted
access to the source code to the Forensic Statistical Tool (“FST”)
developed by the office of the chief medical examiner.167 On a motion
from ProPublica, the software was made publicly available and
affidavits from a defense expert witness were unsealed.168 He explained
that by examining the source code he was able to learn of behavior in
the match calculation that was never documented anywhere:

An instance of undocumented behavior of the FST
program is noted in the calculation of likelihood ratios
performed in “Comparison.cs”. A routine included in the
source code file (“Comparison” class), named
“CheckFrequencyForRemoval” appears to perform the
following behavior:
1. Check all replicate (evidentiary) genotypes for any
locus that contains alleles whose frequency sums to ≥
0.97 in any of the four subpopulations (“Asian,” “Black,”
“Caucasian,” and “Hispanic).
2. Remove these loci from the likelihood ratio
calculations.
During this review, I encountered no notice, either
intended or actual, provided to the user of FST that any
loci were removed from the likelihood ratio calculation.
I found no indication that this behavior is intended during
my examination of FST-related publications and the FST
Validation materials.169

167 Lauren Kirchner, Federal Judge Unseals New York Crime Lab’s Software for Analyzing
DNA Evidence, PROPUBLICA (Oct. 20, 2017, 8:00 AM),
https://www.propublica.org/article/federal-judge-unseals-new-york-crime-labs-software-for-
analyzing-dna-evidence [https://perma.cc/4BPK-RUJD].
168 Lauren Kirchner, Traces of Crime: How New York’s DNA Techniques Became Tainted,
N.Y. TIMES (Sept. 4, 2017), https://www.nytimes.com/2017/09/04/nyregion/dna-analysis-
evidence-new-york-disputed-techniques.html [https://perma.cc/8A7T-MPFU].
169 Memorandum in Support of Defendant's Motion in Limine, Exhibit C at 20, United States
v. Johnson, S.D.N.Y 2016 (1:15-cr-00565-VEC).

2021] 39

Furthermore, the behavioral change in the match calculation was done
after the validation study of the FST package: “There is at least one
indication of a deviation in behavior between the version of FST used
during its validation study and the version of FST provided to me.” 170

Beyond that example, there may be other lurking problems. Deviation
from good coding practice is a red flag. Systems engineer Nathaniel
Adams wrote:

Martin Fowler describes code smells as, “A code smell
is a surface indication that usually corresponds to a
deeper problem in the system.” In this sense, a smell is
not a defect in itself but is a deviation from good coding
practices, which can indicate underlying software
defects. Coding conventions and style guides purposely
prevent code smells. Coding practices such as writing
long routines or complex classes can obfuscate
underlying issues due to the difficulty of comprehending
large segments of code.171

He goes on to note that “[t]he FST source code presents a number of
basic smells such as routine length and complex classes.”172 In other
words, the style of coding suggests that the program is below normal
professional standards and may have other, not yet detected problems.
It is extremely difficult to detect such “smells” without access to source
code.

We thus see that, as an empirical matter, adversarial audits can uncover
relevant issues in software relied upon in prosecutions. We are not
aware of any studies of why this should be—why independently
certified software should prove so vulnerable when subjected to an
adversarial audit. We speculate that, in the absence of such audits, there
is little basis for comparison other than price, and hence little
opportunity for market forces to produce improvement. This is similar

170 Id. at Exhibit A, at 9.
171 Id. at Exhibit C, at 13 (citing Martin Fowler, Code Smell, MARTINFOWLER.COM (Feb 9,
2006), https://martinfowler.com/bliki/CodeSmell.html [https://perma.cc/9ZRP-AHG5]).
172 Id.

40 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

to code developed in a competitive market, where base functionality is
all-important and the winner is often the first player to the market:
security often takes a back seat.173 If price is in fact the primary
differentiator, vendors’ primary incentives are to reduce their costs, e.g.,
by reducing the cost of the entire software development process.

We do not mean to suggest that adversarial audits are a panacea.
Nevertheless, experience shows that they do help.

E. Machine Learning

Machine learning algorithms raise a different set of issues.174 Machine
learning algorithms, popularly known as “artificial intelligence” or
“AI,” are at the heart of many of today’s technologies, including all
major search engines.175 However, these algorithms have to be
“trained,” i.e., fed known initial data.176 If the training data is deficient,
the output of the algorithm will be incorrect.

This problem has arisen a number of times. Professor Ignacio Cofone
wrote:

An illustrative employment example is a machine
learning system that Amazon recently developed to rank
job candidates. The system displayed a significant bias
against female candidates, justifiably triggering public
outcry. Because the algorithm was trained using
Amazon’s existing hiring data under the idea that
Amazon’s current employee choices are a good proxy for

173 NAT’L RSCH. COUNCIL ET AL., TRUST IN CYBERSPACE 67 (Fred B. Schneider ed., 1998)
(“For software-intensive products, early arrival in the marketplace is often critical to success
in that marketplace. This means that software development practice becomes distorted to
maximize functionality and minimize development time, with little attention paid to other
qualities. Thus, functionality takes precedence over trustworthiness.”).
174 See generally Steven M. Bellovin et al., Privacy and Synthetic Datasets, 22 STAN. TECH. L.
REV. 1 (2019), for a description of machine learning.
175 Gabriel Jiménez, Artificial Intelligence Applications in Search Engines, MEDIUM (Dec. 18,
2018), https://medium.com/aimarketingassociation/artificial-intelligence-applications-in-
search-engines-437c57f8b265 [https://perma.cc/H77S-A55W].
176 Bellovin et al., supra note 174, at 4.

2021] 41

Amazon’s desired employee choices, the algorithm
reflected existing hiring practices. These practices,
however, to the surprise of the algorithm’s programmers,
ended up being sexist.177

Microsoft had similar problems with its Tay “chatbot.” A chatbot is
designed to respond to users who send it messages, learning as it goes.
However, Tay learned from the worst of the Internet, going “full Nazi”
in less than 24 hours.178 Microsoft realized that the problem was training
data, saying “[i]n an emailed statement given later to Business Insider .
. . : ‘The AI chatbot Tay is a machine learning project, designed for
human engagement. As it learns, some of its responses are inappropriate
and indicative of the types of interactions some people are having with
it.’”179

In other words, for software based on machine learning, defendants
should have access not only to the source code but also to the training
data. Without that data, it is impossible to understand what output a
program might produce. In explaining problems with automated
analysis of computer programs, Professor Kroll et al. wrote:

Perhaps the most obvious approach is to disclose a
system’s source code, but this is at best a partial solution
to the problem of accountability for automated decisions.
The source code of computer systems is illegible to
nonexperts. In fact, even experts often struggle to
understand what software code will do: inspecting source
code is a very limited way of predicting how a computer
program will behave. Machine learning, one increasingly
popular approach to automated decision making, is
particularly ill-suited to source code analysis because it

177 Ignacio Cofone, Algorithmic Discrimination Is an Information Problem, 70 HASTINGS L.J.
1389, 1397-98 (2019).
178 James Vincent, Twitter Taught Microsoft’s AI Chatbot to Be a Racist Asshole in Less Than
a Day, VERGE (Mar. 24, 2016, 6:43 AM), https://www.theverge.com/2016/3/24/11297050/tay-
microsoft-chatbot-racist
[https://web.archive.org/web/20190312132945/https://www.theverge.com/2016/3/24/1129705
0/tay-microsoft-chatbot-racist].
179 Id.

42 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

involves situations where the decisional rule itself
emerges automatically from the specific data under
analysis, sometimes in ways that no human can
explain.180

The same, of course, is true for evidentiary software.

III. Source Code and Constitutional Issues

Software and algorithms now play a critical role in many criminal
prosecutions. Depriving such defendants access to the underlying code
risks depriving defendants of their rights. For example, there are many
ways for criminal defendants to challenge breathalyzer results,
including attacks of the device’s margin of error, its calibration, and the
breath sample itself.181 However, there are not many examples in which
courts analyzed the use of algorithms and software, let alone whether
any errors in specific program should be the basis for a challenge by
criminal defendants. Indeed, courts have often been challenged by new
technological developments.182

Some state courts have received challenges to convictions using various
types of breathalyzers.183 The defendants typically argued for the ability
to examine the source code for these devices. They generally make two
types of arguments. First, they argue that the source code must be
provided pursuant to Brady v. Maryland, in which the Court held that
prosecutors must provide defendants with all exculpatory evidence.184
Second, defendants assert the failure to provide the source code violates
the Confrontation Clause of the Sixth Amendment.185 Third, they

180 See Joshua A. Kroll et al., Accountable Algorithms, 165 U. PA. L. REV. 633, 638 (2017).
181 Paul A. Clark, The Right to Challenge the Accuracy of Breath Test Results Under Alaska
Law, 30 ALASKA L. REV. 1, 6-8 (2013).
182 See generally Riley v. California, 573 U.S. 373 (2014); Kyllo v. United States, 533 U.S. 27
(2001).
183 Cowley & Silver-Greenberg, supra note 39.
184 Brady v. Maryland, 373 U.S. 83, 87 (1963) (holding that the prosecution must provide
exculpatory evidence to a defendant). The case involved a murder committed by one of two
men being tried in separate trials; the prosecution had a confession from the murderer but
failed to share this evidence with the other.
185 U.S. CONST. amend. VI; see also People v. Umpierre, 951 N.Y.S.2d 382, 383 (Sup. Ct.
2012); State v. Lindner, 252 P.3d 1033, 1036 (Ariz. Ct. App. 2010) (finding against the

2021] 43

maintain that denial of access to source code constitutes a due process
violation.186 We discuss each of these approaches in turn.

A. Brady Violations

The Supreme Court in Brady was very clear: the prosecution must
provide exculpatory evidence to a defendant. In Brady, two people, the
petitioner and another person, were charged with first degree murder,
but tried separately.187 At trial, Brady conceded his guilt in the murder,
but argued that he did not kill the victim.188 In preparation for trial, his
defense attorney sought the extrajudicial statements by the other
person.189 The prosecution withheld one in which he admitted to
committing the killing.190 The Supreme Court held “that the suppression
by the prosecution of evidence favorable to an accused upon request
violates due process where the evidence is material either to guilt or to
punishment, irrespective of the good faith or bad faith of the
prosecution.”191

In cases where software provides evidence, courts have had varying
interpretations of Brady. In some sense, the issue is what constitutes
“suppression”—for if the prosecution does not have access to the source
code behind evidence in the case, the prosecution cannot be considered
to be suppressing such evidence.

The 2008 decision City of Fargo v. Levine before the North Dakota
Supreme Court involved Glenn Levine, whom the police had arrested
for driving under the influence based in part on the results of an
Intoxilyzer.192 Levine retained Dr. Robert Howard as an expert because
he was “chief operating officer of Medscan Laboratory and Advanced

defendant’s assertion that failure to provide breathalyzer source code violates the
Confrontation Clause).
186 See Lindner, 252 P.3d at 1034, n.1 (stating that defendant also raised due process right to
discover source code); Brady, 373 U.S. at 87.
187 Brady, 373 U.S. at 84.
188 Id.
189 Id.
190 Id.
191 Id. at 87.
192 747 N.W.2d 130, 131-32 (N.D. 2008).

44 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

Drug Testing, a company providing third-party drug and alcohol testing
for employers.”193 In his work, Howard was familiar with the
Intoxilyzer as well as having professional experience writing source
code.194 Howard explained that “the source code used in Intoxilyzer
machines varies among jurisdictions and, when purchasing a machine,
the buyer specifies certain types of programming.”195 He testified that
without the specific Intoxilyzer’s source code, he could not properly
analyze Levine’s results, but the trial court nonetheless denied the
motion to compel production of the source code.196

The North Dakota Supreme Court explained that the prosecutor neither
possessed nor controlled the Intoxilyzer source code.197 Levine had
furthermore failed to provide any evidence that that city possessed or
controlled the source code in its Intoxilyzer.198 The state supreme court
concluded that the prosecutor did not commit a Brady violation by
failing to produce source code that was not in the city’s possession.199

In 2008, the Supreme Court of Montana also heard a challenge to a
denial of a request for the source code for the Intoxilyzer 8000.200 In
Peters, CMI, the manufacturer of the Intoxilyzer 8000, raised concerns
about trade secrets in Kentucky state court.201 However, CMI agreed to
provide the defense expert access to the source code in its Kentucky
corporate headquarters subject to a protective order that required the
defense expert to destroy his computer hard drive when he completed
the review and left CMI headquarters.202 Although the defense expert
did not object to signing a protective order, he considered the CMI

193 Id. at 132.
194 Id.
195 Id.
196 Id.
197 Id. at 133.
198 Id.
199 Id.
200 State v. Peters, 264 P.3d 1124, 1127 (Mont. 2011).
201 Id. at 1127; see also Wexler, supra note 11, at 1419 (citing Kewanee Oil Co. v. Bicron
Corp., 416 U.S. 470, 490 (1974)) (“The U.S. Supreme Court has even recognized that the
‘substantial risk’ of undetectable theft of trade secrets may be socially useful in that it
encourages innovators to seek patents, which require disclosure.”).
202 Peters, 264 P.3d at 1129.

2021] 45

agreements to be too restrictive and declined to sign them.203
Specifically, the defense expert explained that he feared signing the
CMI agreements because the company “‘threaten[ed] my license to
practice law if I violated’” the agreements.204 He further explained that
“‘it’s not that I won’t sign it. I don’t believe I can sign it—without
subjecting myself to sanctions.’”205 In other words, the criminal
defendants were not able to present any defense to the charge against
him because CMI essentially cowed the expert witness by threatening
his livelihood and liberty.

In Peters, the Supreme Court of Montana explained that the prosecution
did not have the Intoxilyzer 8000 source code.206 It determined that
because CMI did provide the defense expert reasonable access to the
source code the district court did not abuse its discretion in limiting the
information that the prosecution was required to provide.207
Consequently, the Supreme Court of Montana declined to address
claims based on either a Brady violation or the Confrontation Clause.208
However, this approach ignored the legitimate concerns raised by the
defense expert.

Meanwhile in 2012, in State v. West, the Court of Appeals of Oregon
considered Donald West’s appeal of his drunk driving conviction.209
Defense counsel challenged the results of an Intoxilyzer 8000.210
Oregon law establishes a presumption of admissibility of the
breathalyzer results provided that they comply with methods approved
by the Oregon Department of State Police.211 Rules issued by Oregon’s
State Police explicitly authorize the use of the Intoxilyzer 8000.212

203 Id.
204 Id.
205 Id. (emphasis added).
206 Id. at 1131.
207 Id. at 1132.
208 Id.
209 279 P.3d 354, 356 (Or. Ct. App. 2012).
210 Id.
211 OR. REV. STAT. § 813.160(1) (2011); see also West, 279 P.3d at 356.
212 OR. ADMIN. R. 257-030-0120 (2006); see also West, 279 P.3d at 357.

46 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

In West, the appellate court explained that the prosecution had met its
Brady obligations because it provided all information that it had
regarding the Intoxilyzer 8000.213 Defense counsel had furthermore
failed to demonstrate that the source code was material, but instead
simply posited that it “‘could be used to show the manufacturer’s bias
toward producing evidence that will lead to convictions.’”214
Consequently, the appellate court determined that “Brady is not
authority for a defendant obtaining evidence of unknown import to test
whether it helps or hurts his case.”215

In 2013, in State v. Marino, the Court of Appeals of North Carolina
heard an appeal challenging a jury verdict finding Jory Marino guilty of
driving while intoxicated.216 Defense counsel filed a motion seeking
Brady material, which the trial judge essentially granted ordering that
the prosecution provide defense counsel “with ‘all downloaded and non-
downloaded data in its possession that was generated from [the]
Intoximeter [used to analyze defendant’s breath.]’”217 But the trial judge
did not order the production of the Intoximeter’s source code.218 This
meant that the defense was not in a position to determine if the
Intoximeter breath analysis software worked correctly.219

Pursuant to Brady, a “prosecutor is not required to deliver his entire file
to defense counsel, but only to disclose evidence favorable to the
accused that, if suppressed, would deprive the defendant of a fair
trial.”220 Missing from the decision is any clarification of who decides
what suppressed information might deprive the defendant of a fair trial.
How do they make that determination?

In Marino, the appellate court determined that defense counsel had not
established that the Intoximeter source code would be favorable or
material to his defense regarding either the guilt phase or the punishment

213 West, 279 P.3d at 359.
214 Id.
215 Id.
216 747 S.E.2d 633, 634 (N.C. Ct. App. 2013).
217 Id. at 635.
218 Id.
219 See id.
220 United States v. Bagley, 473 U.S. 667, 675 (1985).

2021] 47

phase of his prosecution.221 The court moreover characterized defense
counsel’s interest in this source code and the possibility that it could
result in exculpatory evidence to be speculative at best.222 The court did
not acknowledge—and perhaps did not know—that software often lies,
not out of programmers’ malfeasance, but as a result of design or coding
errors. In Marino, the appellate court noted that Brady evidence must be
favorable or material to guilt or punishment.223 However, it ignored the
significant factor that the prosecution must actually possess evidence in
order to be able to determine whether the evidence is favorable.224
Without the code to examine, the defense is not a position to make this
determination either. The court is effectively setting up a Catch-22
proposition.

The fact that prosecutors often do not have any copies of the
breathalyzer source code is a significant issue regarding Brady
concerns. In Minnesota, a trial judge ordered the prosecution to produce
to the defense attorney “the complete computer source code for the
operation of the Minnesota model of the Intoxilyzer 5000 currently in
use.”225 Specifically, the trial judge determined that Minnesota “owned
the source code for the Intoxilyzer 5000EN model created exclusively
for the state.”226

In response to this order, the Commissioner filed a writ of prohibition
with the appellate court seeking to bar the trial judge from enforcing this
order.227 The fact that Minnesota owned part of the source code pursuant
to its contract with CMI was significant for the Minnesota Supreme
Court’s decision to uphold the appellate court.228 Specifically, the state
supreme court rejected the Commissioner’s argument that he did not
possess or control the source code based on this contractual language.229
This decision did not concern Brady materials because the court

221 Marino, 747 S.E.2d at 638.
222 Id.
223 Id.
224 See Brady, 373 U.S. at 87.
225 In re Comm’r of Pub. Safety, 735 N.W.2d 706, 709 (Minn. 2007).
226 Id.
227 Id.
228 Id. at 712.
229 Id.

48 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

determined that Minnesota had the source code and should produce it
consistent with the trial judge’s order. It stands as a contrast to the
situations where prosecutors do not have access to the source code.

Defendants have generally failed in obtaining the source code for
breathalyzers based on arguments pursuant to Brady. For example, they
often cannot demonstrate the need for the source code. It is, of course,
extremely difficult to prove that the source code has errors if the code is
not available for examination. The other wrinkle is that often the
prosecution can establish that it does not have the source code either.
Consequently, a court cannot very well compel the prosecution to
produce something that it does not possess.230

B. Confrontation Clause

In addition to Brady challenges, criminal defendants may argue that the
failure to provide the source code for breathalyzers also violates the
Confrontation Clause. Specifically, the Sixth Amendment of the
Constitution provides that “[i]n all criminal prosecutions, the accused
shall enjoy the right to . . . to be confronted with the witnesses against
him.”231

One might think that this is a straightforward rule, but in recent years it
has become anything but. The confusing situation had its genesis in a
relatively uncomplicated murder case, Crawford v. Washington that,
due to issues of admissibility of evidence from the defendant’s wife,
made its way to the Supreme Court.232 The evidence in that decision
concerned testimony from a living person, but the implications of

230 One problem is that CMI may not have the source code for a
given Intoxilyzer. See Affidavit of Brian Faulkner at ¶ 5, State
v. Bonakoske (Fla. Charlotte County Ct. June 10, 2011) (No. 08-1726-T) (In response to
requests for source code, CMI’s Manager of Engineering swore that “CMI is unable to
produce, with any degree of certainty, each and every section of source code from software
revisions that were not put into service by the customer. Consequently, CMI cannot reliably
reconstruct version 8100.10 which directly corresponds to software version 8100.10 included
in the instrument initially tested, but not utilized, by the Florida Department of Law
Enforcement.”). Of course, if the source code is non-existent for CMI as well, it begs the
question of how it can reliability be assessed at all.
231 U.S. CONST. amend. VI.
232 541 U.S. 36, 36 (2004).

2021] 49

Crawford stretch all the way to software. We discuss the Confrontation
Clauses in two parts: (i) how the courts have ruled about expert witness
testimony post Crawford and (ii) the implications of Crawford on
evidentiary software.

1. Expert Witness Testimony post-Crawford

Interpreting the Confrontation Clause, the United States Supreme Court
determined that the clause afforded criminal defendants the right to
cross-examine any witnesses who “bear testimony” against the
defendant.233 In Crawford, the defendant, Michael Crawford,
confronted a man he believed had attempted to rape his wife, Sylvia
Crawford.234 Believing the alleged rapist was reaching for a weapon,
Michael Crawford stabbed the man.235 Sylvia Crawford’s statement to
the police did not corroborate her husband’s claim of self-defense, and
Michael Crawford was charged with attempted murder.236

The prosecution sought to have Ms. Crawford testify, but Washington’s
spousal privilege law prevented her from testifying against her husband
without his consent.237 The prosecution was able to introduce the wife’s
statement because it was admissible pursuant to a hearsay exception.238
The defendant argued that the statement’s admission violated his
Confrontation Clause rights.239 The trial court admitted the statement,
finding that it had “adequate ‘indicia of reliability.’”240 After the jury
found Crawford guilty, the state appellate court reversed finding that the
statement was inadmissible before the Washington Supreme Court
reinstated his conviction.241

233 Id. at 51.
234 Id. at 38.
235 Id. at 38-39.
236 Id. at 39-40.
237 Id. (discussing WASH. REV. CODE § 5.60.060(1) (1994)).
238 Id. (citing State v. Burden, 841 P.2d 758, 761 (Wash. 1992)).
239 Id.
240 Id.
241 Id. at 41.

50 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

The United States Supreme Court grappled with whether the admission
of Ms. Crawford’s out-of-court statement violated the Confrontation
Clause because the defendant could not cross-examine the statement.242
In a unanimous decision, the Court determined that its admission
violated Crawford’s Sixth Amendment rights.243 Justice Scalia wrote
that the Framers of the Constitution intended the Confrontation Clause
to bar these types of out-of-court statements.244 In finding Ms.
Crawford’s statement inadmissible, the Court overruled Ohio v.
Roberts,245 and determined that analysis of the statement’s reliability
was inadequate in preserving the Sixth Amendment rights and that
courts must address the evidence’s testimonial nature.246

Evidence deemed to be testimonial may not be introduced against a
criminal defendant unless the witness is unavailable and the defendant
had a previous opportunity to cross-examine the witness regarding the
substance of the proposed evidentiary statement.247 Legal scholar
Jennifer Mnookin explained that in Crawford a critical issue concerned
whether “the statement [was] made in circumstances that suggest[s] its
likely future relevance as testimony in a criminal [trial]?”248 Thus,
business records, Call Detail Records, web searches, and the like would
not be covered by Crawford decision’s analytical reasoning249—but
breathalyzer tests and DNA tests are.

In Crawford, the Court dealt with testimonial evidence in the case of a
human witness whose testimony the prosecution introduced during the
trial, but who was not available for cross examination by the defendant
during trial.250 Our interest is in (particular types of) expert-witness
testimony, and so we turn to a series of post-Crawford Supreme Court

242 Id. at 38.
243 Id. at 68-69.
244 Id. at 43-50.
245 448 U.S. 56 (1980).
246 Id. at 67-68.
247 Id. at 53-54.
248 Jennifer Mnookin, Expert Evidence and the Confrontation Clause After Crawford v.
Washington, 15 J.L. & POL’Y 794 (2007).
249 Id.
250 Crawford, 541 U.S. at 38.

2021] 51

rulings on the admissibility of testimony—or not—by expert-witnesses
in which the Court subsequently ruled.

In Melendez-Diaz v. Massachusetts, the Supreme Court heard
arguments about a prosecution involving an alleged drug dealer.251
Specifically, the state presented certificates from an in-state laboratory
that tested whether the numerous plastic bags containing a white powder
the defendant allegedly secreted within a police car as he was being
transported to the station were cocaine.252

The state laboratory tested all the bags from the scene as well as those
located in the police cruiser.253 At trial, the prosecution introduced the
bags of cocaine into evidence along with three certificates of analysis
establishing that the bags tested positive for cocaine.254 Specifically,
“[t]he certificates reported the weight of the seized bags and stated that
the bags ‘[h]a[ve] been examined with the following results: The
substance was found to contain: Cocaine.’”255 Pursuant to
Massachusetts law, the lab analysts swore before notaries public to the
findings in the certificates.256

Instead of the laboratory technicians who analyzed whether the
packages contained cocaine and the amount of narcotics, the
prosecution simply presented the certificates.257 These certificates were,
as required by state law, prepared by the State Laboratory of the
Massachusetts Department of Health.258 The lab technician who
prepared the certificates did not appear in court, but the certificates were
sworn to by analysts from the lab in front of a notary public.259 Relying
on the requirements put forth in Crawford, the defendant, Luiz

251 557 U.S. 305, 307-08 (2009).
252 Id. at 308. The amount of cocaine was significant, as that would determine the charge. Id.
253 Id.
254 Id.
255 Id.
256 Id. (citing MASS. GEN. LAWS ANN. ch. 111, § 12 (West 2006)).
257 Id. at 308-09.
258 Id. at 308.
259 Id.

52 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

Melendez-Diaz, objected, claiming that the documents were testimonial
in nature.260 The Court concurred.261

Justice Scalia, writing for a majority that included Justices Stevens,
Souter, Thomas, and Ginsburg, concluded that Melendez-Diaz’s
Confrontation Clause right was violated when he was barred from
confronting these technicians.262 Addressing the certificates of analysis,
the Court explained that as they were affidavits, “[t]here is little doubt
that the documents at issue in this case fall within the ‘core class of
testimonial statements.’”263 To the state’s argument that the analysts are
not subject to confrontation, the Court responded that “[t]he Sixth
Amendment guarantees a defendant ‘the right to be confronted with the
witnesses against him.’”264 Specifically, the Court explained that
“Confrontation is one means of assuring accurate forensic analysis . . .
designed to weed out not only the fraudulent analysis, but the
incompetent as well.”265 The Court cautioned that “[s]erious
deficiencies have been found in the forensic evidence used in criminal
trials.”266

One such situation in Massachusetts became public a few years later. A
chemist employed in a Massachusetts state drug testing lab, Annie
Dookhan, had been falsifying drug reports in an attempt to build an
impressive number of tests she was analyzing.267 In many cases, she
failed to run analyses that she reported to the courts.268 Dookhan pleaded
guilty to “27 counts of misleading investigators, tampering with

260 Id. at 309.
261 Id. at 329.
262 Id.
263 Id. at 310 (Thomas, J., concurring in part and concurring in the judgment) (“[T]he
Confrontation Clause is implicated by extrajudicial statements only insofar as they are
contained in formalized testimonial materials, such as affidavits, depositions, prior testimony,
or confessions” (quoting White v. Illinois, 502 U.S. 346, 365 (1992))).
264 Id. at 313.
265 Id. at 318-19.
266 Id. at 319.
267 Katie Mettler, How a Lab Chemist Went from “Superwoman” to Disgraced Saboteur of
More Than 20,000 Cases, WASH. POST (Apr. 21, 2017),
https://www.washingtonpost.com/news/morning-mix/wp/2017/04/21/how-a-lab-chemist-
went-from-superwoman-to-disgraced-saboteur-of-more-than-20000-drug-
cases/?noredirect=on [https://perma.cc/4YV4-TV6Z].
268 Id.

2021] 53

evidence, and filing false reports.” 269 Ultimately, prosecutors in eight
Massachusetts counties dismissed charges in over 21,000 drug cases as
a result.270

After Melendez-Diaz, the Supreme Court ruled on another case in which
lab certificates were introduced, but the technician who prepared it did
not appear in court: Bullcoming v. New Mexico.271 The police arrested
Donald Bullcoming for DWI after he caused an accident.272 After he
refused to take a breathalyzer, the police obtained a search warrant to
obtain a blood sample at a local hospital.273 However, the blood was
analyzed at a state laboratory.274 At Bullcoming’s trial, the prosecution
introduced the blood alcohol test results, but the technician who
conducted the test was unavailable to testify.275 Instead, another lab
technician who was familiar with the test equipment and procedures
testified.276 The trial court determined that although the analysis of
blood-alcohol levels was testimonial, the certifying analyst did not need
to appear in court; in-court testimony from another analyst from the
same lab had sufficed to meet the requirements of the Confrontation
Clause.277

Relying on Melendez-Diaz, the Supreme Court of New Mexico had
already ruled that the lab analysis was testimonial. Despite that
determination, the court concluded that the lab report was nonetheless
“functionally identical to live, in-court testimony, doing precisely what
a witness does on cross-examination.”278 Making clear that testimonial
is testimonial, the United States Supreme Court was having none of this
argument: “if an out-of-court statement is testimonial, it may not be
introduced against the accused at trial unless the witness who made the

269 Id.
270 Id.
271 564 U.S. 647, 651 (2011).
272 Id. at 652.
273 Id.
274 Id. at 652-53.
275 Id. at 655.
276 Id.
277 Id. at 655-56.
278 State v. Bullcoming, 226 P.3d 1, 8 (N.M. 2008) (quoting Melendez-Diaz v. Massachusetts,
557 U.S. 305, 308 (2009)).

54 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

statement is unavailable and the accused has had a prior opportunity to
confront the witness.”279 In an observation that is important in
considering evidentiary software, the majority opinion noted that, “[i]n
any event, the comparative reliability of an analyst’s testimonial report
does not overcome the Sixth Amendment bar. This Court settled in
Crawford that the ‘obviou[s] reliab[ility]’ of a testimonial statement
does not dispense with the Confrontation Clause.”280

At its core, the Confrontation Clause safeguards defendants against
testimonial hearsay statements.281 The Supreme Court has explained
that “[t]estimonial statements of witnesses absent from trial have been
admitted only where the declarant is unavailable, and only where the
defendant has had a prior opportunity to cross-examine.”282
Nonetheless, the Court has hesitated in defining all types of testimonial
statements.283 Indeed, in assessing whether a statement is testimonial,
the Supreme Court has explained that “courts should look to all of the
relevant circumstances.”284 Moreover, in analyzing Crawford, the Court
noted that the decision “did not offer an exhaustive definition of
‘testimonial’ statements. Instead, Crawford stated that the label ‘applied
at a minimum to prior testimony at a preliminary hearing, before a grand
jury, or at a former trial; and to police interrogations.’”285 Such opaque
standards hardly give courts much guidance.

Legal scholars Jennifer Mnookin and David Kaye have noted that:

[f]or the most part, [lower courts] were reluctant to read
Crawford as requiring any significant changes to the
preexisting methods for introducing forensic science
testimony. In the first years following the Crawford
decision, most (though certainly not all) trial courts
instead endeavored to shoehorn the traditional methods

279 Bullcoming, 564 U.S. at 657.
280 Id. at 661 (quoting Crawford v. Washington, 541 U.S. 36, 61 (2004)).
281 See U.S. CONST. amend. VI.
282 Crawford, 541 U.S. at 59.
283 See Davis v. Washington, 547 U.S. 813, 822 (2006).
284 Michigan v. Bryant, 562 U.S. 344, 369 (2011).
285 Crawford, 541 U.S. at 68.

2021] 55

for presenting forensic science testimony into this new
framework without requiring modifications.286

For example, in the Levine case, the defendant retained a highly
qualified expert who sought the source code, but the court had
concluded that, as the government did not have the source code, the
prosecutor had not committed a Brady violation by failing to provide
the code to the defendant.287 This reasoning was faulty. At issue was not
a Brady violation—providing potentially exculpatory evidence in
possession of the government to the defendant—but rather a failure to
satisfy the requirements of the Confrontation Clause.

The North Dakota Supreme Court determined that its state law allows
criminal defendants to cross-examine either the director of the state
crime laboratory or one of its employees.288 However, this decision
preceded Melendez-Diaz by about a year, and the state supreme court
rejected the Confrontation Clause argument because the defendant
chose not to call any such witness, but instead pled guilty.289 In other
words, the defendant waived his claim to a Sixth Amendment violation.

In Arizona, state law prevents criminal defendants from challenging the
admissibility of breathalyzer results. Specifically, the legislature
mandated that “[t]he inability of any person to obtain manufacturer’s
schematics and software for a quantitative breath testing device that is
approved . . . shall not affect the admissibility of the results of a breath
test.”290 Thus, when Michael Lindner asserted that the failure to require
the prosecution to provide the source code and a witness to cross-
examine violated the Confrontation Clause, the Arizona Court of
Appeals rejected Lindner’s arguments, distinguishing Melendez-Diaz as

286 Jennifer Mnookin & David Kaye, Confronting Science: Expert Evidence and the
Confrontation Clause, 2012 SUP. CT. REV. 99, 105.
287 City of Fargo v. Levine, 747 N.W.2d 130, 132-33 (N.D. 2008).
288 Id. at 135 (first discussing N.D. CENT. CODE § 39-20-07(5) (2019); and then discussing
Berger v. State Highway Comm’r, 394 N.W.2d 678, 686 (N.D. 1986)).
289 Id.
290 ARIZ. REV. STAT. ANN. § 28-1323(A)(5) (2006).

56 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

only requiring the technician who performed the blood tests as opposed
to the designer of the equipment used by that technician.291

In Lindner, the appellate court determined that because the officer who
conducted the breath tests appeared at trial it was not necessary to
require the breathalyzer’s designer to appear also in order to discuss the
source code.292 The court concluded that a constitutional violation did
not occur.293

In West, yet another DWI prosecution, the defendant sought the source
code for the Intoxilyzer 8000. The 2012 decision by the Oregon Court
of Appeals rejected this argument, finding that there was “an
opportunity to cross-examine witnesses and to impeach the state’s
evidence, including the Intoxilyzer test results.” 294 The appellate court
reasoned that the admission of the Intoxilyzer’s certificates of accuracy
prepared by technicians, but without their testimony, did not violate the
Confrontation Clause because these certificates were not testimonial in
nature.295

In Marino, a 2012 North Carolina case, the defendant asserted he needed
the source code in order to cross-examine “his primary accuser, the
Intoximeter.”296 Looking to Melendez-Diaz, the North Carolina Court
of Appeals explained that the Supreme Court’s decision provided
defendants with the right to “cross-examine those individuals involved
in the production of testimonial documents to be introduced at trial, such
as the technician operating the Intoximeter in the present case,” but held
that Melendez-Diaz did not provide a basis for the defendants to
examine the breathalyzer source code.297 This reasoning in West flies in
the face of the Melendez-Diaz. This is especially so in light of the fact

291 State v. Lindner, 252 P.3d 1033, 1035-36 (Ariz. Ct. App. 2010) (citing Melendez-Diaz v.
Massachusetts, 557 U.S. 305, 310-11 (2009)).
292 Id. at 1036.
293 Id.
294 State v. West, 279 P.3d 354, 361 (Or. Ct. App. 2012).
295 Id.
296 State v. Marino, 747 S.E.2d 633, 638 (N.C. Ct. App. 2013).
297 Id. at 639 (emphasis added).

2021] 57

that not all state technicians can be trusted—as the conviction of Annie
Dookhan in Massachusetts clearly establishes.298

The situation was different in Minnesota; there, a state court determined
that source code is essential to safeguarding a defendant’s rights. In
State v. Underdahl, the Minnesota Supreme Court determined that
defendants who failed to provide any information or documentary
evidence that the breathalyzer source code was relevant to their criminal
defense would be denied such source code.299 However, the Minnesota
Supreme Court further concluded that a defendant who provided
evidence that “an analysis of the source code may reveal deficiencies
that could challenge the reliability of the Intoxilyzer” should be entitled
to engage in discovery regarding that source code.300

Interpreting Underdahl, the Court of Appeals of Minnesota addressed a
defendant who challenged the revocation of his driver’s license based
on an implied consent statute and an alcohol concentration in excess of
the legal limit.301 James Lund submitted an affidavit from a forensic
scientist who explained the significance of access to the source code for
the defendant.302 Moreover, the forensic scientist opined that an analysis
of such code is necessary to determine whether they functioned

298 The Dookhan scandal is not the only one to rock the criminal justice system leading to the
overturning of numerous convictions. See generally Keith L. Alexander, Prosecutors Criticize
D.C. Crime Lab’s Handling of Some DNA Evidence, WASH. POST (Mar. 5, 2015),
https://www.washingtonpost.com/local/crime/dc-prosecutors-criticize-city-crime-labs-
handling-of-some-dna-cases/2015/03/05/b5244f88-bea4-11e4-b274-e5209a3bc9a9_story.html
[https://perma.cc/77Q5-9AGW]; Kyle Swenson, Broward Crime Lab Scandal Could Taint
Many Cases, MIA. NEW TIMES (Aug. 7, 2014),
https://www.miaminewtimes.com/news/broward-crime-lab-scandal-could-taint-many-cases-
6396401 [https://perma.cc/CS7U-BJA4]; Mark Hansen, Crime Labs Under the Microscope
After a String of Shoddy, Suspect and Fraudulent Results, ABA JOURNAL (Sept. 1, 2013),
http://www.abajournal.com/magazine/article/crime_labs_under_the_microscope_after_a_strin
g_of_shoddy_suspect_and_fraudu [https://perma.cc/RG6M-36LX]; Maurice Chammah, After
Drug Lab Scandal, Court Continues to Reverse Conviction, TEX. TRIBUNE (Mar. 27, 2013),
https://www.texastribune.org/2013/03/27/after-drug-lab-scandal-court-reverses-convictions/
[https://perma.cc/R27P-3NHN] (reporting that “a former employee with a DPS crime
laboratory in Houston may have fabricated the results of thousands of drug tests”).
299 767 N.W.2d 677, 685 (Minn. 2009).
300 Id. at 685-86.
301 Lund v. Comm’r of Pub. Safety, No. A08-1408, 2009 WL 1587135, at *1 (Minn. Ct. App.
June 9, 2009).
302 Id.

58 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

accurately.303 Notwithstanding this expert affidavit, the trial court
denied the request for discovery of the source code.304 The Lund
appellate court reversed and remanded, finding that discovery was
appropriate based on Underdahl because “a showing that discovery of
the source code is relevant to the accuracy of a petitioner’s test results
is sufficient to support a motion for discovery of the source code.”305

The Court of Appeals of Minnesota heard similar challenges seeking the
breathalyzer source code in criminal prosecutions for driving while
intoxicated. For example, the appellate court reversed and remanded the
trial court’s decision to deny discovery of the source code when the
defendant submitted a declaration from a computer forensics expert306
as well as a complaint filed by Minnesota against the manufacturer of
the Intoxilyzer.307 Similarly, in State v. Veldhuizen, the Court of Appeals
of Minnesota concluded that the trial court abused its discretion in
denying a request for discovery of the source code where defendant
submitted an expert affidavit describing the source code and its effect
of test results as well as information regarding “two inconsistent data
reports produced from the same underlying intoxilyzer test.”308

Yet the Court of Appeals of Minnesota affirmed criminal convictions
for driving while intoxicated when the defendants failed to demonstrate
before the trial court how the source code would assist them in
challenging the charge against them: “Cornish did not present a proffer
or analysis in support of either his pretrial motion to compel or his
timely motion for a new trial that is comparable to the submission found
sufficient in Underdahl II.”309 The Cornish court determined that his

303 Id.
304 Id.
305 Id. at *3; see also Duncan v. Comm’r of Pub. Safety, No. A08-2237, 2009 WL 2366280, at
*4 (Minn. Ct. App. Aug. 4, 2009) (holding that the trial court abused its discretion in denying
discovery of the source code).
306 State v. Granse, No. A09-2192, 2010 WL 4451243, at *2 (Minn. Ct. App. Nov. 9, 2010).
307 Minnesota ex rel. Campion v. CMI of Kentucky, Inc., No. 08-603, 2009 WL 2170134, at
*4 (D. Minn. July 16, 2009).
308 Nos. A08-2110, A08-2112 & A08-2113, 2009 WL 1684494, at *2 (Minn. Ct. App. Nov. 9,
2010).
309 State v. Cornish, No. A08-1228, 2010 WL 2035610, at *4 (Minn. Ct. App. May 25, 2010).

2021] 59

proffers were insufficient to establish that the source code would be
useful in challenging the breathalyzer evidence.310

Similarly, in State v. Garberg, the Court of Appeals of Minnesota heard
another appeal challenging the denial of access to a breathalyzer source
code.311 The court determined that the defendant “failed to make a
threshold evidentiary showing that the source code information may
relate to his guilt or innocence, negate his guilt, or reduce his
culpability” before the trial court as mandated in Underdahl.312 This
inconsistency is troubling. As we have shown, the problem of buggy
(and hence unreliable) code is endemic in computer software; one
cannot assume, absent substantial evidence, that some particular piece
of software is correct.

The issue of correct software occurs in a myriad of different situations,
including in situations of far greater import than an individual DWI
case. For example, recently, the federal government engaged in a
nationwide prosecution of individuals who distributed child
pornography images amongst themselves on a secured website known
as Playpen.313 Criminal defendants around the country had varying
degrees of success in challenging the evidence used against them.314

In 2016, in United States v. Michaud, the federal government indicted
Jay Michaud for offenses related to child pornography.315 Defense
counsel moved for the prosecution to produce the source code for the
network investigative technique (“NIT”) used by the FBI during its
investigation.316 The technique was designed to activate a “computer—
wherever located—to send to a computer controlled by or known to the
government, network level messages containing information that may
assist in identifying the computer, its location, [and] other

310 Id.
311 No. A09-914, 2010 WL 772622, at *3 (Minn. Ct. App. Mar. 9, 2010).
312 Id.
313 See generally Brian L. Owsley, Network Investigative Source Code and Due Process, 14
DIGIT. EVID. & ELEC. SURVEILLANCE L. REV. 39 (2017).
314 See id.
315 No. 3:15-cr-05351, 2016 WL 337263, at *1-2 (W.D. Wash. Jan. 28, 2016).
316 Id.; Order on Procedural History and Case Status in Advance of May 25, 2016 Hearing at
1, Michaud, 2016 WL 337263 (No. 3:15-cr-05351).

60 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

information.”317 The district court concluded that it would be prejudicial
to the defendant if the government were allowed to enter evidence to
which the defendant could not meaningfully respond because of lack of
access to the NIT source code.318 The court further explained given that
“the discovery withheld implicates the defendant’s constitutional
rights,”319 any “evidence of the NIT and the search warrant issued on
the basis of the NIT should be suppressed, and the fruits of that search
must also be suppressed.”320

The prosecution then moved to dismiss the charges against Michaud
without prejudice,321 resulting in the dismissal of the charges against
him.322 However, Michaud was an exception; most defendants caught
through the Playpen investigation failed to gain access to the source
code despite filing motions to do so.323

Most recently, in a prosecution reliant upon DNA software for
identification, the New York Supreme Court Appellate Division
considered whether the Confrontation Clause required the prosecution
to provide the defendant with source code.324 Law enforcement had
located DNA on the cord used to strangle the decedent.325 After the
defendant’s arrest, the police took a buccal swab to gather his DNA for
testing using a software program known as TrueAllele Casework
System.326 The defendant asserted that the state violated his

317 Michaud, 2016 WL 337263, at *2.
318 Owsley, supra note 313, at 45; see also Order Denying Dismissal and Excluding Evidence
at 1, Michaud, 2016 WL 337263 (No. 3:15-cr-05351).
319 Id.
320 Id.
321 Government’s Unopposed Motion to Dismiss Indictment Without Prejudice at 3, Michaud,
2016 WL 337263 (No. 3:15-cr-05351).
322 Order Dismissing the Indictment Without Prejudice at 1, Michaud, 2016 WL 337263 (No.
3:15-cr-05351).
323 See, e.g., United States v. Harney, No. 16-38, 2018 WL 1145957, at *12 (E.D. Ky. Mar. 1,
2018); United States v. Stepus, No. 3:15-cr-30028, 2018 WL 1257804, at *4 (D. Mass. Mar.
12, 2018); United States v. Zak, No. 16-CR-65, 2017 WL 4358140, at *4 (W.D.N.Y. Oct. 2,
2017); United States v. Spicer, No. 1:15-cr-73, 2018 WL 635889, at *5 (S.D. Ohio Jan. 31,
2018).
324 See People v. Wakefield, 107 N.Y.S.3d 487, 495 (App. Div. 2019).
325 Id. at 491.
326 Id.

2021] 61

Confrontation Clause right by denying him access to TrueAllele’s
source code.327

The appellate court characterized the argument by the defendant,
Wakefield, as novel because it was based on the source code being the
out-of-court declarant.328 Moreover, it determined that “the TrueAllele
report [was] testimonial in nature.”329 Nonetheless, the court rejected
the argument that the source code should be available to the defendant
because the creator of TrueAllele who wrote its source code had testified
about the pertinent algorithm.330 In the court’s opinion, there was no
violation of Wakefield’s Confrontation Clause right.331 Having the
algorithm’s designer testify about the code did not answer, however,
whether the software performed correctly; only an examination of the
code could do that.

The decision in Wakefield, along with Michaud, Underdahl, and its
progeny, demonstrates that on a case-by-case basis, some courts are
starting to acknowledge that source code may be essential for
defendants to exercise their Confrontation Clause rights. These cases,
however, have largely not addressed the issue of correctness of
evidentiary software.

2. Implications for Evidentiary Software

The limited Confrontation Clause jurisprudence in this area has
developed based on the determination that criminal defendants do not
really need access to the source code—and thus their constitutional
rights are not violated when they lack this ability. As Jennifer Mnookin
explained:

[A] great many lower court opinions have wrestled with
the potential Confrontation Clause implications of expert
evidence that includes statements that might be classified

327 Id. at 494.
328 Id. at 495.
329 Id. at 497.
330 Id.
331 Id.

62 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

as testimonial. Most of these courts have endeavored to
find ways around Crawford's dictates; unfortunately,
most of the arguments proffered by these courts are
deeply intellectually unsatisfying.332

The previously discussed Intoxilyzer decisions further demonstrate that
point.333

Since Melendez-Diaz and Bullcoming, courts have wrestled with
appropriately handling the Confrontation Clause when the expert
witness is not a person but rather a result determined by computer
software. As Professor Mnookin indicated, the key issue in Crawford is,
“[w]as the statement made in circumstances that suggest its likely future
relevance as testimony in a criminal prosecution?”334 For evidentiary
software, the answer is an unqualified yes. Its purpose is exactly to
produce testimony to be relied upon in a criminal trial. The expert is not
the policeman proffering the results of a breathalyzer test or a radar gun;
the expert is the reasoning exemplified in the software that processes the
data—and the implementation of that reasoning. In this regard,
Wakefield reached exactly wrong conclusion.

To get it right, we need to go back to Daubert, which lays out very
clearly how to determine the admissibility of expert witness testimony:

The Rules—especially Rule 702—place appropriate
limits on the admissibility of purportedly scientific
evidence by assigning to the trial judge the task of
ensuring that an expert’s testimony both rests on a
reliable foundation and is relevant to the task at hand . . .

332 Mnookin, supra note 248, at 796.
333 See City of Fargo v. Levine, 747 N.W.2d 130 (N.D. 2008); State v. Peters, 264 P.3d 1124
(Mont. 2011); Wexler, supra note 11; State v. West, 279 P.3d 354 (Or. Ct. App. 2012); In re
Comm’r of Pub. Safety, 735 N.W.2d 706 (Minn. 2007); Affadivit of Brian Faulkner, State v.
Bonakoske (Fla. Charlotte County Ct. June 10, 2011) (No. 08-1726-T); State v. Underdahl,
767 N.W.2d 677 (Minn. 2009); State v. Granse, No. A09-2192, 2010 WL 4451243 (Minn. Ct.
App. Nov. 9, 2010); Minnesota ex rel. Campion v. CMI of Kentucky, Inc., No. 08-603, 2009
WL 2170134 (D. Minn. July 16, 2009); State v. Veldhuizen, Nos. A08-2110, A08-2112 &
A08-2113, 2009 WL 1684494 (Minn. Ct. App. Nov. 9, 2010).
334 Mnookin, supra note 248, at 794.

2021] 63

[T]he trial judge, pursuant to Rule 104(a), must make a
preliminary assessment of whether the testimony’s
underlying reasoning or methodology is scientifically
valid335

The Supreme Court’s analysis in Daubert warrants repeating: the trial
judge is assigned the task of ensuring that an expert’s testimony rests on
a reliable foundation and must make a preliminary assessment of
whether the testimony’s underlying reasoning is scientifically valid.336
As we already have documented, despite the best intentions of
programmers, source code often has errors. Yet there is no way for a
defendant to demonstrate the existence of any errors without having the
code examined. Therefore, any approach that eschews access to the code
for such an examination presents a serious gap in the protection of
defendants’ rights.

A trial judge is not in a position to determine whether the underlying
reasoning provided by the program is valid or whether, if the underlying
reasoning is correct, it has been properly implemented. Indeed, when it
comes to technological developments that impact a criminal defendant’s
constitutional rights, many judges are ill-equipped to analyze the
nuances related to such technology.337 This realization begs the question
of how best to address this issue and safeguard constitutional rights.

We do not live in a perfect world where there are no criminals, where
the criminals that exist conduct only minor criminal activities that cause
no serious, long-term harm, where all computer code works perfectly
the first time, or where software errors are easy to find. Consequently,
we do not have a solution that can completely solve the problem of

335 Daubert v. Merrell Dow Pharms., Inc., 509 U.S. 579, 579-80 (1993).
336 Id.
337 See, e.g., Brian L. Owsley, Triggerfish, Stingrays, and Fourth Amendment Fishing
Expeditions, 66 HASTINGS L.J. 183, 210 (2014) (“[O]ther magistrate judges may have received
applications using the pen register application and not realized that they were authorizing or
denying use of a cell site simulator.”); Brian L. Owsley, The Fourth Amendment Implications
of the Government’s Use of Cell Tower Dumps, 16 U. PA. J. CONST. L. 1, 18 (2013) (“[I]n my
own informal survey of magistrate judges nationwide, many have informed me that they were
unfamiliar with cell tower dumps.”).

64 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

convictions based on faulty software. However, we do have a solution
posed by evidentiary software that can level the playing field and enable
defendants “to confront the witnesses against [them].”338 It is a solution
that lies already in the words of Melendez-Diaz, where the Court
enunciated that “[c]onfrontation is designed to weed out not only the
fraudulent analyst, but the incompetent one as well.”339

In one regard, Crawford’s purpose was rooting out hearsay (“even if the
Sixth Amendment is not solely concerned with testimonial hearsay, that
is its primary object, and interrogations by law enforcement officers fall
squarely within that class”340) but in essence, the courts relying on
source code that the defendant cannot cross examine is analogous to the
courts relying on hearsay. In analyzing hearsay, Mnookin wrote that,
post-Crawford, it is not acceptable to simply cross examine an expert
witness if she herself has relied on hearsay; the defendant must be also
be afforded the opportunity to cross examine those upon whom the
expert relied in preparing her testimony.341

One might imagine an objection to this two-prong approach posited by
Mnookin on the grounds that this process can lead to an almost infinite
regression of required witnesses, each one suggesting that they have
learned some small fact relevant to the case from the next, who must
then be called to testify.342 Mnookin and Kaye call into question that
only the expert needs to be available and questioned as a witness by
defense counsel:

Take the testimony about the chemical makeup of a drug
in Melendez-Diaz. Justice Scalia implies that the person
who establishes the accuracy of the testing device is not
required. But why not? Is that not a prerequisite to being
able to be confident about the accuracy of the result?
Arguably the person who interpreted the result is making
the most central bottom-line judgment relevant to the

338 Levine, 747 N.W.2d at 134.
339 Melendez-Diaz v. Massachusetts, 557 U.S. 305, 319 (2009).
340 Crawford v. Washington, 541 U.S. 36, 53 (2004).
341 Mnookin, supra note 248, at 832-33.
342 Id. at 833.

2021] 65

defendant. Is this individual therefore the only one who
needs to testify? What if the technician who prepared the
sample somehow contaminated it? Should that
technician be required to testify as well? None of these
technicians is merely engaged in documenting a chain of
custody. They are all taking steps that contribute to the
final conclusion about the chemical composition of the
substance at issue.343

However, the issue they raise (which they also answer) is not of concern
here: the “witness” is only one deep. It is the software upon which the
expert witness relied in order to provide her testimony.

The issue of hearsay is exactly the point here. The expert witness
testifying about the results of a breathalyzer or DNA test is not testifying
as to what the software does. Instead, that expert is testifying as to what
the program designer and coder intended the software to do. Nor, for the
same reason, is it adequate for the program designer or coder to testify—
for they know only what they intended the software to do, not that the
program does exactly that, no more, no less, in all circumstances. The
harm that Crawford seeks to prevent—the inability of the defendant to
confront a witness testifying against him—is denied when he, or his
delegated authorities, cannot examine the code. Only by viewing the
code can the defendant have the rights afforded to him by the
Confrontation Clause. Given the prevalence of errors in software,
defendants must have that right.

We propose a simple test (analogous by voting system software
independence) for determining whether software-based systems that
produce criminal evidence should be subject to adversarial analysis. If
the relevant inputs to the system are retained, and all other information
and algorithms required to reproduce the software-based evidence are
available to opposing parties, then there is likely no compelling benefit
to adversarial analysis of the software. In such cases, the correctness of
the software’s behavior can be confirmed or refuted simply by
independently recalculating what the software was supposed to do and

343 Mnookin & Kaye, supra note 286, at 152-53.

66 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

comparing the result with the evidence in question. If, on the other hand,
such an independent recalculation cannot be done (either because some
relevant inputs are not available or because the software relies on
proprietary algorithms or other behavior), there is no way for an
opposing party to determine whether the evidence is correct without
expert adversarial analysis of the software. Such a test has the benefit of
being relatively straightforward to apply by courts.

We must admit that our proposed solution is not quite as simple as those
words might make it appear. Evidentiary code is typically developed by
the private sector with the intent of profit. In other words, making the
underlying code public is implausible. However, there are many ways
for the software to be examined by the defense that do not require the
code to accessible to the general public. The most obvious answer is a
protective order, similar to those used in patent cases, be used in regard
to source code. This approach was considered in Peters, but
unfortunately for the criminal defendant the expert refused to sign the
proposed protective order, resulting in an adverse decision for the
criminal defendant.344 Provisions of such orders commonly include
requirements that analysis be done on computers not connected to the
Internet, and that the analysts not have any means, e.g., external disks,
with which they can make copies of the software at issue.345 Other
mechanisms, including limited courtroom closures, are discussed by
Wexler.346

C. Due Process Clause

The Fifth Amendment mandates that “[n]o person shall . . . be deprived
of life, liberty, or property, without due process of law.”347 Similarly,
the Fourteenth Amendment serves as a constraint on action by states:
“nor shall any State deprive any person of life, liberty, or property,

344 State v. Peters, 264 P.3d 1124, 1129, 1131 (Mont. 2011).
345 Lydia Pallas Loren & Andy Johnson-Laird, Computer Software-Related Litigation:
Discovery and the Overly-Protective Order, 6 FED. CTS. L. REV. 75, 99-100 (2012).
346 Wexler, supra note 11, at 1409-10.
347 U.S. CONST. amend. V.

2021] 67

without due process of law.”348 Due process is not easily defined, but at
its core, the right of due process is about fundamental fairness.349

Courts have rejected criminal defendants’ due process claims for source
code when the government does not have the source code.350 “Due
process does not require the police to seek and find exculpatory
evidence.”351 The increased move by society to outsourcing services
might well lead to a situation in which law enforcement increasingly
does not actually have the software that was used in the conviction.352
Thus, any requirement that a defendant has the right to examine
software might need to be addressed not only judicially, but also
legislatively.

While courts might be not be willing to compel discovery of the source
code in civil proceedings, such as driver’s license revocation hearings,
discovery might be warranted in criminal proceedings.353 In Crandall,
the court indicated that due process was not an issue because it was a
summary civil proceeding, but “[d]iscovery of the source code might be
permitted for [a] criminal trial.”354 In the civil context, legislative
solutions may be the only way for individuals to obtain this necessary
information. Nonetheless, courts have a role in determining whether due
process was violated. In the end, there is a fundamental unfairness for
the government to rely on a technology and prevent a defendant from
challenging its reliability when addressing the adverse consequences.
Ultimately, courts have a role in determining whether a due process
violation has occurred.

348 U.S. CONST. amend. XIV, § 1.
349 See, e.g., Lassiter v. Dep’t of Soc. Servs., 452 U.S. 18, 24-25 (1981); see also State v.
Davis, 898 N.E.2d 281, 287 (Ind. 2008).
350 See Mahan v. Bunting, No. 1:13-CV-00165, 2014 WL 1154054, at *3 (N.D. Ohio Mar. 20,
2014).
351 Id. (quoting Stadler v. Curtin, 682 F. Supp. 2d 807, 818 (E.D. Mich. 2010)).
352 See, e.g., City of Fargo v. Levine, 747 N.W.2d 130, 133-34 (N.D. 2008).
353 See In re Crandall, No. 2008–951, 2008 WL 4615633, at *3 (N.Y. Sup. Ct. Aug. 25, 2008),
aff’d sub nom. Crandall v. Brovetto, 891 N.Y.S.2d 761 (2010).
354 Id.

68 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

Machines based on software are susceptible to potential errors that lead
to testimony that can wrongly convict individuals.355 Without allowing
defendants to have access to the source code related to their cases, they
will be unable to have experts who can analyze whether the source code
operates as it is intended to do or whether there are flaws that might lead
to the conviction of an innocent defendant. Indeed, in 2008, in State v.
Kummer, the Court of Appeals of Minnesota explained that failing to
provide a defendant the source code for the Intoxilyzer 5000EN might
violate her due process rights.356

Notwithstanding the Kummer court’s decision, courts generally do not
address the merits of whether the denial of access to source code for
criminal defendants violates due process. Some reasons make sense. For
example, in 2010, another Minnesota appellate court declined to address
a due process violation based on the use of a breathalyzer when the
defendant was convicted for driving under the influence based on a urine
sample as opposed to the use of a breathalyzer.357 Indeed, appellate
courts regularly decline to address the issue because defendants raised
it for the first time on appeal.358

In Peters, criminal defendants also asserted a claim based on a due
process violation regarding convictions for driving under the
influence.359 In 2011, the Supreme Court of Montana declined to
address the due process claim.360 The court determined that CMI had
offered to make the source code available to the defendants, but the
defense expert refused the offer because he did not agree with CMI’s

355 Andrea Roth, Machine Testimony, 126 YALE L.J. 1972, 1989-90 (2017).
356 No. A08-0533, 2008 WL 4472610, at *1 (Minn. Ct. App. Oct. 7, 2008).
357 State v. Sterling, 782 N.W.2d 579, 581 n.2 (Minn. Ct. App. 2010).
358 See Christian v. Comm’r of Pub. Safety, No. A13-1921, 2014 WL 1758374, at *2 (Minn.
Ct. App. May 5, 2014); State v. Garberg, No. A09-914, 2010 WL 772622, at *3 (Minn. Ct.
App. Mar. 9, 2010); Lund v. Comm’r of Pub. Safety, No. A08-1408, 2009 WL 1587135, at *3
(Minn. Ct. App. June 9, 2009); see also State v. Lindner, No. 1 CA-CR 09-0583, 2010 WL
2103532 at *1 (Ariz Ct. App. May 25, 2010) (Lindner “waived these claims . . . by failing to
argue them” in his appellate brief) (citations omitted), superseded by 252 P.3d 1033 (Ariz Ct.
App. 2010).
359 State v. Peters, 264 P.3d 1124, 1129, 1132 (Mont. 2011).
360 Id. at 1132 (“Courts should avoid constitutional questions whenever possible.” (citing
Kulstad v. Maniaci, 244 P.3d 722 (Mont. 2010))).

2021] 69

terms.361 Specifically, he expressed concerns that he could be
sanctioned and lose his law license based on the overly strict approach
by CMI in its take-it-or-leave-it agreement.362 Moreover, CMI expected
the expert to work exclusively at its headquarters and to destroy his
computer hard drive when the review was completed.363 These demands
by CMI also served to create a much more burdensome and costly
review process.

In that context, the Peters court found that it was not necessary to review
the due process claims.364 However, this determination ignored the fact
that it left the criminal defendants without any means to present a
defense to the charges against them.

In West, the criminal defendant was indigent and sought state funds so
that he could retain an expert to analyze the breathalyzer’s source
code.365 After the trial court denied his request for such funds, West
argued that this denial violated his due process rights.366 Specifically,
he asserted that the prosecution failed to demonstrate that the
breathalyzer was reliable and that an expert to analyze the source code
would assist him in obtaining exculpatory evidence.367 In 2012, the
Court of Appeals of Oregon rejected the due process argument,
concluding that it constituted a fishing expedition.368 It noted that West
“relies instead on the assertion that, if various governmental agencies
produced everything defendant requested . . . then an expert might be
able to demonstrate that the documents reveal something useful.”369
This approach did not establish a basis for finding a due process
violation.370

361 Id.
362 Id. at 1129.
363 Id.
364 Id. at 1132.
365 State v. West, 279 P.3d 354, 360 (Or. Ct. App. 2012).
366 Id.
367 Id.
368 Id.
369 Id.
370 Id. at 361.

70 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

In Collins v. State, the defendant was charged with DUI per se and DUI
less safe, but the trial court only sentenced her based on a conviction for
DUI less safe.371 On appeal, she argued that her due process rights were
violated because she was not able to access the source code for the
Intoxilyzer 5000 for trial.372 In 2014, the Court of Appeals of Georgia
concluded that Collins’ due process claim was moot because she was
only convicted of DUI less safe, which was unrelated to the source
code.373

In Commonwealth v. Camblin, the defendant challenged the denial
pursuant to state and federal due process rights.374 In 2015, the
Massachusetts Supreme Judicial Court, which is the state’s highest
court, addressed the trial court’s decision denying a motion in limine
seeking to bar the breath test machine because it was scientifically
unreliable.375 Due process mandates that evidence presented by the
prosecution must be reliable.376 The court reversed, finding that the
defendant was addressing a new technology and thus should have be
able to challenge its reliability before the trial court.377

371 760 S.E.2d 606, 608 (Ga. Ct. App. 2014); see also GA. CODE ANN. § 40-6-
391(a)(5) (2014) (establishing six ways in which a driver may be driving while impaired in
some manner.) The statute defines DUI per se as “driv[ing] or be[ing] in actual physical
control of any moving vehicle while . . . [t]he person’s alcohol concentration is 0.08 grams or
more at any time within three hours after such driving or being in actual physical control from
alcohol consumed before such driving or being in actual physical control ended.” Id. In other
words, this definition fits the standard blood alcohol concentration. The statute also defines
DUI less safe as “driv[ing] or be[ing] in actual physical control of any moving vehicle while . .
. [u]nder the influence of alcohol to the extent that it is less safe for the person to drive.” Id. §
40-6-391(a)(1). In order to meet this standard, it is not necessary to provide evidence of blood
alcohol concentration. Instead, the prosecution simply needs to establish an impairment due to
alcohol based on circumstantial evidence. See, e.g., Davis v. State, 687 S.E.2d 854, 858 (Ga.
Ct. App. 2009).
372 Collins, 760 S.E.2d at 608.
373 Id. at 608-09.
374 31 N.E.3d 1102, 1108 (Mass. 2015).
375 Id. at 1104-05.
376 Id. at 1111 (discussing Commonwealth v. Given, 808 N.E.2d 788 (Mass. 2004)).
377 Id. at 1112.

2021] 71

IV. Conclusion

As the above legal discussion reflects, there are not many cases
addressing a defendant’s right to access of the relevant source code
consistent with a constitutional right. In most of the breathalyzer cases,
the defendants and their attorneys failed to properly present the various
constitutional challenges such that there were very few discussions on
the merits. Even in the few instances of decisions on the merits, the
courts fail to understand the implications of the requests. For example,
in Camblin, the court granted the request because it was a new
technology; that, though, is not the fundamental issue.

Overall, the problem is that the courts have applied the wrong standard.
This is exemplified by the Minnesota ruling in Garberg, where the court
wrote that the defendant “failed to make a threshold evidentiary
showing that the source code information may relate to his guilt or
innocence, negate his guilt, or reduce his culpability.”378 In other words,
the court felt that software should be presumed reliable, and that without
specific indications to the contrary Garberg could not have access to the
source code. This is in stark contrast to how human witnesses are
treated, where defendants have a constitutional right to try to impeach
their credibility. Software does not deserve elevated status. Defendants
must have access to evidentiary source code.

Implementing this policy requires several modifications to current
practice. First, of course, is a rule on when defendants should have such
access. We suggest adapting the definition of “software independence”
proposed by Professor Rivest for elections: “A voting system is
software-independent if an undetected change or error in its software
cannot cause an undetectable change or error in an election outcome.”379
Note carefully that this does not rule out the use of software; systems
where software proposes an answer but a manual process verifies it can
still be software-independent.380 Here, we propose that if evidence is not

378 State v. Garberg, No. A09-914, 2010 WL 772622, at *3 (Minn. Ct. App. Mar. 9, 2010).
379 Rivest & Wack, supra note 164, at 3761.
380 In election systems, this can be accomplished by risk-limiting audits, a statistical process
that involves manual counting of a small subset of the ballots cast, even if they were tallied by

72 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1

analogously “software-independent”, the defense should be entitled to
examine the software that produced it.

A second crucial point is that the source code must be available for
production by the prosecution. Procurement contracts must specify
delivery of source code for each version of the code or device. This has
to be part of acceptance of the product by the government, with no
payment tendered or use of the product until the source code has been
delivered. Such a policy would avoid situations as in In re
Commissioner of Public Safety, where the Commissioner had to be
ordered to obtain the code,381 or Bonakoske, where the vendor asserted
that it no longer possessed the code.382

Finally, defendants must have reasonable access. Auditing a program is
not done simply by staring at printouts of the code; rather, a variety of
specialized tools are used, both to examine the code383 and to do test
executions.384 Audits may require teams; furthermore, it must often be
contracted out to specialist companies. Reasonable protective orders
may be required,385 but they should not be overly onerous, as in
Peters.386 Even these may not be enough. As we noted, training data
must be provided if machine learning algorithms are involved.387
Professor Bratus et al. suggest the need for information on external
inputs, e.g., the time of day, the configuration of the operating system
and supporting software, and the specific version of the evidentiary
software in use.388

a computer. See, e.g., Mark Lindeman & Philip B. Stark, A Gentle Introduction to Risk-
limiting Audits, 10 IEEE SEC. & PRIV. 42, 42 (2012).
381 735 N.W.2d 706, 709 (Minn. 2007) (The Commissioner had to be ordered to “obtain and
provide to [Underdahl’s] counsel the complete computer source code.”) (emphasis added).
382 Affidavit of Brian Faulkner at ¶ 5, State v. Bonakoske (Fla. Charlotte County Ct. June 10,
2011) (No. 08-1726-T).
383 A simple example of such a tool is one that finds each location where each variable is used.
384 One well-known technique for finding bugs at runtime is known as “fuzzing.” See, e.g.,
Andy Greenberg, Hacker Lexicon: What is Fuzzing?, WIRED (June 2, 2016),
https://www.wired.com/2016/06/hacker-lexicon-fuzzing/ [https://perma.cc/4L2N-D786].
385 But see Wexler, supra note 11.
386 State v. Peters, 264 P.3d. 1124 (Mont. 2011).
387 See Vincent, supra note 178.
388 Sergey Bratus et al., Software on the Witness Stand: What Should It Take for Us to Trust
It?, in TRUST AND TRUSTWORTHY COMPUTING 396, 406 (Alessandro Acquisti et al. eds., 2010).

2021] 73

Arguably, providing access to source code will impose a burden on the
prosecution. Many defendants will be economically unable to take
advantage of such opportunities. But neither consideration is unique.

From a technical perspective, it is a virtual certainty that any significant
software system contains bugs. As Christian Chessman wrote, “[i]t is
difficult to overstate the fallibility of computer programs.”389

As shown in Chun and Foley, breathalyzers and DNA-matching devices
are not immune.390 These bugs may or may not affect the results in any
given case, but in our judicial system, the Constitution and fundamental
considerations of due process demand that defendants should have the
opportunity to find out—and that is only feasible with access to source
code.

389 Christian Chessman, A “Source” of Error: Computer Code, Criminal Defendants, and the
Constitution, 105 CALIF. L. REV. 179, 228 (2017).
390 State v. Chun, 943 A.2d 114, 126-31 (N.J. 2008); Commonwealth v. Foley, 38 A.3d 882,
887 (Pa. Super. Ct. 2012).

