
  
 
 
 
 
 
 
 
 
 
 
 
 

 
ALGORITHMS AND FAIRNESS 
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Algorithms, including those used in artificial intelligence (“AI”), are 
experiencing rapid adoption in a growing array of applications, 
including policing, criminal justice, employment, financial services, 
education, healthcare, and many others. While algorithms offer many 
potential benefits, they also pose the risk of propagating, amplifying, or 
generating bias.  
 
This Article addresses a set of critically important questions that legal 
scholars, policymakers, technologists, companies, civil society groups, 
and consumers will be facing with increasing frequency in the coming 
years: How should algorithmic bias—or conversely, fairness—be 
measured? To what extent are different measures of fairness mutually 
exclusive or compatible? And how do measures for algorithmic fairness 
relate to—and stand to inform or be informed by—anti-discrimination 
law? 
 
This Article presents a set of new results that have not been addressed 
before in legal academic publications regarding different approaches 
to measuring algorithmic fairness and the nature and extent of mutual 
incompatibilities among those measures. It also examines algorithmic 
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fairness in the context of the antidiscrimination law, providing analysis 
on how statutes and case law relating to disparate treatment and 
disparate impact will impact algorithm design, and how in turn those 
legal frameworks can be informed by perspectives gained through 
experience with algorithms. It concludes with a set of recommendations 
and observations aimed at providing both (1) practical guidance on how 
to choose among multiple options for measuring fairness and (2) a 
foundation for broader discussions about updating approaches to 
algorithm design and conceptions of anti-discrimination law in ways 
that can promote algorithmic equity. 
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I. Introduction 
 
Algorithms should be fair. But what, exactly, does that mean? This 
question is profoundly important given the increasing incorporation of 
algorithms into healthcare, policing, criminal justice, marketing, 
education, finance, and nearly every other sector of society. Answering 
it has proven elusive due not only to the many different possible 
definitions of algorithmic fairness but also because of a shortage of 
sufficient information regarding the relationships among the definitions 
and the degree to which they are compatible or mutually exclusive. An 
additional complicating factor arises from inconsistencies in 
terminology. Depending on the source, multiple different terms are 
sometimes used to describe the same underlying method of evaluating 
fairness. An example of this is the method referred to variously as “test-
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fairness” and “calibration.”4 To add another wrinkle, sometimes the 
same term is used to describe different underlying methods of evaluating 
fairness. For instance, the metric known as “predictive parity” is applied 
in multiple different ways in the academic literature, with the result that 
whether or not an algorithm achieves predictive parity can depend on 
which version of the definition is used.5  
 
The issue of fairness measures6 is further complicated by important 
questions regarding the broader context of discrimination law 
frameworks and related efforts to identify and mitigate patterns of 
discrimination. The trajectory of discrimination law in recent decades 
reflects the intersection of an evolving statutory framework with a 
growing body of case law. Unsurprisingly, this evolution has occurred 
with a strong focus on the legal questions that arise in relation to 
identifying and combating discrimination—and less attention to the 
multiplicity of mathematical approaches to measuring it that, when 
properly contextualized, can provide a valuable complement to a purely 
legal analysis. As algorithms for making predictions and decisions 
become more widely deployed and are rightly subject to scrutiny 
regarding whether and to what extent they discriminate, it will be 
important to evaluate fairness with a perspective informed by an 
understanding of both the legal and technical issues involved. 
 
 
 
 
4 For example, what Verma and Rubin and (separately) Chouldechova refer to as “test-
fairness,” Corbett-Davies and Goel refer to as “calibration.” See Sahil Verma & Julia 
Rubin, Fairness Definitions Explained, in PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON 
SOFTWARE FAIRNESS 1, 5 (2018), available at 
https://dl.acm.org/doi/pdf/10.1145/3194770.3194776?casa_token=9Rdkcqf4D8QAAAAA:oc
MfzWRvoDXu07FuavioYbsD2ZWFL5fNzEZrvY7JhRiVeRsFynnPBNBAPphlDvD5DJe_7i4
QPJs; Alexandra Chouldechova, Fair Prediction with Disparate Impact: A Study of Bias in 
Recidivism Prediction Instruments, 52 BIG DATA 153, 156 (2017); Sam Corbett-Davies 
& Sharad Goel, The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine 
Learning 6 (Aug. 14, 2018) (unpublished manuscript), https://arxiv.org/pdf/1808.00023.pdf. 
The use of multiple different terms to the same underlying fairness measure can, for obvious 
reasons, impede dialog among people who are not aware of the terminology duplication.  
5 Mayson states that “overall predictive parity” occurs when an algorithm achieves parity 
across groups in both positive predictive value and negative predictive value. See Sandra 
Mayson, Bias in, Bias out, 128 YALE L.J. 2218, 2243 (2019). By contrast, Verma and Rubin 
use a definition of “predictive parity” requiring only that positive predictive value be equal 
across groups, with no constraint on equality of negative predictive value.” Verma & Rubin, 
supra note 4, at 3.   
6 We use the phrases “fairness measures” and “fairness metrics” interchangeably. 
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These issues are not merely theoretical: Companies, governments, 
courts, civil society groups, algorithm designers, consumers, academic 
researchers, and others involved in identifying and mitigating 
algorithmic bias7 all have an interest in constructive legal and policy 
outcomes. Making effective progress in promoting algorithmic fairness 
will require a clear understanding of how to define, measure, and discuss 
it, as well as an understanding of how the various options for measuring 
fairness differ, the tradeoffs involved when choosing among them, and 
how decisions regarding which fairness measures to use should be 
influenced by—or should influence—discrimination law. 
 
This Article aims to help facilitate these objectives in several ways. 
First, it provides a broad treatment of algorithmic fairness that both 
incorporates and extends the results of previous technical and legal 
scholarship. In doing so, it uses a series of examples to explain various 
fairness metrics and presents a set of new results regarding the 
relationships among fairness measures. While previous legal academic 
publications have discussed the fact that fairness measures can be 
mutually incompatible (in the sense that satisfying one can make it 
mathematically impossible to satisfy another), this Article explains that 
the landscape is in fact more nuanced. In some cases, under constraints 
that we discuss and that have important policy implications, it is 
possible to achieve fairness under more than one fairness measure. 
  
Second, the article is written with the goal of being accessible and useful 
to a broad range of readers in the law and policy communities, including 
those who may not have an extensive background in mathematics. This 
is important because much of the literature on technical solutions for 
algorithmic fairness has been published in journals in technical fields 
 
 
 
 
7 As used herein, the term “bias” is generally intended to refer to bias in relation to legally 
and/or (in places where no formal legal protection yet exists) ethically problematic 
consideration of attributes such as race, gender, sexual orientation, religion, gender identity, 
etc. in association with decisions regarding hiring, financial services, housing, etc. Of course, 
there are also contexts in which “bias” has an innocuous meaning—such as, for example, if 
coaches holding tryouts for a soccer team make team roster decisions based on “bias” in favor 
of skilled soccer players. “Bias” herein is also not intended to refer to bias as that term is 
sometimes used in a highly technical sense in machine learning; e.g., in the “bias-variance 
tradeoff.”  
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and is written for audiences of those journals. While there are also a 
growing number of law review publications on this topic, they often 
focus on a smaller subset of fairness measures than we consider here. 
There is thus a need for an article that discusses a broader array of 
fairness measures than has been addressed in much of the previous legal 
academic scholarship on this topic. 
 
A third aim of this Article is to provide information that can be useful 
in the inevitable and necessary dialog on how best to apply and 
potentially update the legal and policy frameworks that will be used for 
assessing and addressing algorithmic bias. While much of the growth in 
attention to algorithmic fairness and algorithmic bias is recent, the more 
general challenge of bias has been the subject of decades of research and 
case law. This has created an important legal foundation reflected in 
statutes and case law relating to disparate treatment and disparate 
impact. As important as these frameworks are, in future years it will be 
important to improve and extend them to address the risks and 
opportunities created by algorithms. There is thus a need for a broad, 
technically-informed and legally-informed view of the algorithmic 
fairness landscape that is useful and accessible to scholars and 
practitioners in law, policy, and beyond.  
 

 Measuring Fairness: Historical Context 
 
While recent years have seen rapid growth in the number of publications 
in both the legal and technical academic press addressing algorithmic 
fairness, interest in the broader issue of fairness measures dates back 
decades. As Hutchinson and Mitchell observe in a 2019 article titled 50 
Years of Test (Un)fairness: Lessons for Machine Learning:  
 

[t]he period of time from 1966 to 1976 in particular gave 
rise to fairness research with striking parallels to ML 
[machine learning] fairness research from 2011 until 
today, including formal notions of fairness based on 
population subgroups, the realization that some fairness 
criteria are incompatible with one another, and pushback 
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on quantitative definitions of fairness due to their 
limitations.8  

 
During the second half of the twentieth century, researchers devoted 
significant attention to identifying and addressing bias in testing in areas 
such as education and employment.9  
 
Then, as now, researchers recognized the challenges inherent in 
defining bias and in determining how broader ethical, legal, and social 
considerations should inform efforts to address it. In a paper published 
in 1971 in the Journal of Educational Measurement, Thorndike 
described an “increase in concern about ‘culture-fairness’ of tests and 
testing procedures,” observing that “the problems that are involved are 
partly problems of empirical fact, but partly problems of definition.”10 

In a 1976 article in Psychological Bulletin, Hunter and Schmidt 
“describe[d] three distinct ethical positions” as well as “five statistical 
definitions of test fairness,” and “show[ed] how each is based on one of 
these ethical positions.”11 They also considered the “technical, social, 
and legal advantages and disadvantages of the various ethical positions 
and statistical definitions,”12 concluding that “any purely statistical 
approach to the problem of test bias is doomed to rather immediate 
failure.”13 Scheuneman wrote in 1979 that “[i]n the past few years, the 

 
 
 
 
8 Ben Hutchinson & Margaret Mitchell, 50 Years of Test (Un)fairness: Lessons for Machine 
Learning, in PROCEEDINGS OF THE CONFERENCE ON FAIRNESS ACCOUNTABILITY & 
TRANSPARENCY 49, 49 (2019), available at 
https://dl.acm.org/doi/pdf/10.1145/3287560.3287600?casa_token=MzAzCR3bbssAAAAA:U
Frz8jSFbdBQ3agjnRDDn8dF4aYUOhH-KTVSXwD-
BzBZK6UPWYJk1Td5AFmm2QhAS4VMikcx9pU.  
9 See, e.g., Hillel J. Einhorn & Alan R. Bass, Methodological Considerations Relevant to 
Discrimination in Employment Testing, 75 PSYCHOL. BULL. 261 (1971); RONALD L. 
FLAUGHER, BIAS IN TESTING: A REVIEW AND DISCUSSION, TM REPORT NO. 36 (1974); Robert 
M. Guion, Employment Tests and Discriminatory Hiring, 5 INDUS. REL. 20 (1966).  
10 Robert L. Thorndike, Concepts of Culture-Fairness, 8 J. EDUC. MEASUREMENT 63, 63 
(1971). 
11 John E. Hunter & Frank L. Schmidt, Critical Analysis of the Statistical and Ethical 
Implications of Various Definitions of Test Bias, 83 PSYCH. BULL. 1053, 1053 (1976).  
12 Id. 
13 Id. at 1069. 



2021] FOGGO ET AL. 129 
 

 

issue of test bias with its far-reaching political and social implications 
has been the subject of much controversy.”14  
 
In the context of employment, Congress took action to address bias in 
Title VII of the Civil Rights Act of 1964, which prohibited employers, 
employment agencies, and labor organizations from discrimination 
based on “race, color, religion, sex, or national origin.”15 With respect 
to testing, the Act also provided that  
 

nor shall it be an unlawful employment practice for an 
employer to give and act upon the results of any 
professionally developed ability test provided that such 
test, its administration or action upon the results is not 
designed, intended, or used to discriminate because of 
race, color, religion, sex, or national origin.16  

 
The Supreme Court considered employment testing in Griggs v. Duke 
Power Company in 1971, concluding in relation to the use of racially 
exclusionary tests that “[n]othing in [Title VII of] the [Civil Rights] Act 
[of 1964] precludes the use of testing or measuring procedures; 
obviously they are useful. What Congress has forbidden is giving these 
devices and mechanisms controlling force unless they are demonstrably 
a reasonable measure of job performance.”17  
 
Professional organizations also undertook efforts to develop and 
promulgate testing standards, including the Standards for Educational 
and Psychological Testing developed jointly by the American 
Educational Research Association, the American Psychological 

 
 
 
 
14 Janice Scheuneman, A Method of Assessing Bias in Test Items, 16 J. EDUC. MEASUREMENT 
143, 143 (1979). 
15 Civil Rights Act of 1964, Pub. L. No. 88-352, § 703, 78 Stat. 241, 255 (codified as amended 
at 42 U.S.C. § 2000e–2). Of course, the Civil Rights Act of 1964 also addressed 
discrimination in domains beyond employment, including public accommodations, voting 
rights, and public education. 
16 Civil Rights Act of 1964, Pub. L. No. 88-352, § 703(h), 78 Stat. 241, 257 (codified as 
amended at 42 U.S.C. § 2000e–2(h)). 
17 Griggs v. Duke Power Co., 401 U.S. 424, 436 (1971). 
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Association, and the National Council on Measurement in Education.18 
These three organizations have been collaboratively publishing editions 
of the Standards for Educational and Psychological Testing since 1966, 
most recently in 2014.19 The Title VII provision regarding testing 
remains an important topic of legal scholarship as well.20  
 

 Recent Attention to Algorithmic Fairness 
 
Against the backdrop of this historical context, we can now turn to a 
discussion of the growth in the last decade or so of algorithmic 
approaches to make or inform all manner of decisions. For instance, 
algorithmic risk assessments are used in the criminal justice system in 
decisions regarding bail, sentencing, and parole.21 Algorithms are also 
used to evaluate applications for jobs and loans, predict future 
healthcare expenses, identify potentially problematic content on social 
media sites, produce search results in search engines, perform facial 
recognition, and facilitate online commerce.22 In all of these 
applications—and many more—there is recognition of the potential for 
algorithmic bias and a desire to avoid or at least mitigate it. This has led 
to a growing set of recent publications on algorithmic fairness and, with 

 
 
 
 
18 See generally AM. EDUC. RSCH. ASS’N, APA & NAT’L COUNCIL ON MEASUREMENT IN EDUC., 
STANDARDS FOR EDUCATIONAL AND PSYCHOLOGICAL TESTING (2014). The webpage for the 
Standards for Educational and Psychological Testing notes that “[t]he Testing Standards are a 
product of the American Educational Research Association, the American Psychological 
Association and the National Council on Measurement in Education” and that editions of these 
standards have been “[p]ublished collaboratively by the three organizations since 1966.” See 
The Standard for Educational and Psychological Testing, APA, 
https://www.apa.org/science/programs/testing/standards [https://perma.cc/2DYF-BFRS]. 
19 Id. 
20 See, e.g., Kimberly West-Faulcon, Fairness Feuds: Competing Conceptions of Title VII 
Discriminatory Testing, 46 WAKE FOREST L. REV. 1035 (2011). 
21 See, e.g., Jason Tashea, Rick-Assessment Algorithms Challenged in Bail, Sentencing and 
Parole Decisions, ABA (Mar. 1, 2017, 1:30 AM), 
https://www.abajournal.com/magazine/article/algorithm_bail_sentencing_parole 
[https://perma.cc/72VN-GJGL]. 
22 See, e.g., Evanthia Faliagka et al., Application of Machine Learning Algorithms to an Online 
Recruitment System, in PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTERNET & 
WEB APPLICATIONS & SERVICES 215 (2012); Public Affairs, UC Berkley, Mortgage Algorithms 
Perpetuate Racial Bias in Lending, Study Finds, BERKLEY NEWS (Nov. 13, 2018), 
https://news.berkeley.edu/story_jump/mortgage-algorithms-perpetuate-racial-bias-in-lending-
study-finds/ [https://perma.cc/6G3T-36KF]. 
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it, a growing recognition of the complexities involved.23 For example, 
in Bias in, Bias out, Mayson focused primarily on racial inequities in 
prediction but also addressed algorithmic fairness more broadly.24 In 
Measuring Algorithmic Fairness, Hellman advocated using a metric 
termed “error ratio parity,” which occurs when the ratio of the false 
positive rate to the false negative rate is the same across groups.25 Huq 
suggested using technical solutions that have “the distinctive feature of 
aligning racial equity with social efficiency.”26 Among these is a 
suggestion to give less priority to false positive rates.27 
 
In an echo of Hunter and Schmidt’s 1976 warning against a “purely 
statistical approach,”28 modern scholars have voiced the importance of 
not attempting to address algorithmic fairness in isolation.29 Solow-
Niederman et al. have written that “looking at issues such as fairness or 
bias in a tool in isolation elides vital bigger-picture considerations about 
the institutions and political systems within which tools are developed 
and deployed.”30 Ajunwa has written that “the current framing of 
 
 
 
 
23 See, e.g., Danielle Keats Citron, Technological Due Process, 85 WASH. U. L. REV. 1249 
(2008); Brandon L. Garrett & John Monahan, Judging Risk, 108 CALIF. L. REV. 439 (2020); 
Leah Wisser, Pandora's Algorithmic Black Box: The Challenges of Using Algorithmic Risk 
Assessments in Sentencing, 56 AM. CRIM. L. R. 1811 (2019); Julia Dressel & Hany Farid, The 
Accuracy, Fairness, and Limits of Predicting Recidivism, SCI. ADVANCES, Jan. 17, 2018, at 1; 
Sam Corbett-Davies et al., Algorithmic Decision Making and the Cost of Fairness, in 
PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE 
DISCOVERY & DATA MINING 797 (2017), available at 
https://dl.acm.org/doi/pdf/10.1145/3097983.3098095?casa_token=PDW79AE8l8QAAAAA:q
7HHlV7s5WWhbRsXzf-
mzKPfUsBl6tp4jFuTnweQbzkHXRnBXgyjZ8aOEA9T66LObF3kM0CKPEM; Solon Barocas 
& Andrew D. Selbst, Big Data’s Disparate Impact, 104 CALIF. L. REV. 671 (2016); Ignacio N. 
Cofone, Algorithmic Discrimination Is an Information Problem, 70 HASTINGS L.J. 1389 
(2019); Mark MacCarthy, Standards of Fairness for Disparate Impact: Assessment of Big 
Data Algorithms, 48 CUMB. L. REV. 102 (2017); Pauline T. Kim, Auditing Algorithms for 
Discrimination, 166 U. PA. L. REV. ONLINE 189 (2017).  
24 See Mayson, supra note 5, at 2222-23. 
25 Deborah Hellman, Measuring Algorithmic Fairness, 106 VA. L. REV. 811, 835 (2020).   
26 Aziz Huq, Racial Equity in Algorithmic Criminal Justice, 68 DUKE L.J. 1043, 1134 (2019). 
27 Id. at 1126. 
28 Hunter & Schmidt, supra note 11, at 1053. 
29 Lee Rainie & Janna Anderson, Code-Dependent: Pros and Cons of the Algorithm Age, PEW 
RSCH. CTR. (Feb. 8, 2017), http://www.pewinternet.org/2017/02/08/code-dependent-pros-and-
cons-of-the-algorithm-age [https://perma.cc/2HRU-5ETY]. 
30 Alicia Solow-Niederman et al., The Institutional Life of Algorithmic Risk Assessment, 34 
BERKELEY TECH. L.J. 705, 708 (2019). 
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algorithmic bias as a technical problem rather than as a legal problem is 
misguided.”31  
 
An example of the complexity of the questions that can arise when 
attempting to measure algorithmic bias is illustrated by the debate that 
followed ProPublica’s May 2016 publication regarding Northpointe’s 
COMPAS (Correctional Offender Management Profiling for 
Alternative Sanctions) criminal risk assessment software.32 The article, 
titled Machine Bias: There’s Software Used Across the Country to 
Predict Future Criminals. And It’s Biased Against Blacks, asserted that 
“Prediction Fails Differently for Black Defendants,” stating that: 
 

Northpointe’s assessment tool correctly predicts 
recidivism 61 percent of the time. But blacks are almost 
twice as likely as whites to be labeled a higher risk but 
not actually re-offend. It makes the opposite mistake 
among whites: They are much more likely than blacks to 
be labeled lower risk but go on to commit other crimes.33 

 
This led to significant coverage in the broader press.34  
 
 
 

 
 
 
 
31 Ifeoma Ajunwa, The Paradox of Automation as Anti-Bias Intervention, 41 CARDOZO L. REV. 
1617, 1707 (2020).   
32 Julia Angwin et al., Machine Bias: There’s Software Used Across the Country to Predict 
Future Criminals. And It’s Biased Against Blacks, PROPUBLICA (May 23, 2016), 
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing 
[https://perma.cc/9G6L-MYML].  
33 Id. 
34 See, e.g., The Hidden Discrimination in Criminal Risk-Assessment Scores, NPR (May 24, 
2016, 4:32 PM), https://www.npr.org/2016/05/24/479349654/the-hidden-discrimination-in-
criminal-risk-assessment-scores [https://perma.cc/TUS8-VUSK]; John Naughton, Even 
Algorithms Are Biased Against Black Men, GUARDIAN (June 26, 2016, 4:00 AM), 
https://www.theguardian.com/commentisfree/2016/jun/26/algorithms-racial-bias-offenders-
florida [https://perma.cc/KE4R-A3AA]; Rachael Revesz, Criminal Justice Software Algorithm 
Used Across the U.S. Is Biased Against Black Inmates, Study Finds, INDEPENDENT (June 27, 
2016, 5:45 PM), https://www.independent.co.uk/news/world/americas/northpointe-algorithm-
propublica-biased-black-white-defendants-reoffend-a7106276.html [https://perma.cc/A44R-
N4E6].  
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It also led to a response from Northpointe, which in July 2016 published 
a paper arguing that: 
 

ProPublica focused on classification statistics that did 
not take into account the different base rates of 
recidivism for blacks and whites. Their use of these 
statistics resulted in false assertions in their article that 
were repeated subsequently in interviews and in articles 
in the national media.35  
 

The Northpointe authors also asserted that “[t]he results demonstrate 
predictive parity for blacks and whites.”36 In an article published later 
in 2016, Flores et al. wrote that “COMPAS does not predict outcome 
differently across groups of Black and White defendants—a given 
COMPAS score translates into roughly the same likelihood of 
recidivism, regardless of race.”37 Flores et al. also noted “the existence 
of standards for educational and psychological testing put forth by the 
American Educational Research Association, the American 
Psychological Association, and the National Council on Measurement 
in Education (2014)”38 and asserted that ProPublica “failed to test for 
bias within these existing standards.”39  
 
In a subsequent paper considering both ProPublica’s assertions as well 
as those of its critics, Chouldechova showed “that the differences in 
false positive and false negative rates cited as evidence of racial bias by 
[ProPublica] are a direct consequence of applying an RPI [recidivism 
prediction instrument] that that [sic] satisfies predictive parity to a 
population in which recidivism prevalence differs across groups.”40 
Chouldechova also noted that “fairness itself—along with the notion of 
disparate impact—is a social and ethical concept, not a statistical one. 
 
 
 
 
35 WILLIAM DIETERICH ET AL., COMPAS RISK SCALES: DEMONSTRATING ACCURACY EQUITY 
AND PREDICTIVE PARITY 1 (2016).  
36 Id. at 2 (emphasis in original).  
37 Anthony W. Flores et al., False Positives, False Negatives, and False Analyses: A Rejoinder 
to “Machine Bias: There’s Software Used Across the Country to Predict Future Criminals. 
And It’s Biased Against Blacks,” FED. PROBATION, Sept. 2016, at 38, 44. 
38 Id. 
39 Id. 
40 Chouldechova, supra note 4, at 2.  
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A risk prediction instrument that is fair with respect to particular fairness 
criteria may nevertheless result in disparate impact depending on how 
and where it is used.”41 Other authors have also noted the impact of 
choosing different fairness measures. In an article containing a detailed 
analysis of the assessments of COMPAS provided by ProPublica and its 
critics, Hamilton noted that “when base rates between groups differ, the 
algorithm cannot achieve equal false positive rates and equal positive 
predictive values at the same time because only the latter statistic is 
heavily influenced by base rate differentials.”42 
 
As the above examples illustrate, algorithmic fairness is a complicated 
and potentially controversial topic. The existence of different ways to 
measure fairness and different conceptions of what it means to be “fair” 
inevitably means that there is no perfect way to assess algorithmic bias. 
However, the dialog about algorithmic bias will be more effective—and 
more likely to lead to positive outcomes—if it is informed by greater 
awareness regarding the tools available for measuring bias and the 
relationships of those tools to each other and to existing 
antidiscrimination law. 
 
The remainder of this Article is organized as follows. Part II provides 
background on algorithmic predictions that will facilitate the subsequent 
discussion of fairness metrics. It then presents a set of algorithmic 
fairness measures, providing definitions, examples, and discussions of 
the extent to which they are mutually compatible. Part III provides a 
review of discrimination law with particular attention to the ways in 
which courts have addressed allegations of bias in relation to civil rights 
statutes. Part IV examines approaches to promoting algorithmic 
fairness, including the potential tensions that can arise in light of 
discrimination law frameworks. It also argues that algorithm developers 
should provide transparency regarding which fairness measure(s) they 
are using and offers guidance on factors that can influence metric 
selection. Conclusions are presented in Part V.  
 
 
 
 
 
41 Id.  
42 Melissa Hamilton, Debating Algorithmic Fairness, 52 UC DAVIS L. REV. ONLINE 261, 269 
(2019). 
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Before proceeding to the remainder of the Article, a few caveats are in 
order. First, while we discuss some of the most commonly cited fairness 
metrics here, we do not claim that we cover all possible fairness metrics. 
Indeed, we do not address “fairness through awareness,”43 the 
“threshold test,”44 “treatment equality,”45 or metrics based on causal 
reasoning.46 Second, because we focus primarily on binary decisions, 
we do not address the full set of issues that arise when arriving at those 
binary decisions; for example, those based on applying a thresholding 
function to a score.47 Third, we underscore that fairness is not and 
should not be a purely mathematical endeavor, and that as important and 
useful as mathematical measures of fairness might be, they are applied 
in a broader context that admits different and sometimes incompatible 
views on how to define fairness. And, as we discuss, there are multiple 
incompatible metrics for assessing fairness. Thus, the overarching goal 
of this Article is not to identify any single optimal solution to 
algorithmic fairness, for such a solution does not exist. Rather, it is to 
promote a fuller understanding of some of the tools available to measure 
fairness, with the recognition that application of those tools will be 
highly context dependent. 
 
 
 
 
 
 
 
 
43 See Cynthia Dwork et al., Fairness Through Awareness, in PROCEEDINGS OF THE 3RD 
INNOVATIONS IN THEORETICAL COMPUTER SCIENCE CONFERENCE 214, 215 (2012), available at 
https://dl.acm.org/doi/pdf/10.1145/2090236.2090255?casa_token=IKU5yfVTeb8AAAAA:b3
oWWJkmblTwNGKMz3GKHRh254YEqzBdVpMfolp13tzW6pDT4Xpeafc7RyaEuXLQjYPE
dZThcr8 (“We capture fairness by the principle that any two individuals who are similar with 
respect to a particular task should be classified similarly. In order to accomplish this 
individual-based fairness, we assume a distance metric that defines the similarity between the 
individuals”).  
44 Camelia Simoiu et al., The Problem of Infra-Marginality in Outcome Tests for 
Discrimination, 11 ANNALS APPLIED STAT. 1193, 1193 (2017).  
45 Treatment equality considers errors, requiring that the ratio of false negatives to false 
positives be equal across groups. See Richard Berk et al., Fairness in Criminal Justice Risk 
Assessments: The State of the Art, SOC. METHODS & RSCH., July 2018, at 1, 14. 
46 See, e.g., Verma & Rubin, supra note 4, at 6. 
47 See, e.g., Moritz Hardt et al., Equality of Opportunity in Supervised Learning, in 
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING 
SYSTEMS 3323 (Daniel D. Lee & Ulrike von Luxburg eds. 2016) (discussing receiver 
operating characteristics (“ROC”) and their relation to thresholding). 
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II. Measuring Fairness 

 
We consider fairness in the context of algorithms that make 
predictions.48 For simplicity, in much of the discussion that follows we 
will assume that these predictions are binary,49 a framing that applies to 
a long list of applications. For example, a financial institution may wish 
to predict whether or not a loan applicant would repay a loan. A court 
may wish to predict whether or not a parolee will get rearrested within 
a certain time frame. A healthcare provider may wish to predict whether 
a patient will develop a particular medical condition within the next five 
years. A company doing a job search may wish to predict whether 
applicants would be able to perform effectively if hired. A credit card 
company needs to predict whether a requested transaction is legitimate 
or fraudulent. In scenarios like these and many more, algorithms can be 
used to generate a binary prediction.50  
 
For each of these scenarios, there is also the separate question of 
outcomes (as opposed to predictions), which again in the interest of 
simplicity we will also treat as binary. If a person is given a loan, he or 
she will either repay it or default. A parolee will either get rearrested or 
not. A patient will either develop a particular medical condition or not. 
 
 
 
 
48 While in this Article we focus the discussion on algorithmic fairness in the context of 
predictions, we note that algorithmic fairness issues also arise in relation to statistical 
inferences. 
49 We focus herein on binary predictions, though we note that there are also many algorithms 
that produce non-binary outputs. For instance, an algorithm that predicts how likely a 
consumer is to purchase a product might produce a score in the range from 1 to 10, with 1 
representing least likely and 10 representing most likely. Or it might provide a non-numerical 
output expressed by choosing one of multiple categories such as “very likely,” “likely,” 
“uncertain,” “unlikely,” and “very unlikely.” Optionally, outputs such as these can be 
converted to binary form (e.g., by applying a threshold to a score, such that all scores above 
the threshold are grouped into one category and all scores below it are grouped into a second 
category), though whether doing so will be beneficial will depend on the context. 
50 For simplicity, in this portion of the discussion we are assuming that it is the algorithm itself 
that makes a binary prediction and associated decision. In some applications (e.g., when an 
algorithm used by a credit card company is deciding whether to flag an attempted transaction 
as fraudulent), this is what occurs. In other environments—such as criminal justice—an 
algorithmic output is not necessarily binary, and it is only one of multiple factors that are 
considered by a human who holds the actual power to make a decision on questions such as 
whether a person should be granted bail, granted parole, etc. 
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A job applicant will either be capable of performing the job or not. A 
credit card purchase will either be legitimate or fraudulent. 
 
It is important to emphasize that making algorithmic predictions, 
observing outcomes, and evaluating the fairness of those predictions in 
light of the outcomes are different (though often related) tasks. 
Sometimes the same entity will do all three. Algorithm developers are 
increasingly recognizing the need to include fairness considerations as 
part of the design process.51 As the developers are engaged in the work 
of formulating an algorithm to make a prediction (e.g., regarding 
whether a loan applicant will repay a loan), before placing the algorithm 
into commercial service they typically test it on historical data to 
evaluate the extent to which its decisions might inadvertently reflect 
bias.52 This provides an opportunity to revise and improve the algorithm 
to address these issues before it is used for real-world applications. 
 
There are also many scenarios in which people or groups other than the 
developers of a predictive algorithm will assess its fairness. In fact, as 
algorithm-based decisions become more widely deployed, after-the-fact 
fairness evaluation by groups independent of the design team will likely 
become the norm.53 People involved in evaluating an algorithm 
generally will seek to get as much information about the predictions and 
outcomes as possible and then to use those data as input to evaluate 
 
 
 
 
51 See Jairo Mejía & Roberto Maestre, Fairness by Design in Machine Learning Is Going 
Mainstream, BBVA DATA (Aug. 10, 2018), https://www.bbvadata.com/fairness-by-design-in-
machine-learning-is-going-mainstream/ [https://perma.cc/A8Z6-KP7Z]; see also Sally Ward-
Foxton, Reducing Bias in AI Models for Credit and Loan Decisions, EE TIMES (Apr. 30, 
2019), https://www.eetimes.com/reducing-bias-in-ai-models-for-credit-and-loan-decisions/# 
[https://perma.cc/D5T6-385B]. 
52 See Kathryn Hume & Alex LaPlante, Managing Bias and Risk at Every Step of the AI-
Building Process, HARV. BUS. REV. (Oct. 30, 2019), https://hbr.org/2019/10/managing-bias-
and-risk-at-every-step-of-the-ai-building-process [https://perma.cc/X3P3-HYAQ] (“Train and 
test the model (or several potential model variants). Gauge the impact of fairness and privacy 
enhancements on accuracy.”). 
53 In general, after-the-fact evaluations provide an important feedback mechanism to identify 
and address potential algorithmic bias. It can also serve as a way to help identify problems 
posed by “concept drift,” which in the context of machine learning refers to changes over time 
in the underlying statistics of data of interest, which could cause a predictive model developed 
using the outdated statistics to be less accurate. For example, policy changes with respect to 
policing could have a significant impact on the accuracy of an algorithm used to predict crime, 
if that algorithm uses data collected before that policy change was implemented.  
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fairness according to one or more measures. Thus, predictions and 
outcomes are a vital input to algorithmic fairness measures. With that in 
mind, we will first present background on predictions and outcomes, as 
these concepts and the related terminology will form the foundation for 
the subsequent discussion of fairness metrics. 
 

 Background: Predictions and Outcomes 
 
Before presenting measures of algorithmic fairness, it is important to lay 
the groundwork by noting some metrics that are commonly used for 
measuring the relationship between binary predictions and binary 
outcomes, and that are commonly used as inputs to algorithmic fairness 
calculations. To facilitate this explanation, we will initially consider a 
scenario involving predictions regarding whether or not students will 
pass a particular test. 
 
Every student can be associated with both a prediction made before the 
test is administered and an outcome observed after the test is given. The 
presence of both a binary prediction and a binary outcome leads to four 
possibilities. A true positive refers to cases in which the algorithm 
correctly predicts that a student will pass the test. A true negative refers 
to cases in which the algorithm correctly predicts that a student will fail 
the test. A false positive (also known as a Type I error in statistics) refers 
to cases in which the algorithm predicts that a student will pass the test, 
while in fact the student fails it. A false negative (also known as a Type 
II error in statistics) refers to cases in which the algorithm predicts that 
a student will not pass the test, while in fact the student passes it. 
 
In the context of this scenario, true positives, true negatives, false 
positives, and false negatives are evaluated at the level of individual. 
Across a group, it is also possible to compute probabilities associated 
with each of these measures. The true positive rate is the probability 
that students who pass the test are correctly predicted by the algorithm 
to do so. The false negative rate is the probability that students who pass 
the test are incorrectly predicted not to do so.54 The true negative rate 
is the probability that students who fail the test are correctly predicted 
 
 
 
 
54 The sum of the true positive rate and false negative rate will always be 1. 
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by the algorithm to fail. The false positive rate is the probability that 
students who fail the test are incorrectly predicted to pass it.55  
 
Another metric is the positive predictive value of the prediction 
algorithm, which is the probability that students who are predicted to 
pass the test do in fact end up passing it. Analogously, the negative 
predictive value of the algorithm is the probability that students who are 
predicted to fail the test do in fact end up failing it. 
 
These measures are best illustrated with the aid of a specific example. 
We consider two groups of 100 students, denoted as the orange group 
and blue group, respectively. Prior to the test date, the algorithm 
produces a binary prediction regarding whether each student in each 
group will pass the test. Then the test is administered, and it turns out 
that 70 students in the orange group and 52 students in the blue group 
pass the test. This means that the base rates for the orange group and 
blue group are 0.7 and 0.52, respectively.56 As will be discussed in more 
detail below, the presence of different base rates across groups has 
important consequences in relation to measures of algorithmic fairness. 
The two tables below provide an example of how the various metrics 
described above are computed.57 
 
 
 
 
 
 
 
 
 
 
 
55 The sum of the false positive rate and true negative rate will always be 1. 
56 This example, and the other examples herein, are provided to help illustrate the meaning of 
various metrics and prediction approaches. In the interest of simplicity and clarity, we are not 
addressing statistical significance, which would provide guidance on the accuracy to which 
numerical results computed based on the relatively small sample sizes discussed in the 
examples are more broadly representative. For simplicity in the discussion herein, we assume 
that the observed probabilities are statistically meaningful, though in practice larger sample 
sizes would be required for that assumption to hold true. 
57 Each of these tables is constructed by building off of four key numbers that in the aggregate 
are often presented as a confusion matrix, which is a 2x2 matrix in which the rows represent 
the predictions and the columns represent the outcomes. In Table 1, there are 60 true positives, 
20 false positives, 10 false negatives, and 10 true negatives. All of the other numbers shown in 
and immediately below Table 1 can be derived from those four numbers. 
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 Total Pass Fail  
All  100 70 30 Base rate = 0.7 
Predicted 
to pass 

80 60 20 Positive predictive value = 60/80 = 0.75 

Predicted 
to fail 

20 10 10 Negative predictive value = 10/20 = 0.5 

Table 1: Orange Group (100 members total) 
 
Orange group true positive rate = 60/70 = 0.86 
Orange group true negative rate = 10/30 = 0.33 
Orange group false positive rate = 20/30 = 0.66 
Orange group false negative rate = 10/70 = 0.14 
 

 Total Pass Fail  
All  100 52 48 Base rate = 0.52 
Predicted 
to pass 

56 42 14 Positive predictive value = 42/56 = 0.75 

Predicted 
to fail 

44 10 34 Negative predictive value = 34/44 = 0.77 

Table 2: Blue Group (100 members total) 
 
Blue group true positive rate = 42/52 = 0.81 
Blue group true negative rate = 34/48 = 0.71 
Blue group false positive rate = 14/48 = 0.29 
Blue group false negative rate = 10/52 = 0.19 
 

 Fairness Measures: Framing the Issue 
 
Given two groups, what does it mean for an algorithm to make fair 
decisions?58 One possible answer is that a fair algorithm will make a 
positive prediction at equal rates for both groups. If the two groups are 
loan applicants and the prediction concerns loan repayment, this means 
that, on average, an equal fraction of members from each group will be 
deemed likely to repay a loan (and will presumably thus be granted a 
loan). But suppose that, due to historical patterns of discrimination, the 
members of one group have lower average incomes, higher debts, and 
 
 
 
 
58 For other papers that discuss fairness measures, see generally Corbett-Davies & Goel, supra 
note 4; Mayson, supra note 5; Melissa Hamilton, The Sexist Algorithm, 38 BEHAV. SCI. & L. 
145 (2019). 
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more expenses and therefore less repayment capacity than members of 
a second group—meaning that the base rate for successful repayment 
would differ across the groups.  
 
Would it still be “fair” to grant loans to an equal percentage of loan 
applicants from each group? It could be argued that doing so is fair, as 
it helps to mitigate the historical impact of discriminatory social 
structures that have contributed to the variation in repayment capacity 
across groups. Or would fairness require granting loans at a higher rate 
to members of the group with the higher repayment capacity, with the 
result that the percentage of applicants receiving loans would differ 
across groups? It could be argued that making loan decisions purely 
based on individual repayment capacity is fair in the sense of treating 
similar individuals similarly, regardless of group membership, though it 
would fail to mitigate the negative effects of such loan decisions on the 
disadvantaged group.  
 
This example illustrates that concepts of fairness can be in tension. 
Tensions of this sort are sometimes described in terms of “individual 
fairness” and “group fairness.”59 However, such designations can tend 
to oversimplify, as there can be hidden complexities and assumptions in 
the choice of how to define “individual fairness” and “group fairness.”60 
An additional concern is that prediction algorithms will often not 
operate in ways that cleanly comport with (or fail to comport with) 
either label, however they may be defined. 
 
We believe it is preferable to evaluate and discuss fairness with the aid 
of clearly defined mathematical metrics. Of course, we are not 
suggesting that the discussion starts and ends with mathematics: As 
noted earlier, fairness is a concept that also involves policy, law, and 
social norms, all of which should be considered in addition to 
mathematics, though not in a manner that evicts mathematics entirely 
from the discussion. And a more holistic treatment of fairness that 
 
 
 
 
59 Reuben Binns, On the Apparent Conflict Between Individual and Group Fairness (Dec. 14, 
2019) (unpublished manuscript), https://arxiv.org/pdf/1912.06883.pdf. 
60 Mayson addressed this issue as well, writing that “[m]uch recent work in algorithmic 
fairness has categorized measures of equality as either ‘group fairness’ or ‘individual fairness’ 
metrics. This dichotomy, however, can be misleading.” Mayson, supra note 5, at 2239 n. 65. 
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involves all such considerations will be more productive if it is informed 
by a common vocabulary regarding the various possible mathematical 
fairness measures, even if there remains disagreement regarding their 
relative or absolute utility in a particular context.  
 
In general, there are mathematical incompatibilities among different 
fairness measures. Thus, at the heart of discussions surrounding fairness 
are questions regarding whether or not the various statistical measures 
of fairness can be simultaneously satisfied. And, if they cannot, which 
ought to be prioritized in any given context? 
  
In the subsequent discussion, we will assume that there are two groups 
of people characterized by different base rates with respect to an 
outcome of interest (e.g., passing a test, repaying a loan, being re-
arrested after being released from prison, etc.). We then consider how 
information on binary predictions and binary outcomes is used in the 
following fairness measures: equality of opportunity, equalized odds, 
predictive parity, and statistical parity. These are briefly explained in 
the following table, with more detailed explanations to follow. 
 

Metric name Definition 
Equality of opportunity True positive rate is equal for both groups 
Equalized odds True positive rate is equal for both groups and the false 

positive rate is equal for both groups 
Predictive parity Positive predictive parity is equal for both groups 
Statistical parity The probability of making a positive (or negative) 

decision is equal for both groups 
Table 3: Fairness Measures 
 
While this is far from complete list of all possible fairness measures, it 
is diverse enough to effectively illustrate some of the complexities that 
can arise when measuring fairness yet compact enough to keep the 
discussion straightforward and tractable. A key point that we will return 
to repeatedly is that when the base rates across groups differs, and we 
lack perfect prediction, it is typically possible to simultaneously satisfy 
more than one metric only under highly constrained conditions, if at all. 
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1. “Equality of Opportunity” 
 
When the true positive rate is equal across the two groups, a prediction 
algorithm is said to satisfy equality of opportunity.61 In the example in 
Tables 1 and 2, the true positive rates for the orange and blue groups 
differ: Of the 70 people in the orange group who did pass, 60 of them 
had been predicted to pass. This corresponds to a TPR (true positive 
rate) of 60/70, which is (approximately) equal to 0.86. For the blue 
group, of the 52 people who did pass, 42 of them had been predicted to 
pass, corresponding to a TPR of 42/52, which is (approximately) 0.81. 
Thus, because 0.86 and 0.81 differ, the predictor shown in those tables 
does not satisfy equality of opportunity.62 Note that “equality of 
opportunity” refers to a scenario in which, for the people who actually 
do belong to the positive class—such as students who are going to pass 
a test, or people who would pay back a loan if given one—the likelihood 
of being identified by the algorithm as being in that class is the same for 
both groups.63 It does not necessarily comport with “equal opportunity” 
as that term might be used in a broader normative or policy sense, and 
for this reason we have used quotation marks in the title of this 
subsection above.  
 
Assuming in this case that a positive outcome results in favorable or 
desirable treatment, equality of opportunity (in the technical sense) 
comports with one possible (of multiple) moral understanding of equal 
opportunity in the sense that individuals who merit that outcome have 
the same probability (or opportunity) of actually obtaining it, regardless 
of group membership (equal true positive rate). By the same token, since 
the false negative rate is always equal to one minus the true positive 
rate, they also have the same probability of being denied this outcome—
that is, they have the same probability of a missed opportunity (equal 
 
 
 
 
61 See, e.g., Hardt et al., supra note 47, at 8. 
62 As noted, since 0.86 is not equal to 0.81, the predictor does not satisfy equality of 
opportunity. However, it could be argued that since 0.86 and 0.81 are not that different, the 
predictor comes close to satisfying equality of opportunity. When using quantitative measures 
like this, there are interesting questions that could be asked about what level of difference is 
necessary to constitute a “disparate” impact.  
63 See Ziyuan Zhong, A Tutorial on Fairness in Machine Learning, TOWARDS DATA SCI. (Oct. 
21, 2018), https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-
3ff8ba1040cb [https://perma.cc/JW77-V6SS]. 



144 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1 
 

 

false negative rate). However, there are also a number of reasons why 
this definition of fairness may not align with normative understandings 
of equality of opportunity. To give one example, equality of opportunity 
in the technical sense does not account for external social barriers that 
may be the cause of differing base rates for the observed behavior 
among groups. For instance, in using a predictive algorithm to decide 
who will be granted loans, it may be possible to achieve mathematical 
equality of opportunity despite the fact that many women, as a result of 
discriminatory social structures, have not had an equal opportunity to 
build credit. In this case, a prediction deemed “fair” under this metric 
could nonetheless be deemed unfair when viewed more holistically.  
 
2. Equalized Odds 
 
As noted above, when a prediction algorithm produces equal true 
positive rates across the two groups, it is said to satisfy equality of 
opportunity.64 If, in addition, the predictive algorithm also has equal 
false positive rates across the two groups, it satisfies equalized odds.65 
Thus, equalized odds adds an additional condition over and above 
equality of opportunity. A predictive algorithm that satisfies equalized 
odds will of necessity satisfy equality of opportunity, though a predictor 
that satisfies equality of opportunity may—but does not necessarily—
satisfy equalized odds. 
 
More formally, in a predictor that satisfies equalized odds, two 
conditions must both hold. First, the TPR must be equal for the two 
groups, and second, the false positive rate (“FPR”) must be equal for the 
two groups.66 As discussed earlier in relation to the student example in 
Tables 1 and 2, the TPR for the orange and blue groups are 0.86 and 
0.81, respectively. As a result, the predictor in Tables 1 and 2 does not 
satisfy equalized odds, since the TPR is not equal for the two groups. 
Note that even if the TPR had been equal across both groups, that alone 
would not have been sufficient to satisfy equalized odds. Equalized odds 
requires that the TPR be equal across both groups, and that the FPR be 
 
 
 
 
64 Id. 
65 Id. 
66 Hardt et al., supra note 47, at 3. 
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equal across the two groups. In this case, there is no need to evaluate 
whether both groups have the same FPR, since the lack of equality in 
TPR means that equalized odds is not satisfied.67 While equalized odds 
requires equality among TPR as well as equality among FPR, it is also 
possible to construct a less stringent fairness metric that would require 
equality only among FPR (without placing any constraints on TPR). 
Such a metric is sometimes called “equal specificity.”68 
 
3. Predictive Parity 
 
Predictive parity is satisfied when the positive predictive values are 
equal for both groups.69 This means that, of the people who are predicted 
to be in the positive class, the percentage who are actually in the positive 
class is the same for both groups. Recall that the positive predictive 
value is the probability that a prediction of a positive outcome will turn 
out to be correct.70 Consider again the prediction of test outcomes shown 
in Tables 1 and 2. For the orange group, 80 of the students were 
predicted to pass, and 60 of those 80 actually did pass. Thus, the positive 
predictive value for the orange group is 0.75. Analogously, for the blue 
group, of the 56 students who were predicted to pass, 42 of them actually 
did pass. This means that the positive predictive value for the blue group 
is 42/56 = 0.75. Since the positive predictive value for both the orange 
and the blue group is 0.75, this predictor satisfies predictive parity. 
 
It is also possible to construct a related and more stringent definition of 
predictive parity called “overall predictive parity” in which not only 
must the positive predictive values be equal across both groups, but the 
negative predictive values must also be equal.71 Under that more 
restrictive definition, the example in Tables 1 and 2 would not satisfy 

 
 
 
 
67 The FPR for the orange and blue groups are 0.66 and 0.29 respectively, so this lack of 
equality is alone sufficient to show that the predictor does not satisfy equalized odds. 
68 Mayson, supra note 5, at 2243. 
69 See, e.g., Verma & Rubin, supra note 4, at 3. 
70 Id. at 2. 
71 Mayson, supra note 5, at 2243 (“If the algorithm’s rearrest forecasts are correct at an equal 
rate for each group, the algorithm achieves parity in positive predictive value. If the no-
rearrest forecasts are correct at an equal rate for each group, the algorithm achieves parity in 
negative predictive value. And if both are true, it achieves overall predictive parity.”). 
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predictive parity because the negative predictive values of the orange 
and blue groups, 0.5 and 0.77 respectively, are not equal. 
 
4. Statistical Parity 
 
In contrast with equalized odds, equality of opportunity, and predictive 
parity, statistical parity is obtained solely based on predictions without 
any consideration of outcomes.72 More specifically, statistical parity 
requires that the probability of making a positive (or equivalently, 
negative) decision is the same across both groups.73 In Tables 1 and 2, 
this means that statistical parity would occur if an algorithm predicted 
that the same fraction of students in each group would pass the test. This 
clearly does not occur. For the orange group, 80 of the 100 members 
(80%) are predicted to pass while, for the blue group, only 56 of the 100 
members (56%) are predicted to pass. 
 

 Relationships Among Fairness Measures 
 
As previously noted, it is not generally possible to satisfy all possible 
definitions of fairness. It is therefore interesting to ask which fairness 
metrics can be simultaneously satisfied, and conversely, which metrics 
are mutually exclusive. Moreover, when it is possible to satisfy more 
than one fairness metric, is doing so advisable as a matter of policy? To 
answer the latter question, it will be important to consider mathematical 
constraints required when simultaneously satisfying multiple metrics, as 
well as the policy consequences of such constraints. This section 
illustrates and explores some of those relationships, including 
incompatibilities that can arise when aiming to achieve more than one 
metric at the same time. A detailed set of mathematical derivations is 
available in a related technical paper, with some of the key results 
summarized in the present Article.74  
 

 
 
 
 
72 See id. at 2242. 
73 See, e.g., Verma & Rubin, supra note 4, at 3. 
74 See generally Pratyush Garg, John Villasenor & Virginia Foggo, Fairness Metrics: A 
Comparative Analysis, in PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON 
BIG DATA 3662 (2020). 
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Statistical parity and predictive parity: Putting aside the specific 
example in Tables 1 and 2, we now consider whether it is 
mathematically possible for a predictor to simultaneously satisfy both 
predictive parity and statistical parity when base rates differ.75 Under 
certain circumstances, the answer is yes. This can be illustrated by way 
of an example. Consider two groups of ten people, which we will call 
the square group and the circle group. If given a loan, eight members of 
the square group would repay it, while two members of that group would 
default. By contrast, if all the members of the circle group were given a 
loan, eight members would default and two members would repay the 
loan. This is illustrated in Figure 1 below with the letters “R” (for 
“repay”) and “D” (for “default”) indicating what each member of each 
group would do if given a loan: 
 

 
Figure 1: Two groups of ten members each. In the square group, 8 of the 10 
members would repay (“R”) a loan, and 2 members would default (“D”). In the 
circle group, the opposite is true. 
 
As the “D” and “R” indications in Figure 1 make clear, the base rates 
differ strongly across the groups: 80% of the square group would repay 
a loan, while only 20% of the circle group would do so. Now consider 
an algorithm that identifies the individuals contained within the rounded 
rectangles shown in Figure 2 as being creditworthy, i.e., the algorithm 
predicts that they would repay a loan.76 Based on this assessment, a loan 
is provided. 
 

 
 
 
 
75 This statement is true under the definition of predictive parity that we have used here: that 
the positive predictive value (“PPV”) is equal across the two groups. 
76 Figure 2 is constructed to illustrate a prediction that is mathematically possible. Whether an 
algorithm would in fact (e.g., in relation to the square group) recommend granting a loan to 
two people who would end up defaulting while recommending denying a loan to six other 
people who would not end up defaulting is of course a separate matter. 
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Figure 2: The groups from Figure 1, additionally annotated to show an example 
prediction of group members likely to repay a loan.  
 
Note that the predictor in Figure 2 satisfies statistical parity, since for 
each group 40% of the members were given a loan. It also satisfies 
predictive parity since, for both groups, of the four people predicted to 
repay the loan, two of them actually did, which corresponds to a positive 
predictive value (“PPV”) of 0.5 for both groups. It might be argued that 
this prediction is particularly “fair” because it satisfies not only one but 
two different fairness metrics.  
 
But in other ways, the algorithm is clearly unfair. After all, for the circle 
group in Figure 2, all of the people who would repay the loan were given 
one (i.e., the true positive rate is 100%), while for the square group only 
two of the eight people who would repay the loan were provided with 
one (i.e., the true positive rate is 25%). In achieving statistical and 
predictive parity, the predictive algorithm has very different true 
positive rates, denying a loan to 75% (6 of the 8) of the members of the 
square group who would have repaid it. One way to bring the true 
positive rates into alignment would be to alter the predictive algorithm 
so that it provides loans to all the members of the square group as 
illustrated in Figure 3: 
 

 
Figure 3: The groups from Figure 1, annotated to show an alternate prediction.  
 
In Figure 3 the true positive rate is 100% for both groups, and the 
prediction thus satisfies equality of opportunity. But an algorithm 
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equalizing the true positive rates in this manner would no longer satisfy 
statistical parity (because 100% of the square group would get loans, 
compared with only 40% of the circle group) or predictive parity 
(because the positive predictive value would be 0.8 for the square group 
and 0.5 for the circle group).  
 
The preceding example offers a clear illustration of the policy 
challenges involved in attempting to simultaneously achieve statistical 
parity and predictive parity, despite the fact that it is mathematically 
possible to do. These sorts of trade-offs among various fairness 
measures are not limited to the particular pairwise combination of 
statistical parity and predictive parity—they will arise (though in 
different mathematical form) when satisfying fairness under other pairs 
of measures as well. However, there are also important mathematical 
considerations involved specifically in attempting to satisfy these two 
particular metrics.  
 
Statistical parity and predictive parity can only simultaneously hold 
when the ratio of the true positive rates of the two groups is the inverse 
of the ratio of the base rates of the two groups.77 As already discussed, 
Figure 2 shows a prediction satisfying both statistical parity (because 
40% of each group is predicted to repay and thus is given a loan) and 
predictive parity (since within each group, 50% of those who are 
predicted to pay do in fact repay). For the square group the base rate is 
0.8 (because of all the members of the group, 80% would repay) and for 
the circle group the base rate is 0.2 (because of all the members of the 
group, 20% would repay). This corresponds to a base rate ratio of 4:1. 
The true positive rate for the square group is 0.25 and the true positive 
rate for the circle group 1.0, corresponding to a true positive rate ratio 
of 1:4. Thus, the base rate ratio is the inverse of the true positive rate 
ratio.  
 
This illustrates a general disadvantage of requiring both statistical parity 
and predictive parity when there are significant differences in base rates 
across the two groups: a large base rate ratio means that the true positive 

 
 
 
 
77 Garg, Villasenor & Foggo, supra note 74. 
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rate for one of the groups must be low.78 And a low true positive rate is 
often problematic from a policy perspective.79 In the example scenario 
presented above, the true positive rate of 25% for the group on the left 
meant that 75% of the members of that group who would have repaid a 
loan were not given one. 
 
Equalized odds and predictive parity: When the base rates across the 
two groups are unequal, and when (as is nearly always the case) the 
prediction is imperfect,80 it is not possible to simultaneously satisfy both 
equalized odds and predictive parity.81 Those wishing to choose among 
the two will have to consider context-dependent costs and benefits 
involved in satisfying one over the other.  
 
Equalized odds and statistical parity: As noted earlier, equalized odds 
occurs when both (1) the true positive rates are equal across the two 
groups, and (2) the false positive rates are equal across the two groups.82 
When the base rates are different across the two groups, equalized odds 
and statistical parity can be satisfied only when the true positive rate 

 
 
 
 
78 For example, if the base rate ratio is 5:1, this means that the TPR ratio will be 1:5, meaning 
that the lower TPR can be no higher than 20% (because the higher TPR is five times higher 
than the lower TPR, and cannot exceed 100%). 
79 In noting that a low true positive rate can be problematic, we are not suggesting that the true 
negative rate will be unimportant, or less important. For example, in predictions used to make 
parole decisions for non-violent offenders, if a “positive” outcome designates a future arrest 
for a non-violent crime, it may be more desirable to focus on ensuring a high true negative rate 
(i.e., correctly predicting who will not be arrested in the future) to avoid unnecessarily 
subjecting individuals to continued incarceration, regardless of the effect on the true positive 
rate. However, it is also important to keep in mind that a low true positive rate corresponds to 
a high false negative rate. In the case of predicting future arrests, a high false negative rate 
involves the risk of exposing people to criminal activity that could potentially have been 
prevented. A context-dependent analysis of the comparative value of true negatives and true 
positives will always be necessary. 
80 “Perfect prediction” describes a predictor that is always correct. In practice, this almost 
never occurs. In other words, when making binary predictions about binary outcomes, there 
are nearly always some false positives and/or some false negatives. In the case of a perfect 
predictor, equality of opportunity and equalized odds would be satisfied since the true positive 
rate for both groups would be 100% and the false positive rate for both groups would be zero. 
A perfect predictor would also satisfy predictive parity, since the positive predictive value 
would be 100% for both groups. However, a perfect predictor would not satisfy statistical 
parity if the two groups had different base rates. 
81 Garg, Villasenor & Foggo, supra note 74. 
82 Id. 
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equals the false positive rate.83 While this is mathematically feasible, it 
is not particularly attractive from a policy standpoint, since we generally 
want the true positive rate to be higher than the false positive rate. In 
other words, with respect to positive predictions, we want the predictor 
to be correct more often than it is incorrect. This can be illustrated using 
the example in Figure 4, which involves two groups of twelve people 
who are seeking a loan, where “R” (repay) and “D” (default) again 
indicate what each person would do if given a loan, and the rectangles 
indicate the people in each group who were predicted to repay:84 
 

 
Figure 4: An example satisfying both equalized odds and statistical parity. 
 
In Figure 4, the base rates are different across the groups: 1/3 of the 
members of the square group would repay a loan if given one, while 2/3 
of the members of the circle group would do so. As the rectangles 
indicate, in each group three members (i.e., a fraction 0.25 of the 
members in each group) are predicted to repay, so statistical parity is 
satisfied. In addition, the true positive rate is equal to 0.25 for both 
groups (obtained as 1/4 for the square group and 2/8 for the circle group) 
and the false positive rate of 0.25 is equal for both groups (obtained as 
2/8 for the square group and 1/4 for the circle group). This means that 
equalized odds is satisfied. But achieving both equalized odds and 
statistical parity requires equal true and false positive rates. Again, this 
is problematic since it is typically desirable to have a high true positive 
rate and low false positive rate, which is not possible when those rates 
are equal. In the example of Figure 4, the true positive rate for both 
groups is only 0.25, meaning that 75% of the people who would repay 
a loan would be incorrectly predicted to default. 
 
 
 
 
 
83 Id. 
84 As was the case with Figure 2, Figure 4 is constructed to illustrate a prediction that is 
mathematically possible. Whether an algorithm would in fact recommend granting a loan to 
the three members of each group indicated by the rectangles is of course a separate question. 
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While the foregoing discussion has not explored all possible pairwise 
combinations of fairness metrics, it illustrates the general nature of the 
challenges that can arise when attempting to simultaneously satisfy 
fairness according to multiple metrics. More generally, there are always 
three possible answers to the question of whether it is possible to 
simultaneously satisfy two fairness metrics in the presence of unequal 
base rates across two groups.85 For some metric pairs (e.g., the 
combination of equalized odds and predictive parity), it is 
mathematically impossible to satisfy both metrics in the case of an 
imperfect predictor and different base rates.86 For some metric pairs, it 
is mathematically possible to satisfy both metrics, but only at the cost 
of a generally unattractive policy outcome (e.g., it is possible to satisfy 
both equalized odds and statistical parity, but only if the true positive 
rate equals the false positive rate).87 Finally, there are some metric pairs 
that can both be satisfied at the cost of constraints that are not 
necessarily problematic from a policy standpoint.88 An example of this 
is the pair consisting of equality of opportunity and predictive parity, 
which can be simultaneously satisfied if—among other constraints—
there is a difference in false positive rates.89 
 
Thus, as a practical matter, when avoiding problematic constraints like 
requiring equal true and false positive rates, it will generally only be 
possible to satisfy fairness according to one metric (or, subject to highly 
specific constraints, two metrics), leaving the question of which 
metric(s) should be used.90 Relatedly, choosing to design an algorithm 
to satisfy a particular fairness metric will often mean choosing not to 
achieve fairness under other metrics. Given the impossibility of 
achieving across-the-board fairness, what should be done? The answer 
 
 
 
 
85 Id. 
86 Id. 
87 Id. 
88 Id.  
89 Id. A difference in FPR alone is not sufficient for satisfying equality of opportunity and 
predictive parity. But if the FPRs are identical, then those two metrics cannot be 
simultaneously met. 
90 An exception under which it is in fact possible to simultaneously satisfy two metrics despite 
the presence of different base rates occurs when one metric implies the other. For example, 
equalized odds (which requires that true positive rate be equal across groups and that the false 
positive rate be equal across groups) also implies equality of opportunity (which requires only 
that true positive rate be equal across groups).  
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depends not only on mathematics but also on policy and on the law 
regarding discrimination. To provide a more complete framing, we 
review some key aspects of discrimination law and then use that as a 
framing to explore interactions between fairness measures and 
discrimination law. 
 

III.  Legal Frameworks Relating to Discrimination 
 
Discrimination law is a complex and evolving field that has been shaped 
by the Constitution, statutes, case law, legal scholarship, politics, and 
trends in the broader public discourse. The past half century has seen 
the passage of multiple federal anti-discrimination statutes. For 
instance, Title VII of the Civil Rights Act of 1964 (“Title VII”) provided 
that it is unlawful for an employer “to fail or refuse to hire or to 
discharge any individual, or otherwise to discriminate against any 
individual with respect to his compensation, terms, conditions, or 
privileges of employment, because of such individual’s race, color, 
religion, sex, or national origin.”91 There are also federal anti-
discrimination statues addressing credit lending, housing decisions, 
administration of public funds, and more.92 It is also important to note 
recent scholarship in which some scholars have questioned the 
 
 
 
 
91 Civil Rights Act of 1964, Pub. L. No 88-352, §703(a)(1), 78 Stat. 241, 255 (codified as 
amended at 42 U.S.C. § 2000e–2(a)(1)). In June 2020, in Bostock v. Clayton Cty. the Supreme 
Court addressed the interpretation of the Title VII prohibition on employment discrimination 
based on “sex.” 140 S. Ct. 1731, 1741 (2020). The Court held that “[a]n employer who fires an 
individual merely for being gay or transgender defies the law.” Id. at 1754. While that decision 
applies to employment discrimination under Title VII, a reasonable inference is that 
prohibitions against discrimination based on “sex” in other anti-discrimination statutes will be 
similarly interpreted. 
92 Civil Rights Act of 1968, Pub. L. No. 90-284, Title VII, 82 Stat. 73, 81-89 (codified as 
amended at 42 U.S.C. §§ 3601-19) (“It shall be unlawful To refuse to sell or rent after the 
making of a bona fide offer, or to refuse to negotiate for the sale or rental of, or otherwise 
make unavailable or deny, a dwelling to any person because of race, color, religion, sex, 
familial status, or national origin.”); Equal Credit Opportunity Act Amendments of 1976, Pub. 
L. No. 94-239, 90 Stat. 251, 251 (codified as amended at 15 U.S.C. § 1691) (“It shall be 
unlawful for any creditor to discriminate against any applicant, with respect to any aspect of a 
credit transaction . . . on the basis of race, color, religion, national origin, sex or marital status, 
or age (provided the applicant has the capacity to contract)”); Civil Rights Act of 1964, Pub. 
L. No. 88-352, Title VI, 78 Stat. 252, 252-53 (1964) (codified as amended at 42 U.S.C. § 
2000d) (“No person in the United States shall, on the ground of race, color, or national origin, 
be excluded from participation in, be denied the benefits of, or be subjected to discrimination 
under any program or activity receiving Federal financial assistance.”). 
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sufficiency of applying traditional interpretations of antidiscrimination 
law to intersectional discrimination claims. For instance, Pappeo writes 
that  
 

Title VII’s failure to acknowledge and recognize 
intersectional discrimination claims disproportionately 
affects Black female plaintiffs by leaving them with no 
adequate remedy. I urge courts to adopt intersectionality 
theory to develop an analytical framework to interpret 
Title VII to adequately address Black women’s claims 
based on two or more protected categories.93 

 
This section focuses on exploring the common legal tests for 
discrimination, and how those tests inform—or potentially stand to be 
informed by—approaches to engaging with the various technical and 
mathematical notions of fairness.94 Current anti-discrimination law 
recognizes two general categories of unlawful discrimination that will 
likely be cited most often in relation to algorithm bias: disparate 
treatment and disparate impact.95 It is helpful to first consider the 
frameworks used for evaluating disparate treatment claims before 
moving on to a discussion of disparate impact. While the discussion in 
this Part addresses anti-discrimination statutes and their interpretation, 
it is important to note that the Equal Protection Clause of the Fourteenth 
Amendment has also played a key role in addressing discrimination.96 
 
 
 
 
93 Yvette N. A. Pappoe, The Shortcomings of Title VII for the Black Female Plaintiff, 22 U. 
PENN. J.L. & SOCIAL CHANGE 1 (2019). 
94 See Pauline T. Kim, Auditing Algorithms for Discrimination, 166 U. PA. L. REV. ONLINE 
189 (2017); see also Barocas & Selbst, supra note 23. 
95 There is also what might be considered a third category of anti-discrimination law relating 
to failure to provide reasonable accommodations. However, algorithm bias will more 
commonly implicate one or both of disparate impact or disparate treatment as opposed to 
implicating failure to provide reasonable accommodation. 
96 See, e.g., Brown v. Bd. of Educ., 347 U.S. 483, 495 (1954) (concluding that “in the field of 
public education the doctrine of ‘separate but equal’ has no place. Separate educational 
facilities are inherently unequal. Therefore, we hold that the plaintiffs and others similarly 
situated for whom the actions have been brought are, by reason of the segregation complained 
of, deprived of the equal protection of the laws guaranteed by the Fourteenth Amendment.”); 
Loving v. Virginia, 388 U.S. 1, 2 (1967) (considering “whether a statutory scheme adopted by 
the State of Virginia to prevent marriages between persons solely on the basis of racial 
classifications violates the Equal Protection and Due Process Clauses of the Fourteenth 
Amendment” and concluding “these statutes cannot stand consistently with the Fourteenth 
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The Supreme Court has interpreted the Equal Protection Clause to 
prohibit disparate treatment, but not disparate impact.97 
 

 Disparate Treatment 
 
Disparate treatment doctrine prohibits differential treatment of 
individuals based on, or because of, protected attributes such as race, 
sex, and religion, among others. As the Supreme Court explained in 
2003 in Hazen Paper Co. v. Biggins:  

 
In a disparate treatment case, liability depends on 
whether the protected trait (under the [Age 
Discrimination in Employment Act], age) actually 
motivated the employer's decision. The employer may 
have relied upon a formal, facially discriminatory policy 
requiring adverse treatment of employees with that trait. 
Or the employer may have been motivated by the 
protected trait on an ad hoc, informal basis. Whatever the 
employer's decisionmaking process, a disparate 
treatment claim cannot succeed unless the employee's 
protected trait actually played a role in that process and 
had a determinative influence on the outcome.98  

 
 
 
 

Amendment”); Obergefell v. Hodges, 576 U.S. 644, 675 (2015) (concluding “that the right to 
marry is a fundamental right inherent in the liberty of the person, and under the Due Process 
and Equal Protection Clauses of the Fourteenth Amendment couples of the same-sex may not 
be deprived of that right and that liberty”). 
97 See, e.g., Washington v. Davis, 426 U.S. 229, 242 (1976) (explaining that “we have not held 
that a law, neutral on its face and serving ends otherwise within the power of government to 
pursue, is invalid under the Equal Protection Clause simply because it may affect a greater 
proportion of one race than of another. Disproportionate impact is not irrelevant, but it is not 
the sole touchstone of an invidious racial discrimination forbidden by the Constitution”); Vil. 
of Arlington Hts. v. Metro. Hous. Dev., 429 U.S. 252, 264-65 (1977) (“Our decision last Term 
. . . made it clear that official action will not be held unconstitutional solely because it results 
in a racially disproportionate impact. ‘Disproportionate impact is not irrelevant, but it is not 
the sole touchstone of an invidious racial discrimination.’ Proof of racially discriminatory 
intent or purpose is required to show a violation of the Equal Protection Clause.” (quoting 
Washington v. Davis 426 U.S. 229, 242 (1976))). 
98 Hazen Paper Co. v. Biggins, 507 U.S. 604, 610 (1993) (internal citations omitted). Hazen 
Paper v. Biggins addressed a claim under the Age Discrimination in Employment Act 
(ADEA), a statute under which mixed-motive disparate impact claims are not available. See 
Gross v. FBL Financial Services, Inc., 557 U.S. 167 (2009). As discussed infra, in other areas 
of discrimination law in which mixed-motive claims are permitted, the question of whether 
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Put simply, the Supreme Court has tended to define unlawful disparate 
treatment as intentional discrimination based on protected attributes.99 
The Supreme Court’s 1973 ruling McDonnell Douglas Corp. v. 
Green100 articulated a burden-shifting framework for examining 
liability for disparate treatment in employment cases in which there is 
no direct evidence of intent.101 The three-step analysis the Court 
provided in McDonnell Douglas for addressing race-based employment 
discrimination—often referred to as the McDonnell Douglas framework 
or pretext analysis—has since been applied in various contexts beyond 
employment law, and to cases involving age- and gender-based 
discrimination in addition to race-based discrimination.102 The 
McDonnell Douglas analysis requires plaintiffs to first present a prima 
facie case of discrimination.103 Defendants are then provided the 
opportunity to present a legitimate, non-discriminatory reason for the 
allegedly discriminatory practice or policy. Plaintiffs in turn are asked 
to demonstrate that the offered reason was merely a pretext for 
discrimination.104 

 
 
 
 

consideration of a protected trait must be determinative for a claim to succeed is more 
complex. 
99 However, it is worth noting that the “disparate treatment” of individuals—i.e., differential 
treatment of persons based on protected characteristics—may be conceptually distinct from 
“discriminatory intent,” and conflating the two may serve to inhibit antidiscrimination 
objectives. Eyer, for example, writes that “it is readily apparent why the ‘intent’ proxy that the 
Supreme Court often uses for disparate treatment is inadequate.” Katie Eyer, The New Jim 
Crow Is the Old Jim Crow, 128 YALE L.J. 1005, 1010 (2018). 
100 411 U.S. 792 (1973). 
101 Id. Questions regarding what exactly constitutes the sort of “direct evidence” necessary to 
justify diverging from the traditional McDonnell Douglas analysis has historically been a 
matter of significant debate. See, e.g., Brian W. McKay, Mixed Motives Mix-Up: The Ninth 
Circuit Evades the Direct Evidence Requirement in Disparate Treatment Cases, 38 TULSA L. 
REV. 503, 504 (2003) (“Exactly what Justice O'Connor meant by direct evidence has generated 
considerable debate, and there have been conflicting interpretations of the requirement among 
lower courts.”) (citation omitted). 
102 Best Med. Intern., Inc. v. Wells Fargo Bank, N.A., 937 F. Supp. 2d 685, 694-95 (E.D.Va. 
2013) (“While the McDonnell Douglas opinion only addressed Title VII claims of race 
discrimination, courts apply the burden-shifting framework to other forms of discrimination 
such as that based on age or gender . . . [c]ourts also apply McDonnell Douglas to claims 
brought under other federal statutes directed at curbing discriminatory practices.”). 
103 McDonnell Douglas Corp., 411 U.S. at 802. 
104 A federal district court in 2013 explained the McDonnell Douglas steps as follows:  
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Under a pretext analysis of disparate treatment, a protected trait must be 
the determinative factor in the defendant’s decision. An example of such 
pretextual discrimination would be a case in which an employer has a 
policy that it will only hire applicants from certain zip codes that it 
knows are predominantly occupied by white residents. In this example, 
the employer implements this hiring policy because of its racially 
discriminatory effects. Although zip code is a facially neutral attribute, 
its use in hiring decisions in this example would constitute disparate 
treatment due to the employer’s discriminatory intent, and the resulting 
racially discriminatory effects.105 Notably, disparate treatment—
treating individuals differently on the basis of a protected attribute—
will not always be unlawful.106 For example, programs aimed at 
increasing female participation in STEM careers, while typically 
involving intentional recruitment of participants in part based on gender, 
are not generally deemed to be unlawful, because such programs serve 
a legitimate, non-discriminatory goal. (However, that might change in 
light of recent Department of Education investigations spurred by 
complaints that these programs violate Title IX.107)  
 
McDonnell Douglas provides a potentially useful way to analyze the 
legality of algorithms that explicitly consider protected attributes or their 
proxies (including when an algorithm developer might argue that such 
 
 
 
 

(1) [T]he plaintiff establishes a prima facie case of discrimination, which gives 
rise to a presumption of discrimination; (2) if a prima facie case is shown, the 
defendant bears the burden of rebutting this presumption of discrimination by 
offering legitimate, nondiscriminatory reasons for taking action; and (3) if a 
defendant does so, the burden shifts back to the plaintiff who must show, by a 
preponderance of the evidence, that the defendant's reasons are pretextual.  
 
Best Med. Intern., 937 F. Supp. 2d at 694. 
105 Of course, in this example, plaintiffs would be required to provide evidence of the 
defendant’s discriminatory intent. Without such evidence, a discrimination claim would be 
more successfully pursued under a disparate impact framework.  
106 See Anita M. Alessandra, When Doctrines Collide: Disparate Treatment, Disparate 
Impact, and Watson v. Fort Worth Bank & Trust, 137 U. PA. L. REV. 1755, 1758 (1989). 
107 See Teresa Watanabe, Women-Only STEM College Programs Under Attack for Male 
Discrimination, L.A. TIMES (Aug. 20, 2019), https://www.latimes.com/california/story/2019-
08-20/women-only-science-programs-discrimination-complaints 
[https://web.archive.org/web/20190823185534/https://www.latimes.com/california/story/2019
-08-20/women-only-science-programs-discrimination-complaints].  
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consideration is undertaken precisely to counteract bias embedded in 
the input data).108 However, it will often not be possible to identify the 
determinative factor in a given decision, as is required under a pretext 
analysis. Moreover, when explicit consideration of protected attributes 
is lacking, but proxies act as substitutes, it will be difficult to show 
discriminatory intent, adding a further difficulty for plaintiffs seeking to 
establish liability for disparate treatment. 
 
Identifying and assigning liability for discrimination becomes more 
complicated when a decision is made based on a combination of 
legitimate and illegitimate motives, i.e., when the defendant’s 
justification of its policy or practice is not purely pretextual, and a 
protected attribute alone is not the determinative factor. Such cases are 
likely to be assessed under the mixed-motive framework109 (sometimes 
called the motivating-factor method of proof)110 which requires only 
that the plaintiff prove that a protected attribute was a motivating or 
substantial factor in determining an action.111 If discriminatory intent is 
 
 
 
 
108 This approach to bias mitigation has been advocated by scholars including Mayson: 
“[I]ncluding race as an input variable would promote accuracy and racial equity at the same 
time.” Mayson, supra note 5, at 2265. Other scholars have suggested that if a sufficiently large 
number of other inputs are available, then the impact of considering information about a 
protected class could have less relevance. See, e.g. Barocas & Selbst, supra note 23, at 695 
(“The use of protected class as an input is usually irrelevant to the outcome in terms of 
discriminatory effect, at least given a large enough number of input features.”).  
109 Notably, mixed-motive liability is one example of the ways in which “disparate treatment” 
may differ in important ways from “discriminatory intent.” Mixed-motive analysis has 
historically been reserved for those cases in which discriminatory intent is not the sole driving 
factor in a decision, and yet there is clear, direct evidence of discrimination. In such cases, it is 
not obvious that the allegedly discriminatory decision/policy (i.e., termination of employment) 
amounts to discriminatory intent, though the direct evidence certainly suggests that disparate 
treatment of individuals based on protected attributes is involved.  
110 See, e.g., Tristin K. Green, Making Sense of the McDonnell Douglas Framework: 
Circumstantial Evidence and Proof of Disparate Treatment Under Title VII, 87 CALIF. L. REV. 
983, 984 (1999) (“Title VII in light of Supreme Court Doctrine and the Civil Rights Act of 
1991 . . . proposes that the two currently recognized inferential methods of proof for proving 
intentional discrimination, termed here the ‘motivating-factor’ method of proof and the 
‘falsity-of-proffered-reason’ method of proof, are available as alternate methods.”); Univ. of 
Tex. Sw. Med. Ctr. v. Nassar, 570 U.S. 338, 354 (2013) (“If Congress had desired to make the 
motivating-factor standard applicable to all Title VII claims . . . .” (emphasis added)). 
111 See, e.g., Price Waterhouse v. Hopkins, 490 U.S. 228, 250 (1989) (“In saying that gender 
played a motivating part in an employment decision, we mean that, if we asked the employer 
at the moment of the decision what its reasons were and if we received a truthful response, one 
of those reasons would be that the applicant or employee was a woman."); William R. Corbett, 
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one non-determinative factor among multiple factors involved in 
choosing a particular course of action, the question then becomes to 
what extent the defendant should be held liable.  
 
There has been a great deal of variation, both in the courts and in legal 
scholarship, in not only the understanding of the extent of liability for 
mixed-motive discrimination in various contexts, but also when (if at 
all) a mixed-motive analysis is available to defendants. To give one 
example, in Mhany Management v. Incorporated Village of Garden 
City, a federal court in the Eastern District of New York explained that: 
 

in this Circuit, although a defendant in an FHA case can 
escape liability entirely if it proves it would have 
rendered the same decision had it not considered 
impermissible reasons, a defendant in a Title VII case 
can only reduce monetary damages and avoid certain 
injunctive relief based on liability if it makes the same 
showing. To be sure, this more defendant-friendly 
standard under the FHA cuts against the broad remedial 
interpretation typically accorded to the FHA . . . and the 
general rule that Title VII and the FHA be construed in a 
similar manner.112  
 

This suggests (at least in the Second Circuit) an interpretation that, 
although defendants may be subject by law to varying degrees of 
liability for discrimination depending on the context, there is little 
normative or intuitive support for this context-dependent variation. Due 
to the growing complexity of algorithmic tools, the decisions and 
recommendations that they make will sometimes be made based on a 
combination of legitimate and (usually, but not always unintentionally) 
illegitimate factors. For this reason, understanding when and to what 
extent a mixed-motive analysis applies will be a consideration in 
addressing algorithmic discrimination in the future. 
 
 
 
 
 

Fixing Employment Discrimination Law, 62 SMU L. REV. 81, 85 (2009) (“First, the plaintiff 
must prove that the protected characteristic was a motivating or substantial factor . . . .”). 
112 Mhany Mgmt. v. Inc. Vill. of Garden City, 985 F. Supp. 2d 390, 422-23 (E.D.N.Y. 2013). 
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 Disparate Impact 
 
Disparate impact is implicated when discriminatory intent or motive is 
lacking (or present but impossible or impractical for plaintiffs to show), 
yet the practice in question has a material adverse impact on a protected 
group.113 In contrast with disparate treatment, disparate impact does not 
require showing discriminatory intent.114 Disparate impact case law first 
developed in the context of litigation regarding employment 
discrimination.115 In Griggs v. Duke Power Co. in 1971, the Supreme 
Court concluded that under the Civil Rights Act of 1964, “practices, 
procedures, or tests neutral on their face, and even neutral in terms of 
intent, cannot be maintained if they operate to ‘freeze’ the status quo of 
prior discriminatory employment practices.”116 The Griggs Court also 
wrote that the Civil Rights Act of 1964 “proscribes not only overt 
discrimination, but also practices that are fair in form, but 
discriminatory in operation.”117 In explaining disparate impact in 1988 
in Watson v. Ft. Worth Bank & Trust, the Court wrote that some 
“practices, adopted without a deliberately discriminatory motive, may 
in operation be functionally equivalent to intentional discrimination.”118  
 
To demonstrate disparate impact in violation of antidiscrimination law, 
it is not sufficient for a plaintiff to simply point to a statistical 
disparity.119 A plaintiff must also show a causal relationship tying a 
challenged policy to a resulting disparate impact.120 As the Watson 
Court wrote:  
 

[o]nce the employment practice at issue has been 
identified, causation must be proved; that is, the plaintiff 

 
 
 
 
113 Barocas & Selbst, supra note 23, at 701. 
114 Id. at 676.  
115 See Michael Selmi, The Evolution of Employment Discrimination Law: Changed Doctrine 
for Changed Social Conditions 1-2 (GWU L. Sch., Public Law Research Paper No. 2014-8, 
2014), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2430378. 
116 401 U.S. 424, 430 (1971) (emphasis in original).  
117 Id. at 431. 
118 487 U.S. 977, 987 (1988). 
119 Marcel C. Garaud, Legal Standards and Statistical Proof in Title VII Litigation: In Search 
of a Coherent Disparate Impact Model, 139 U. PA. L. REV. 455, 473 (1990). 
120 Id. 
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must offer statistical evidence of a kind and degree 
sufficient to show that the practice in question has caused 
the exclusion of applicants for jobs or promotions 
because of their membership in a protected group.121  

 
This emphasis on the importance of causation in establishing disparate 
impact liability in the context of employment was echoed by the Court 
a year later in Wards Cove v. Antonio.122 More recently, the Supreme 
Court in 2015 articulated similar causation requirements for disparate 
impact cases arising under the Fair Housing Act. The Court explained 
that “a disparate-impact claim that relies on a statistical disparity must 
fail if the plaintiff cannot point to a defendant’s policy or policies 
causing that disparity.”123 The Court underscored the importance of 
establishing a “robust causality” linking a defendant’s policies with 
disparate impact, explaining that a “robust causality requirement 
ensures that ‘[r]acial imbalance . . . does not, without more, establish a 
prima facie case of disparate impact’ and thus protects defendants from 
being held liable for racial disparities they did not create.”124  
 
The Civil Rights Act of 1991 specified the burden of proof for disparate 
impact cases in the context of employment, providing, for example, that 
“an unlawful employment practice based on disparate impact” can be 
established if 
 

a complaining party demonstrates that a respondent uses 
a particular employment practice that causes a disparate 
impact on the basis of race, color, religion, sex, or 
national origin and the respondent fails to demonstrate 

 
 
 
 
121 Watson, 487 U.S. at 994. 
122 490 U.S. 642, 656-58 (1989). 
123 Tex. Dept. of Hous. & Cmty. Aff. v. Inclusive Cmtys. Project, Inc., 576 U.S. 519, 542 
(2015); it is worth noting that the requirement that a plaintiff point to a particular policy 
responsible for the observed disparate impact does not always apply to discrimination cases 
under Title VII. Instead, “if the complaining party can demonstrate to the court that the 
elements of a respondent's decisionmaking process are not capable of separation for analysis, 
the decisionmaking process may be analyzed as one employment practice.” Civil Rights Act 
of 1991 §105(B)(i) (codified as amended at 42 U.S.C. 2000e-2). 
124 Inclusive Cmtys. Project, 576 U.S. at 542 (quoting Wards Cove Packing, 490 U.S. at 653). 
The Court also cited 42 U.S.C. §2000e–2(k), which addresses the “burden of proof in 
disparate impact cases” and was enacted as part of the Civil Rights Act of 1991 (see §105). 



162 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1 
 

 

that the challenged practice is job related for the position 
in question and consistent with business necessity.125  

 
The statute further provides that a “demonstration that an employment 
practice is required by business necessity may not be used as a defense 
against a claim of intentional discrimination under this subchapter.”126  
 
Title VI of the Civil Rights Act of 1964, which prohibits discrimination 
“on the ground of race, color, or national origin . . . under any program 
or activity receiving Federal financial assistance,” also bars practices 
with unjustified disparate impact.127 As guidance from the U.S. 
Department of Justice explains, under Title VI as a first step, “to 
establish an adverse disparate impact, the investigating agency must (1) 
identify the specific policy or practice at issue; (2) establish 
adversity/harm; (3) establish significant disparity; and (4) establish 
causation.”128 As a second step, “if the evidence establishes a prima 
facie case of adverse disparate impact . . . courts then determine whether 
the recipient has articulated a ‘substantial legitimate justification’ for 
the challenged policy or practice.”129 Moreover, “the discriminatory 
policy or practice must also bear a demonstrable relationship to that 
goal.”130 If the defendant succeeds in this showing, the court may still 
rule in favor of the plaintiff if the plaintiff can demonstrate (as a third 
step) that “there are alternative practices that may be comparably 
effective with less disparate impact.”131 
 
The question of whether disparate impact claims could be brought in 
relation to housing discrimination was not definitively settled until 
2015. In Texas Department of Housing and Community Affairs v. 
 
 
 
 
125 Civil Rights Act of 1991, Pub. L. No. 102-66, §105(a), 105 Stat. 1071, 1075 (1991) 
(codified as amended at 42 U.S.C. § 2000e–2(k)(1)(A)(i)). This is one of two ways to establish 
disparate impact under this statute; the other is articulated in 42 U.S.C. § 2000e–2(k)(1)(A)(ii). 
126 42 U.S.C. § 2000e–2(k)(2). 
127 Civil Rights Act of 1964, Pub. L. No. 88-352, § 601, 78 Stat. 241 (codified as amended at 
42 U.S.C. § 2000d). 
128 CIVIL RIGHTS DIVISION, U.S. DEPARTMENT OF JUSTICE, TITLE VI LEGAL MANUAL § VII 
(2019). 
129 Id.  
130 Id. § VII(C)(2). 
127 Id. 



2021] FOGGO ET AL. 163 
 

 

Inclusive Communities Project, the Court held that “[r]ecognition of 
disparate-impact claims is consistent with the [Fair Housing Act’s] 
central purpose”132 and also addressed the associated burden-shifting 
framework.133 
 
Federal courts have applied similar burden-shifting frameworks in 
disparate impact litigation in relation to other antidiscrimination statutes 
as well (e.g., Title VII of the Civil Rights Act of 1964134), though, 
interestingly, not with respect to the Age Discrimination in Employment 
Act.135 Thus, burden-shifting is used both in relation to disparate 
treatment (i.e., McDonnell Douglas and its progeny) as well as disparate 
impact. 
 
To make matters more complex, avoiding disparate treatment liability 
may sometimes inevitably result in disparate outcomes for different 
groups. Similarly, actions taken to avoid disparate impact liability may 
require treating individuals differently based on group membership, 
thereby implicating disparate treatment. Since both disparate treatment 
and disparate impact are forms of unlawful discrimination, how can 
such decisions be made? The Supreme Court partially addressed this 
issue in the context of employment discrimination in 2009 in Ricci v. 
Destafano, a case that arose after a group of “New Haven firefighters 
 
 
 
 
132 576 U.S. 519, 539 (2015). 
133 See id. at 521-42. That said, a new pending rule from the Department of Housing and 
Urban Development stands to alter how FHA disparate impact cases are adjudicated. See 
HUD’s Implementation of the Fair Housing Act’s Discriminatory Impact Standard, 85 Fed. 
Reg. 60288 (Sep. 24, 2020) (to be codified at 24 C.F.R. pt. 100). The rule was scheduled to 
take effect on October 26, 2020, though it has been preliminarily enjoined. See also Virginia 
Foggo & John Villasenor, Algorithms, Housing Discrimination, and the New Disparate 
Impact Rule, 22 COL. SCI. TECH. L. REV (forthcoming 2020). 
134 See, e.g., Watson v. Fort Worth Bank & Tr., 487 U.S. 977 (1988). 
135 For example, the Third Circuit has ruled that a similar framework applies, though it 
involves only two, less stringent steps. “[U]nder the ADEA, a plaintiff must (1) identify a 
specific, facially neutral policy, and (2) proffer statistical evidence that the policy caused a 
significant age-based disparity . . . . Once a plaintiff establishes a prima facie case, an 
employer can defend by arguing that the challenged practice was based on ‘reasonable factors 
other than age’—commonly referred to as the ‘RFOA’ defense.” Karlo v. Pittsburgh Glass 
Works, LLC, 849 F.3d 61, 69 (3rd Cir. 2017). The defendant need not demonstrate that such a 
practice is based on business necessity, and “the employer only needs to show that it relied on 
a ‘reasonable’ factor, not that ‘there are [no] other ways for the employer to achieve its 
goals.’” Id. at 69-70. 
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took examinations to qualify for promotion to the rank of lieutenant or 
captain.”136 As the Court explained, when “the examination results 
showed that white candidates had outperformed minority candidates, 
the mayor and other local politicians opened a public debate that turned 
rancorous” 137 and the city ultimately “took the side of those who 
protested the test results [and] threw out the examinations.”138 This led 
to a lawsuit by “white and Hispanic firefighters who likely would have 
been promoted based on their good test performance.”139 
 
The Ricci Court noted that “certain government actions to remedy past 
racial discrimination—actions that are themselves based on race—are 
constitutional only where there is a ‘strong basis in evidence’ that the 
remedial actions were necessary.”140 The Court ultimately ruled in favor 
of the plaintiffs, concluding that disparate treatment in this case was not 
justified because the defendant failed to demonstrate with a “strong 
basis in evidence” that defendant would otherwise have faced disparate 
impact liability.141 Although disparate treatment proved not to be 
permissible in the Ricci case, the Court’s language makes clear that 
actions taken to avoid disparate impact and that as a result involve 
disparate treatment can sometimes be justified.142 
 
Notably, the Court acknowledged that if “the City faces a disparate-
impact suit, then in light of our holding today it should be clear that the 
City would avoid disparate-impact liability based on the strong basis in 
evidence that, had it not certified the results, it would have been subject 
to disparate treatment liability.”143 This indicates that an entity can 
 
 
 
 
136 557 U.S. at 562 (2009). 
137 Id.  
138 Id.  
139 Id.  
140 Id. at 582 (quoting Richmond v. J. A. Croson Co., 488 U.S. 469, 500 (1989)). 
141 Id. at 592. 
142 See id.   
143 Note, however, that in 2011 in Briscoe v. City of New Haven the Second Circuit Court of 
Appeals vacated a judgment by the United States District Court for the District of Connecticut 
that ruled that the holding in Ricci necessarily precluded the possibility of disparate impact 
claims arising from the city’s subsequent certification of test results. See Briscoe v. City of 
New Haven, 654 F.3d 200, 209 (2d Cir. 2011) (“Briscoe's claim is neither precluded nor 
properly dismissed. Ricci did not substantially change Title VII disparate-impact litigation or 
preclusion principles in the single sentence of dicta targeted at the parties in this action.”).  
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sometimes avoid disparate impact liability if its action is necessary to 
avoid disparate treatment liability. 
 

IV. Algorithmic Fairness in Context 
 

 Rethinking Ricci 
 
The implications of Ricci on the legal viability of approaches to 
mitigating algorithmic bias that involve explicit consideration of 
protected attributes has received significant attention among legal 
scholars.144 The Ricci Court explained that “Title VII does not prohibit 
an employer from considering, before administering a test or practice, 
how to design that test or practice in order to provide a fair opportunity 
for all individuals, regardless of their race.”145 The Court underscored 
that the problem in Ricci was that 
 

after the tests were completed, the raw racial results 
became the predominant rationale for the City’s refusal 
to certify the results. The injury arises in part from the 
high, and justified, expectations of the candidates who 
had participated in the testing process on the terms the 
City had established for the promotional process.146  

 
Multiple scholars have recognized that performing an after-the-fact 
adjustment of algorithmic outputs based on race or another protected 
attribute will result in a clearly identifiable adverse impact on specific 
individuals, and is thus likely to run afoul of Ricci on that basis. For 
example, according to Kim, Ricci “narrowly addressed a situation in 
which an employer took an adverse action against identifiable 
individuals based on race, while still permitting the revision of 
algorithms prospectively to remove bias.”147 Hellman has a similar 
interpretation, writing that 
 
 
 
 
 
144 See, e.g., Jason R. Bent, Is Algorithmic Affirmative Action Legal?, 108 GEO. L.J. 803 
(2020).  
145 557 U.S. at 585.  
146 Id. at 593.  
147 Kim, supra note 94, at 191. 



166 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1 
 

 

[t]he awareness of race that undergirds the use of race 
within algorithms is not prohibited by Ricci. Instead, if 
that case bears on the question of whether algorithms can 
employ racial classifications at all, it supports the 
importance of a proximate effect to a finding of disparate 
treatment. In Ricci, it was the fact that the decision at 
issue had a direct effect on identifiable people that made 
a significant difference.148  

 
Barocas and Selbst have written that requiring “results-focused 
balancing . . . will pose constitutional problems.”149 Kroll observed that 
if “an agency runs an algorithm that has a disparate impact, correcting 
those results after the fact will trigger the same kind of analysis as” in 
Ricci.150 
 
Thus, post-Ricci, it will generally not be permissible to apply race-based 
(or gender-based, etc.) modifications to algorithmic outputs in an 
attempt to rectify disparate impact that has only become evident when 
the results appear. But prospective modifications to an algorithm that 
introduce explicit race-based (or gender-based, etc.) considerations in 
an attempt to ensure unbiased outputs, performed before there are any 
identifiable people impacted, are less likely to run afoul of Ricci. That 
does not mean, however, that they will in the end be more likely to pass 
legal muster. The question of when an adjustment is made to correct for 
bias is in some sense a distinction without a difference—at least from a 
logical standpoint, if not a legal one.  
 
Consider an algorithm used in hiring that, due to biases in the input data, 
tends to produce higher scores for men than for equally qualified 
women.151 An after-the-fact downward adjustment of the scores for men 
would create a set of identifiable individuals adversely impacted by the 
 
 
 
 
148 Hellman, supra note 25, at 864 (“The most promising way to enhance algorithmic fairness 
is to improve the accuracy of the algorithm overall. And we can do that by permitting them to 
use protected traits (like race and sex) within the algorithm”).  
149 Barocas & Selbst, supra note 23, at 726. 
150 Joshua A. Kroll et al., Accountable Algorithms, 165 U. PA. L. REV. 633, 694 (2017). 
151 In this example, rather than considering an algorithm that produces a binary output, we are 
considering an algorithm that produces a score. 
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adjustment, thus potentially running afoul of Ricci. Suppose that, 
instead, the algorithm developers had designed the algorithm so that its 
internal computations are performed in a manner that ensures that the 
eventual outputs have equal average scores for men and women. In this 
case (assuming in this example that average score was a metric used for 
comparison), there is no disparate impact visible at the level of output 
scores, but there was disparate treatment inside the algorithm. And, that 
disparate treatment could, if the internal workings of the algorithm were 
revealed, be asserted as the basis for adverse impact on men who are 
evaluated using the algorithm. 
 
More generally, these questions have implications for when 
consideration of protected attributes can occur and are also important 
for thinking about the extent to which statistical fairness metrics may be 
used to monitor outcomes and update algorithms. There are three (non-
mutually exclusive) points in time at which it would be possible to 
consider—and perhaps make adjustments based on—protected 
attributes. Pre-processing is used before data is input to an algorithm,152 
in-processing refers to techniques applied within an algorithm,153 and 
post-processing refers to adjustments applied to algorithm outputs.154 
While pre-processing of historical data used to train an algorithm as an 
approach to mitigating bias is certainly a valuable approach, it will not 
always prevent unfair outcomes for individuals being 
contemporaneously assessed, especially when used in isolation. In-
processing or post-processing approaches may sometimes be necessary 
to address fairness concerns in real-time.  
 
That being said, does the fact that a pre-processing approach was taken 
prohibit the additional use of in- or post-processing approaches in light 
of Ricci? For example, could an observed lack of equalized odds—
despite pre-processing of data—serve as a “strong basis in evidence” of 
disparate impact liability? And, if so, would this justify updating an 
algorithm to weigh some factors differently for different groups in 
future evaluations, given that doing so is an alternative practice that 
 
 
 
 
152 Brian d’Alessandro et al., Conscientious Classification: A Data Scientist’s Guide to 
Discrimination-Aware Classification, 5 BIG DATA 120, 130 (2017). 
153 Id. 
154 Id. 
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creates a less disparate impact? Moreover, is it possible that a failure to 
implement in- or post-processing approaches that are known to increase 
accuracy and mitigate bias could be viewed as a “policy” that satisfies 
the robust causality requirement necessary to establish disparate impact 
liability?155 Existing case law stops well short of answering these 
questions. 
 

 Rethinking Disparate Impact and Disparate Treatment 
 
As discussed above, current antidiscrimination law rightly recognizes 
that a prohibition on disparate treatment alone is not always sufficient 
to prevent discrimination. Disparate impact doctrine provides a more 
expansive set of protections against discrimination because it removes 
the need to show intent. Disparate impact instead focuses the inquiry on 
whether a disparity among group outcomes can be attributed to specific 
policies of the entity (e.g., a company) making the allegedly 
discriminatory decisions, rather than to external disparities that arose 
independently of the entity making the evaluation. For instance, the 
Inclusive Communities Court wrote that “a disparate-impact claim that 
relies on a statistical disparity must fail if the plaintiff cannot point to a 
defendant’s policy or policies causing that disparity”156 and that a 
“robust causality requirement ensures that ‘[r]acial imbalance . . . does 
not, without more, establish a prima facie case of disparate impact’ and 
thus protects defendants from being held liable for racial disparities they 
did not create.”157  
 
As well-intentioned as these frameworks are, it is important to consider 
how they might inadvertently impede efforts to introduce fairness in an 
algorithmic context. Consider an algorithm for criminal risk that uses 
employment status as one of the inputs. There is a well-documented 
correlation between unemployment rate and neighborhood of residence. 
As a 2018 article in the Washington Post noted, “the unemployment rate 
is 10 percent in impoverished neighborhoods, compared with the overall 

 
 
 
 
155 Foggo & Villasenor, supra note 133. 
156 Tex. Dep’t of Hous. & Cmty. Aff. v. Inclusive Cmtys. Project, Inc., 576 U.S. 519, 542 
(2015). 
157 Id. (quoting Wards Cove Packing Co. v. Atonio, 490 U.S. 642, 653 (1989)).  
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national rate of 4.1 percent.”158 It is also well-documented that one 
legacy of segregation is that the majority of residents in many 
impoverished urban neighborhoods are persons of color. A 2009 
academic paper explained that, “a vast body of work has documented 
the patterns of racial segregation and concentrated poverty in U.S. 
metropolitan areas.”159 The combination of these two correlations 
means that, all else being equal, a criminal risk assessment algorithm 
that considers employment status without adjusting for neighborhood 
variations in employment opportunities would typically end up 
producing outputs that tend to give higher risk scores to persons of color.  
 
But is this unlawful disparate impact in the legal sense? The company 
that created the algorithm might argue that the answer is “no,” because 
it views consideration of employment status as necessary for more 
accurate prediction of crime, a goal which serves a legitimate aim. The 
company might further explain that the geographic and racial inequities 
in employment opportunities are exactly the sort of statistical disparities 
that the Supreme Court had in mind in emphasizing the importance, 
when conducting disparate impact inquiries, of “protect[ing] defendants 
from being held liable for racial disparities they did not create.”160 
 
Under current legal precedent, the company’s argument might prevail. 
But suppose that the company decided that it wanted to revise the 
algorithm so that, instead of merely serving as a conduit to propagate 
externally created inequities, it would attempt to remove them. More 
specifically, the company might decide that treating employment status 
in a “fair” way in computing criminal risk would include an adjustment 
accounting for neighborhood variation in employment opportunities. 
Under this modified algorithm, the risk score penalty ascribable to being 
unemployed would be lower for people from impoverished 
neighborhoods than for those from better-off neighborhoods. 
 
 
 
 
158 In Poor Neighborhoods, Unemployment Is 10%, Survey Says, WASH. POST (Feb. 4, 2018), 
https://www.washingtonpost.com/national/in-poor-neighborhoods-unemployment-is-
10percent-survey-says/2018/02/04/a107828e-09f8-11e8-8b0d-891602206fb7_story.html 
[https://perma.cc/4GYP-7QWX]. 
159 Theresa L. Osypuk et al., Quantifying Separate and Unequal: Racial-Ethnic Distributions 
of Neighborhood Poverty in Metropolitan America, 45 URB. AFF. REV. 25, 27 (2009). 
160 Inclusive Cmtys. Project, 576 U.S. at 542.  
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However well-intentioned such a step might be, it could result in 
unlawful racially disparate treatment. A criminal risk assessment 
algorithm that weighs employment status differently depending on 
neighborhood would end up weighing employment status in a manner 
that correlates with race. And what about the requirement of a disparate 
treatment enquiry to show intent? The company might argue that it had 
exercised intent only with respect to considering neighborhood, not with 
respect to considering race. But given the level of segregation in many 
cities, there would be a strong counterargument that consideration of 
neighborhood is merely a pretext for consideration of race, thus 
invoking a McDonnell Douglas disparate treatment analysis.161 Thus, 
concern over the liabilities associated with exactly this outcome might 
lead a company to decide not to use its algorithm to attempt to 
counteract the biases contained in employment data.  
 
It is also possible that a court might deem consideration of 
neighborhood to be necessary for avoiding disparate impact liability, 
thus absolving the company of disparate treatment liability. However, it 
is unclear when “policies” that involve consideration of protected 
attributes constitute the sort of “alternative practices” endorsed by 
disparate impact frameworks.162 In relation to employment, for 
example, the Supreme Court has explained that “factors such as the cost 
or other burdens of proposed alternative selection devices are relevant 
in determining whether they would be equally as effective as the 
challenged practice in serving the employer's legitimate business 
goals.”163 Such factors will not be particularly useful in assessing the 
comparative efficacy of algorithmic tools that explicitly consider 
 
 
 
 
161 See, e.g., Ave. 6E Invs., LLC v. City of Yuma, 818 F.3d 493, 504 (9th Cir. 2016) (“The 
court analyzes whether a discriminatory purpose motivated the defendant by examining the 
events leading up to the challenged decision and the legislative history behind it, the 
defendant's departure from normal procedures or substantive conclusions, and the historical 
background of the decision and whether it creates a disparate impact.” (emphasis added)). 
162 A respondent will only be held liable for disparate impact if there is an alternative practice 
available with a less disparate impact. When that alternative practice constitutes disparate 
treatment with benign intent, we must now assess whether or not it is necessary for the 
avoidance of disparate impact liability. Whether or not a company would have been liable for 
disparate impact depends on whether or not their decision could have been made using an 
alternative practice. Note the circularity of this process.  
163 Watson v. Ft. Worth Bank & Tr., 487 U.S. 977, 998 (1988). 
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protected attributes and those that do not, as consideration of additional 
attributes would not generally result in any monetary or otherwise 
tangible cost to the algorithm user.164 
 
Algorithms that explicitly consider protected attributes like race, 
gender, or sex also implicate the complex legal questions around 
affirmative action. Affirmative action case law, which is most 
developed in relation to the admissions practices of public universities, 
is a distinct (but often overlapping) domain from the law relating to anti-
discrimination in employment, housing, credit, etc. Supreme Court 
rulings on affirmative action to date have generally (though not 
exclusively) focused on the Equal Protection Clause of the Fourteenth 
Amendment.  
 
In Regents of the University of California v. Bakke in 1978, the Court 
concluded that race-based quotas violate the Equal Protection Clause.165 
At the same time, however, the Court explained that it was improper to 
completely prevent a university from considering race.166 In Grutter v. 
Bollinger in 2003, the Court wrote that “student body diversity is a 
compelling state interest that can justify the use of race in university 
admissions,”167 that “the Equal Protection Clause does not prohibit the 
[University of Michigan] Law School’s narrowly tailored use of race in 
admissions decisions to further a compelling interest in obtaining the 
educational benefits that flow from a diverse student body,”168 and that 
a school’s use of race must “remain flexible enough to ensure that each 
applicant is evaluated as an individual and not in a way that makes an 

 
 
 
 
164 If algorithmic consideration of a protected attribute gave rise to a disparate treatment claim, 
the resulting litigation would of course involve monetary costs; however, this brings us back 
to our original point that it is unclear whether or not a plaintiff could succeed on such a claim 
of disparate treatment.  
165 438 U.S. 265, 319-20 (1978) (“The fatal flaw in petitioner's preferential program is its 
disregard of individual rights as guaranteed by the Fourteenth Amendment.”). 
166 Id. at 320 (“In enjoining petitioner from ever considering the race of any applicant, 
however, the courts below failed to recognize that the State has a substantial interest that 
legitimately may be served by a properly devised admissions program involving the 
competitive consideration of race and ethnic origin.”). 
167 539 U.S. 306, 325 (2003). 
168 Id. at 331. 
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applicant’s race or ethnicity the defining feature of his or her 
application.”169 
 
In 2003 the Court ruled on Gratz v. Bollinger, a separate affirmative 
action decision also regarding the University of Michigan.170 Gratz 
arose from a challenge to a policy used by the College of Literature, 
Science, and the Arts to “automatically distribute[] 20 points to every 
single applicant from an ‘underrepresented minority’ group, as defined 
by the University.”171 The Court held that “because the University's use 
of race in its current freshman admissions policy is not narrowly tailored 
to achieve respondents' asserted compelling interest in diversity, the 
admissions policy violates the Equal Protection Clause, Title VI [of the 
Civil Rights Act of 1964] and 42 USC §1981.”172  
 
In 2013 and 2016 respectively, the Court ruled on a pair of cases relating 
to undergraduate admissions at the University of Texas at Austin. In 
2013 in Fisher v. University of Texas (sometimes called Fisher I to 
distinguish it from the 2016 decision of the same name), the Court 
explained that “[r]ace may not be considered unless the admissions 
process can withstand strict scrutiny”173 and that under strict scrutiny a 
“university must clearly demonstrate that its ‘purpose or interest is both 
constitutionally permissible and substantial, and that its use of the 
classification is ‘necessary . . . to the accomplishment’ of its 
purpose.’”174  
 
In 2016 in Fisher v. University of Texas (often termed Fisher II), the 
Court upheld the consideration of race in admissions, explaining that 
“[t]he fact that race consciousness played a role in only a small portion 
of admissions decisions should be a hallmark of narrow tailoring, not 
evidence of unconstitutionality.”175 
 
 
 
 
 
169 Id. at 337. 
170 539 U.S. 244 (2003). 
171 Id. 
172 Id. at 275-76. 
173 570 U.S. 297, 309 (2013). 
174 Id. at syllabus (quoting Regents of the Univ. of Cal. v. Bakke, 438 U.S. 265, 305 (1978)). 
175 136 S. Ct. 2198, 2206 (2016). 
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Several interesting observations directly relevant to algorithms flow 
from these cases. At least in the context of public university admissions 
decisions, Gratz indicates that algorithms including a point adjustment 
based on a protected characteristic would fail to pass constitutional 
muster. But Fisher II indicated that considering race in a narrowly 
tailored way is permissible. Given that algorithms are numerical by 
definition, that creates a potential paradox: while the Supreme Court has 
permitted consideration of race, doing so in an algorithm would often 
involve numerical scores (or their equivalent) specifically reflecting, in 
part, race—something that the Court has deemed impermissible.  
 
Thus, existing affirmative action doctrine in relation to university 
admissions, like disparate impact doctrine in relation to employment, 
housing, and credit, fails to offer a clear answer to the question of the 
extent to which explicit consideration of protected attributes—where 
doing so contributes to the accuracy or lessens the disparate impact of 
an algorithm’s outcomes for a particular group—is a legally justified 
practice, or if it would only serve to subject entities using the algorithm 
to disparate treatment liability.  
   
This example illustrates how discrimination law frameworks can 
actually create a disincentive for decision-making entities such as 
companies and universities to use algorithms as a mechanism to 
counteract bias. And that disincentive could be even stronger than the 
above example suggests. To see why, consider a variant in which a 
company attempts to use an algorithm to correct for the neighborhood-
level inequities in employment opportunities, but does not get the 
correction quite right: it either slightly under-corrects or slightly 
overcorrects. This would arguably create a situation implicating both 
disparate treatment and disparate impact.176 Disparate treatment would 
arguably be present for the reasons explained above, i.e., the intentional 
decision to consider neighborhood—and, by implication, race—in 
 
 
 
 

 176 A policy that constitutes disparate treatment in the legal sense may still have a disparate 
impact (in the colloquial sense) on a group of interest; however, the entity responsible for such 
a policy would only be found liable for one of the two, given the fact that the same policy 
would be in question with respect to both theories of liability. This is not to say that a 
company could not simultaneously be found liable for disparate treatment based on one 
particular policy, and disparate impact for a different policy.  



174 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 17.1 
 

 

computing risk scores. Disparate impact would be present because, 
unlike when the company made no effort to correct for the inequities, 
under this modified scenario in which the company attempted—with 
only partial success—to perform that correction, the racial disparities in 
the output of the algorithm would in part be directly attributable to a 
specific policy. In other words, the “reward” for attempting to correct 
for bias might be liability under disparate treatment doctrine that is not 
mitigated by the lower degree of adverse impact (relative to an approach 
that lacked the corrective steps described above) on a particular 
group.177 
 
There is also the question of how the perspectives gained from studying 
algorithmic fairness can lead to new ways of thinking about anti-
discrimination law. With that in mind, in the context of algorithms, the 
traditional categories of disparate impact and disparate treatment risk 
oversimplifying what will in fact be a more complex landscape. That 
does not mean that those frameworks lose their utility. It is easy to 
imagine scenarios in which one of the steps in investigating an allegedly 
discriminatory algorithm would be evaluating it to see whether 
disparate treatment and/or disparate impact are present. 
 
But that should not be the end of the story. As noted in the 
earlier example in which a company makes an effort to include a 
correction for historical biases in its algorithm but does not get that 
correction exactly right, it is possible to act in complete good faith, to 
create an algorithm which is potentially far less biased than the human-
based decision system it might replace or augment, yet still run afoul of 
either disparate treatment or disparate impact theories of liability.  
 
Anti-discrimination law should leave sufficient flexibility to enable 
innovation using algorithms in ways that can reduce bias. It is not at all 
surprising that disincentives to such innovation exist, because the 
current legal landscape is the result of decades of legislation and 
litigation on discrimination in a non-algorithmic context. But given the 
inevitable increase over the coming decade in algorithmically-driven (or 
algorithmically-informed) decision making, a more flexible framework 
 
 
 
 
177 Fisher II, 136 S. Ct. at 2203. 
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is needed that can still hold algorithm designers accountable for 
intentional or inadvertent discrimination, while also giving them the 
opportunity to innovate to produce improved solutions. 
 
To give a concrete example of how this might work, consider a company 
that makes an algorithm that is accused of being discriminatory. In 
accordance with traditional discrimination law, litigation could 
determine whether there is disparate impact and/or disparate treatment. 
If one or both of those are alleged, at some point in the proceedings the 
company should be given an opportunity to show that, had it made 
different design choices, the resulting algorithm would have been 
demonstrably more discriminatory. This is not to suggest that such a 
showing would automatically absolve an entity of all liability; however, 
it suggests that this sort of contextual information will be an important 
consideration.  
 

 The Importance of Metric Transparency 
 
Where do algorithmic fairness measures fit into this picture, and how 
might they help resolve some of these tensions? As an initial matter, it 
is important to underscore that fairness metrics examine predictions (or 
scores) and outcomes, not the underlying algorithms used to make those 
predictions or the state of mind of algorithm developers. The presence 
of a statistical disparity—e.g., that members of a particular group are 
denied loans at a disproportionately high rate—is not sufficient to infer 
disparate treatment, as it would not show that the algorithm was 
designed with intent to create adverse outcomes for a particular group. 
But neither is it sufficient to show disparate impact, since it does not 
establish causality between any “policies” of the company that 
developed or implemented the algorithm and the observed statistical 
disparities.178  
 
Moreover, those wishing to show causation between discriminatory 
outcomes and the inclusion of a particular attribute in the design of the 
algorithm will often have difficulties gaining access to code, which is 
 
 
 
 
178 A related but different question is whether a company (e.g., a financial institution that uses 
the algorithm) might be exposed to disparate impact liability. 
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often proprietary in nature.179 Even when access to code is granted (e.g., 
under a protective order in litigation), the ways in which an algorithm 
makes use of a particular attribute will sometimes be sufficiently 
complex to make it difficult to establish clear causation.180 To add yet 
another hurdle, in anticipation of a possible finding of causation, the 
code developers might invoke the business necessity defense.181 
 
While fairness metrics alone are thus not sufficient to prove disparate 
impact or disparate treatment, they are nonetheless an extremely useful 
tool for identifying statistical disparities, which can, in turn, provide a 
basis for continued investigation. That raises the question of what 
constitutes a statistical disparity.182 As discussed in Part II, when the 
base rates across two groups regarding the parameter of interest (e.g., 
whether a borrower will pay a loan, or whether a student will pass a test) 
are unequal, it will nearly always be possible to find a fairness metric 
that shows a statistical disparity.183 For instance, if algorithm designers 
have optimized for positive predictive value, then the rates of false 
positives and false negatives will generally be different across the two 
groups. On the other hand, optimizing to minimize and equalize false 
positive and false negative rates will usually preclude satisfying 

 
 
 
 
179 Cf. Steven M. Bellovin et al., Seeking the Source: Criminal Defendants’ Constitutional 
Right to Source Code, 17 OHIO ST. TECH. L.J. 1 (2021) (discussing difficulty suffered by 
criminal defendants seeking source code as potentially exculpatory evidence). 
180 See Yavar Bathaee The Artificial Intelligence Black Box and the Failure of Intent and 
Causation 31 HARV. J.L & TECH. 890, 891-92 (2018). 
181 Stephanie Bornstein, Antidiscriminatory Algorithms 70 ALA. L. REV. 519, 525 (2018). 
182 For example, Equal Employment Opportunity Commission regulations provide guidance 
on this question. 24 C.F.R. § 1607.4(D) states that “[a] selection rate for any race, sex, or 
ethnic group which is less than four-fifths ( 4/5) (or eighty percent) of the rate for the group 
with the highest rate will generally be regarded by the Federal enforcement agencies as 
evidence of adverse impact.” This is often referred to as the “eighty percent rule.” While the 
eighty percent rule may be useful in cases of more obvious discriminatory impacts, it is 
arbitrary in terms of statistical significance and so has little utility in more nuanced cases of 
discrimination. 24 C.F.R. § 1607.4(D) acknowledges this in noting that “[s]maller differences 
in selection rate may nevertheless constitute adverse impact, where they are significant in both 
statistical and practical terms or where a user's actions have discouraged applicants 
disproportionately on grounds of race, sex, or ethnic group.” Identifying group outcomes that 
are sufficiently disparate to constitute discrimination will be a largely context-dependent 
endeavor, and it will be important to compare statistical discrepancies in algorithmic outcomes 
across various fairness metrics before drawing conclusions. 
183 See supra Part II.  
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statistical parity. Analogous incompatibilities can also be identified for 
other combinations of fairness metrics. 
 
These sorts of incompatibilities are mathematical inevitabilities that will 
confront all algorithm developers, including (and perhaps especially) 
those who are particularly attuned to the goal of addressing bias. 
Developers will typically need to choose one fairness measure that they 
will seek to optimize, knowing that in doing so they are creating the 
impossibility of optimizing under the others.184 Relatedly, a person 
wanting to criticize an algorithm will always be able to identify multiple 
metrics that show differences across groups that could be labeled 
“statistical disparities.”  
 
This highlights the importance of what might be called metric 
transparency: Companies that design algorithms should be transparent 
about which fairness metric(s) they are using for optimization, the 
reasons for choosing that metric, and the extent to which that choice 
leads to disparities under other commonly used fairness metrics. As a 
voluntary best practice,185 metric transparency offers algorithm 
developers a mechanism to (1) convey information about the nature and 
extent of their efforts to achieve fairness, and (2) to provide important 
context that others, including the press, advocacy organizations, and 
courts, can use in their own evaluations. An additional advantage of 
metric transparency from the standpoint of algorithm designers is that it 
can be practiced without revealing the core aspects of the underlying 
algorithm that are typically closely held trade secrets.186 
 
 
 
 
184 Algorithm developers can also choose to simultaneously optimize under two fairness 
metrics, but as discussed earlier this will often lead to constraints that, while mathematically 
feasible, are problematic from a policy standpoint. 
185 It is also possible to contemplate requiring that companies disclose which metric(s) they 
have used in attempting to ensure algorithm fairness, though this would need to be done in a 
manner that would avoid negatively impacting the incentives and opportunities to innovate. 
For example, a company might choose not to optimize an algorithm for any one fairness 
measure and instead to be intentionally sub-optimal (but not too far from optimal) on two 
different measures that would be mathematically impossible to satisfy simultaneously. Any 
regulatory framework regarding metric disclosure would need to leave sufficient flexibility for 
companies to innovate and think outside the box as they decide how to address fairness during 
the algorithm design process. 
186 We note that transparency regarding the metrics that developers have used to assess 
fairness when creating an algorithm is different from transparency regarding the underlying 
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From the standpoint of civil society organizations and others aiming to 
scrutinize algorithms and promote algorithmic fairness, metric 
transparency can reduce the cost and time burden of inquiries, and can 
also make it easier to identify and focus on the algorithms most likely 
to be problematic.187 This points to another advantage of metric 
transparency. Companies might initially be tempted to avoid metric 
transparency under the logic that it is always best to make potential 
adversaries work as hard as possible to obtain any information about the 
algorithm. But by being transparent, they might avoid costly litigation 
as a result of having identified in clear and specific terms the way in 
which they have evaluated fairness and the extent to which they achieve 
it.  
 
In addition to disclosing which fairness metric(s) they chose to optimize 
for during the algorithm design process, companies could also take the 
further step of explaining how they made that choice. This could include 
providing information on who (e.g., civil society organizations, 
representatives of the communities with a stake in the performance of 
the algorithm, etc.) provided input to the decision process, what 
priorities motivated the decision, and what plans are in place for 
periodically evaluating and updating their approach to fairness in the 
future if appropriate in light of newly acquired data. 
 
 

 
 
 
 

algorithm itself. Transparency regarding the underlying algorithm, while generally providing 
vastly more information than algorithmic secrecy, could still leave questions unanswered. See, 
e.g., Kroll et al., supra note 150, at 657-58 (noting in a section titled “Transparency and its 
Limits” that while “full or partial transparency can be a helpful tool for governance in many 
cases . . . transparency alone is not sufficient to provide accountability in all cases.”); Andrew 
D. Selbst, Disparate Impact in Big Data Policing, 52 GA. L. REV. 109, 187 (2017) (writing 
that “[t]ransparency, however, does not automatically lead to accountability,”); Mike Ananny 
& Kate Crawford, Seeing Without Knowing: Limitations of the Transparency Ideal and its 
Application to Algorithmic Accountability, 20 NEW MEDIA & SOC’Y 973, 974 (2016) (writing 
that “transparency is an inadequate way to understand—much less govern—algorithms.”).  
187 Lee Rainie & Janna Anderson, Code-Dependent: Pros and Cons of the Algorithm Age, 
PEW RSCH. CTR. (Feb. 8, 2017), http://www.pewinternet.org/2017/02/08/code-dependent-pros-
and-cons-of-the-algorithm-age [https://perma.cc/2HRU-5ETY]. 
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 Which Fairness Metrics Should be Used? 
 
The choice of which fairness metric(s) to use is clearly a fundamental 
question when assessing whether or not an algorithm is biased. One 
issue that can guide the choice is what can be termed the observability 
challenge, which in some contexts will limit the fairness metrics for 
which data can reliably be gathered. The observability challenge will 
not always be present. In the example presented in Tables 1 and 2 in 
Part II regarding predictions of which students in two different groups 
will pass a test, it was possible to observe the outcome associated with 
each prediction, and thereby to compute all of the fairness metrics 
discussed in Part II. 
 
But there are a large number of scenarios in which a prediction is used 
as the basis to make a decision that renders some outcomes 
unobservable. Consider a prediction regarding loan repayment. A 
financial institution obviously wants to grant loans to borrowers who it 
expects to repay. After the loan is given, it is straightforward to tally 
true positives (people who were deemed likely to repay and did repay), 
false positives (people who were deemed likely to repay but defaulted), 
and the positive predictive value (the fraction of people who were 
deemed likely to repay who did repay).  
 
But if an algorithm predicts that a loan applicant would default, the 
financial institution will generally deny the loan, thereby rendering it 
impossible to measure false negatives (people who were deemed likely 
to default but who if given the loan would have repaid it), true negatives 
(people who were deemed likely to default and who if given the loan 
would indeed have defaulted), and the metrics derived from that 
information (such as the negative predictive value). It would also be 
impossible to observe the true positive rate, which is a fraction with an 
observable numerator but unobservable denominator. The numerator is 
the number of true positives and the denominator is the sum of the true 
positives and the false negatives; i.e., the total number of people who 
would have repaid a loan, if given one. By analogy, the true negative 
rate would also be unobservable. 
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A similar issue arises in relation to decisions regarding granting bail. If 
an arrestee is deemed a flight risk and denied bail on that basis, it 
becomes impossible to evaluate whether he or she actually would have 
failed to appear at trial if bail had been granted. If an algorithm used in 
hiring predicts that a job applicant will be unable to perform the duties 
of the job, the company will likely not make the hire, rendering it 
possible to assess the accuracy of that negative evaluation. This 
observability problem will likely be relevant whenever a prediction is 
used to make a decision regarding an action (e.g., granting a loan) or 
intervention (e.g., denying bail), rather than to merely collect data and 
observe outcomes.188 
 
The literature on algorithmic fairness tends not to give sufficient 
attention to the observability challenge, despite its obvious practical 
significance. After all, there is little utility in recommending use of a 
fairness metric that requires data that will not be available in practice. 
With that in mind, it is noteworthy that predictive parity and statistical 
parity are two metrics that do not suffer from the observability 
challenge.189 As explained earlier, predictive parity is satisfied when, of 
 
 
 
 
188 There are methods that can make it possible to obtain information on outcomes that would 
normally be unobservable. For instance, consider false negatives in the context of loans. 
Normally, a lender will not grant a loan to an applicant who is predicted to default. This makes 
it impossible to measure false negatives, i.e., circumstances in which a borrower who was 
predicted to default did not do so. However, a lender wishing to measure false negative rates 
(and true negative rates) could choose to grant loans to a small number of people who, as 
predicted by an algorithm, were expected to default. In gathering this information, it would be 
important to select randomly from the pool of people who would otherwise have been denied 
loans (as opposed to, for example, choosing only those whose scores placed them just below 
the threshold for loan approval.) Over time, this would allow accumulation of statistics on 
false negatives. Of course, this approach has drawbacks: to accumulate a statistically 
significant number of observations could involve a large cost in unpaid loans. Also, there are 
contexts in which this approach to data gathering is not an option. Consider an algorithm used 
to predict whether a patient can safely be given a particular medication. A negative prediction 
corresponds to an expectation that the medication cannot be safely administered. It would 
obviously not be acceptable to gather statistics on false negative rates by nonetheless 
administering the medication for a subset of people for whom dangerous reactions were 
predicted. Additionally, relationships between input data and output data may change over 
time as a result of external factors (i.e., public policy changes). When this occurs, collecting 
data points over long periods of time without sufficient sensitivity to relevant external factors 
can result in inaccuracies in the resulting statistical observations.  
189 With respect to predictive parity, this statement assumes that the positive predictions are 
associated with observable outcomes. A “positive” prediction can signify that a person has 
been deemed creditworthy and given a loan, or that an arrestee poses no danger to society and 
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the people who are predicted to be in the positive class (e.g., loan 
applicants who are deemed creditworthy and given a loan), the 
percentage who are actually in the positive class (e.g., those who pay 
back the loan) is the same across the two groups being compared.190  
 
For statistical parity, the computation is even simpler, since there is no 
need to examine outcomes.191 Again using the loan example, statistical 
parity is met when members of the two groups are predicted to be in the 
positive class with equal rates (e.g., an equal percentage of both groups 
are deemed creditworthy and given a loan). It should be noted, though, 
that in the literature on algorithmic fairness, statistical parity has often 
been viewed as an inadequate and overly stringent measure of 
algorithmic fairness, as it fails to account for differences in base rates 
among groups that contribute to disparities in outcomes and often comes 
at the expense of accuracy.192 
 
While predictive parity may be desirable in cases where other measures 
of fairness are largely unobservable, satisfying it does not alone settle 
all fairness concerns, as it reflects only one of many possible ways to 
measure fairness.193 For example, achieving predictive parity provides 
incomplete information on error rates (false positive and false negatives 

 
 
 
 

should be granted bail. Of course, it is also possible to invert the terminology, and, for 
example, associate a “positive” prediction with an expectation that an arrestee does pose a 
danger to society. In that case, he or she will be denied bail, and it will not be possible to 
observe whether the arrestee would have re-offended had bail been granted. 
190 See supra Section II. 
191 See supra Section II. 
192 Dwork et al., supra note 43, at 218 (“Although in some cases statistical parity appears to be 
desirable . . . we now argue its inadequacy as a notion of fairness, presenting three examples in 
which statistical parity is maintained, but from the point of view of an individual, the outcome 
is blatantly unfair.”); Jon Kleinberg et al., Inherent Trade-Offs in the Fair Determination of 
Risk Scores, 8 INNOVATIONS THEORETICAL COMPUT. SCI. CONF., 43:1, 43:3 (2017) 
(“[C]lassification and risk assessment are much broader activities where statistical parity is 
often neither feasible nor desirable.”); Matthew Joseph et al., Rawlsian Fairness for Machine 
Learning 3 (Oct. 29, 2016) (unpublished manuscript) (“[G]roup-level definitions often fail at 
both fairness and accurate learning. If two groups actually have different proportions of 
individuals who are able to pay back their loans, then the accuracy of any learning algorithm 
will obviously suffer when constrained to predict an equal proportion of paybacks for the two 
groups.”).   
193 See supra Section II. 
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rates), which may be impossible to accurately measure.194 When an 
algorithm is being used in a context where error rates are particularly 
important for assessing fairness, observability issues relating to errors 
are a cause for concern and serve as a motivation for more careful 
scrutiny of algorithms.195  
 
Of course, the observability challenge exists in non-algorithmic 
decision-making as well, but it is especially important to keep in mind 
when decisions are presented as data-driven and objective, and instead 
may serve to reinforce or even amplify past biases. For this reason, to 
the extent possible given the limitations on observability, context-
dependent costs of incorrect predictions should be taken into account 
when determining the suitability of algorithmic decision-making in a 
particular application. Additionally, as Mayson notes, non-algorithmic 
policy will need to play an important role in reducing the costs of false 
predictions wherever possible.196 Such policy action was of course 
needed in various contexts before the introduction of algorithmic 
decision-making; however, the nature of prediction and its sometimes-
unobservable outcomes helps to highlight this issue.  
 
And what about scenarios in which there is not an observability 
challenge, i.e., when all the data necessary to compute any of the 
 
 
 
 
194 More precisely, if predictive parity is satisfied, that means that PPV is equal across both 
groups. Since PPV is defined as the ratio of the number of true positives to the sum of the 
number of true positives and the number of false positives (i.e., TP/(TP+FP)), knowing the 
PPV makes it possible to infer the ratio of true positives to false positives (i.e., PPV/(1-PPV)), 
but not their actual values. Similarly, this information alone would not permit computation of 
the false positive rate. And the PPV does not contain information about false negatives, nor of 
false negative rates. That said the sum of true positives, false negatives, true negatives, and 
false positives is equal to the total number of predictions, which will typically be known. In 
addition, the sum of true positives plus false negatives will in some circumstances be known 
(e.g., in the case of observing whether students pass a test), an in other circumstances be 
unknown (e.g., in loan approvals, false negatives will not be observable since the loan 
applicants who are predicted not to repay will not be given a loan). In a system known to 
satisfy predictive parity, to the extent that some of this additional information is also known, 
that could impose some constraints on error rates. 
195 See supra Section II. 
196 Mayson, supra note 5, at 2287 (noting that “a supportive, needs-oriented response to risk 
would mitigate the immediate racial impact of prediction. If a high-risk classification meant 
greater access to support and opportunities, a higher false-positive rate among black 
defendants would be less of a concern”). 



2021] FOGGO ET AL. 183 
 

 

fairness measures discussed earlier are available? As discussed in Part 
II, the combination of mathematics and policy considerations means that 
it will often only be practical to optimize an algorithm for fairness 
according to one metric (or, for some particular metric combinations 
and subject to the associated mathematical constraints, two metrics). 
Which metric(s) should be chosen? We do not believe that there is any 
one metric that is inherently superior to all the others. Rather, the choice 
should be context-dependent. 
 
Imagine a medical study in which an algorithm is used to predict 
whether or not a particular individual will develop dementia (in this 
example, this is the “positive” class). Treatment used to slow (but not 
stop) the development of dementia is administered based on the results 
of the algorithmic assessment.197 Since all people who would have 
developed dementia absent treatment will still eventually develop it 
given enough time—though it will happen more slowly for those who 
received a positive prediction—all fairness metrics will be observable 
over time.198 The people running the study will want to be sure that the 
predictive algorithm does not unjustly result in the disproportionate 
allocation of treatment to one particular group over another. Which 
fairness metric should be used?  
 
If we imagine that preventive treatment for dementia has no negative 
health effects if unnecessarily administered (i.e., to a person who was 
not destined to develop dementia), the cost of a false negative prediction 
is higher than that of a false positive prediction. (This example assumes 
that there is a modest financial cost to the preventative treatment, so 
although there are no negative health effects, there is still an incentive 
not to simply administer it to everyone.) Moreover, ensuring accuracy 
of positive predictions is far less important than ensuring the accuracy 
of a negative prediction. The people conducting the study should 
therefore aim for a high negative predictive value, without concern for 
how it may affect positive predictive value. A lack of parity in false 
 
 
 
 
197 We have intentionally constructed this example using a treatment that delays but does not 
prevent dementia. If the treatment were to prevent it, there would be no way to observe false 
positives (people who had been incorrectly predicted to develop dementia). 
198 For simplicity, we assume in this example that all the people in the study remain alive over 
the period of time concerned. 
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negative rates or in negative predictive value should be taken as an 
indication that the algorithm-based decisions are leading to greater 
health costs to one group than another. Luckily, parity in false negative 
rates (equality of opportunity199) and parity in negative predictive value 
are achievable simultaneously, and so are arguably the fairness metrics 
of choice.200 This particular metric combination is one in which policy 
considerations do not necessarily prevent satisfying more than one 
metric.201 
 
To take another example, imagine the goal is to analyze the fairness of 
assessments made by fraud detection tools used to instantaneously 
attempt to detect fraud when a debit card transaction is attempted. 
Whenever suspected fraud is detected, the customer must respond to a 
text message inquiry from the bank to confirm that the transaction is 
legitimate. If the customer responds in the affirmative, the transaction is 
permitted to proceed. In addition, in order to collect all relevant statistics 
for the various fairness measures previously discussed, a small fraction 
of account holders are randomly required, at the end of a single 
randomly selected month, to confirm the accuracy of all transactions 
during that past month. They will receive a list of all transactions made 
using the debit card during that period and will have to indicate whether 
or not each was legitimate. This example assumes that a positive 
 
 
 
 
199 Equality of opportunity usually refers to parity in true positive rates, but since the false 
negative rate is equal to 1–TPR, equality of opportunity will automatically result in parity in 
false positive rates, as well.  
200 Garg, Villasenor & Foggo, supra note 74. It can be inferred by rewriting equations (6) and 
(7) in Garg et al. in terms of negative predictive value instead of positive predictive value, that 
if the constraint of equal FPRs is removed, then it is possible to simultaneously have equal 
TPRs (i.e., equality of opportunity) and equal negative predictive values. The requirement of 
having different FPRs to achieve this is not necessarily problematic in this particular scenario 
due to the low costs of false positives.  
201 Equality of opportunity (parity in true positive rates or, equivalently, in false negative rates) 
and parity in negative predictive value are achievable simultaneously, but with the constraint 
that the true negative rates (and therefore the false positive rates) would necessarily be 
unequal. See id. at 6-7 (in particular section 3.1.3). In the example provided in the text 
regarding the prediction of dementia and a treatment with no medical downsides that can slow 
its progress, having unequal false positive rates across two groups would not necessarily be 
problematic, particularly since as the example is constructed, there would be little financial 
motivation to deny treatment to someone who has been identified as possibly standing to 
benefit from it. 
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prediction means a prediction that an attempted transaction is 
fraudulent. 
 
The presence of data gathered from this randomly selected subgroup 
ensures that it will be possible to gather information on false negatives 
(a false negative in this scenario corresponds to a fraudulent transaction 
that is not detected by the algorithm, i.e., the prediction is that the 
transaction is not fraudulent, but in fact it is fraudulent) that would 
otherwise be difficult to observe, as account holders may not notice 
smaller fraudulent purchases quickly, or even at all. Because this 
transaction-specific customer verification only is performed for a 
fraction of customers for limited periods of time, the resulting statistics 
will be gathered more slowly than if all customers were forced to 
provide confirmation of each individual purchase.  
 
Nonetheless, over time, this process will allow determination of the true 
and false positives, true and false negatives, and all the other metrics 
(including the fairness measures discussed previously) derived from that 
information. What measure should we use to assess the fairness of the 
algorithm with respect to a protected attribute such as gender? In this 
case, it can be argued that a good metric is equalized odds (as a 
reminder, this means that both the true positive rate and, separately, the 
false positive rate are the same across groups). 
 
To see why, consider that one would want the assessment tool to be able 
to identify a case of fraud whenever one is present, and to be able to do 
so regardless of an individual’s gender. Consider further what can 
happen if equalized odds is not satisfied. If the false negative rate is 
higher for women than for men (meaning also that the true positive rate 
would be lower for women than for men) this means that fraud is less 
likely to be detected for female debit card holders than their male 
counterparts, creating a potential disadvantage for a group that has 
historically experienced discrimination in relation to financial services. 
Additionally, if the false positive rate is higher for women than for men 
(meaning that the true negative rate would be lower for women than for 
men) this means that the fraud detection tool places a disproportionate 
burden on women, who would need to respond to more text inquiries 
from the bank to confirm transactions as legitimate. Notably, though, 
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the burden involved in a false negative assessment is greater than the 
cost of a false positive assessment, since a false negative means that a 
fraudulent transaction goes undetected; this is a higher burden than 
having to respond to a text message to confirm a transaction. 
 
If there is a difference in the base rates of fraudulent charges on men’s 
accounts versus women’s, satisfying equalized odds precludes the 
possibility of also satisfying predictive parity. Suppose that women have 
higher base rates of being targeted by account fraud than men.202 
Satisfying equalized odds would result in a lower PPV for men than for 
women.203 That is, more unnecessary text message confirmation 
requests (on a percentage basis) on male accounts than female accounts 
would be sent. In this particular case, the trade-off is arguably 
worthwhile given the greater harm done in failing to identify fraud when 
it is present than by requiring someone to confirm a transaction 
unnecessarily. Moreover, this is more desirable than using a prediction 
that often fails to identify fraud, or one that produces outcomes that 
place a further gender-biased burden in relation to financial services. 
Thus, the desirability of this outcome stems in part from the fact that the 
reduced accuracy that accompanies satisfying equalized odds will likely 
result in relatively minor disproportionate costs—the hassle of 
responding more text messages from the bank to confirm a transaction’s 
legitimacy—for the traditionally advantaged group (men), and will 
avoid further propagating historical disadvantages for women.  
 
Finally, and distinctly from the specifics of the examples above, it is 
important to note that there may be circumstances in which it could be 
of interest to choose intentionally not to optimize an algorithm for 
fairness according to any one measure or (under limited circumstances) 
pair of measures, choosing instead to engage in what amounts to a 
compromise. To take one possible example, as discussed in Part II, it is 
generally impossible to simultaneously satisfy both equalized odds and 
 
 
 
 
202 We have no evidence that—and are not suggesting that—women actually are more likely to 
be targeted by debit card fraud than men; we are simply constructing this hypothetical 
example to illustrate some of the reasons why certain fairness measures might be deemed 
more important in a particular context. 
203 See Garg, Villasenor & Foggo, supra note 74 (in particular, this result follows from 
subtracting equations (6) and (7) and setting the TPRs to be equal and the FPRs to be equal).  
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predictive parity, i.e., choosing to achieve fairness under one of these 
measures makes it impossible to achieve fairness under the other.204 If 
told that both of these measures are important, an algorithm developer 
could elect to satisfy neither, but in doing so to get as close as possible 
to satisfying both. There are, of course, interesting mathematical 
questions regarding how effective a compromise could be made. Thus, 
approaches to fairness include not only the option to pick just one 
measure (or sometimes two) and forego all interest in the others, but 
also the option to attempt to compromise among multiple measures. 
 

V. Conclusions 
 
As algorithms become more widely deployed, technologists and legal 
practitioners alike will be increasingly engaged in working to ensure 
fairness and to evaluate accusations of algorithmic bias. This Article has 
aimed to facilitate that process by exploring various algorithmic fairness 
measures and their relative compatibilities in a broadly accessible 
manner. In addition, the Article has described existing discrimination 
law frameworks and explored some of the key questions that will arise 
in applying—and perhaps updating—those frameworks in light of the 
growth of algorithms.  
 
We believe there are important opportunities to create greater awareness 
in legal and policy circles regarding the alternatives available to those 
who wish to assess whether an algorithm and the predictions it makes 
are “fair.” In addition, it is important to raise awareness regarding the 
existence of mathematical constraints that govern whether and in what 
manner more than one fairness measure can be simultaneously satisfied. 
While the specifics of these constraints will likely be of interest to only 
a subset of practitioners, the fact that these constraints exist is something 
that should be more widely known and discussed than is the case today. 

 
 
 
 
204 More specifically, when the base rates across the two groups are unequal and when the 
prediction is imperfect, it is not possible to simultaneously satisfy both equalized odds and 
predictive parity. 


