Tailored Density Cumulant Theory
A novel theoretical approach for strongly correlated systems

Ruojing Peng

The Sokolov Group
Department of Chemistry and Biochemistry
The Ohio State University

November 1st, 2018
Rule of the game

Electron configurations of Be atom

- Electron correlation is the tendency of electrons to escape from each other.
- Strong correlation occurs when many e^- are likely to be found high up.
A framework based on density cumulant theory

wavefunction method $\psi(x_1, \ldots, x_n)$
density cumulant theory (DCT)

$\lambda(x_1, x_2)$

DCT is more efficient than existing wavefunction methods.

A framework based on density cumulant theory

- wavefunction method \(\psi(x_1, \ldots, x_n) \)

- density cumulant theory (DCT)\(^1\)
 \[\lambda(x_1, x_2) \]

▶ DCT is more efficient than existing wavefunction methods.

DCT breaks down in strong correlation region

Figure: Energy of N_2 as a function of bond length
DCT breaks down in strong correlation region

Figure: Energy of N$_2$ as a function of bond length
DCT breaks down in strong correlation region

Figure: Energy of N_2 as a function of bond length

Calculated with cc-pvdz basis set
Tailored-DCT algorithm

step 1:
strong correlation using wavefunction method

step 2:
additional weak correlation using DCT
Tailored-DCT algorithm

step 1: strong correlation using wavefunction method

step 2: additional weak correlation using DCT

strong correlation ψ

weak correlation λ
Preliminary results and future work

Figure: DCT and T-DCT error for N$_2$ bond stretching relative to exact energy

Calculated using cc-pvdz basis set, 6,6 active space.

- Improvements:
 - reduced energy error.
 - naturally incorporates strong correlation.

- Future work:
 - investigate numerical instability.
 - application to large systems.
Acknowledgment

The Sokolov group

Dr. Alexander Sokolov
Kousik Chatterjee
Samragni Banerjee
Ilia Mazin
Ruojing Peng
Computational scheme

valence-correlated wavefunction

weak correlation between subspaces

relaxation of orbital parameters

recalculate valence strong correlation

valence strong correlation information

converged