The Effects of Emotion Regulation on Negative Affect During a Stressful Situation

Undergraduate Research Thesis

Presented in partial fulfillment of the requirements for graduation with honors research distinction in Psychology in the undergraduate College of Arts and Sciences of The Ohio State University

By

Mia A. X. Kern

The Ohio State University

April 2017

Project Advisor: Dr. Michael Vasey, Ph.D., Department of Psychology

Committee Members: Dr. Jennifer Cheavens, Department of Psychology & Dr. Kevin Richards,

Department of Germanic Languages and Literature
THE EFFECTIVENESS OF EMOTION REGULATION

Contents

Abstract .. 3
Introduction ... 4
Methods ... 7
Results .. 11
Discussion .. 14
References .. 17
Correlation matrices ... 21
THE EFFECTIVENESS OF EMOTION REGULATION

Abstract

Different emotion regulation strategies have been categorized as adaptive or maladaptive due to their positive or negative associations with symptoms of psychopathology (Aldao, Nolen-Hoeksema & Schweizer, 2010); however, difficulties in emotion regulation can also be a result of a person’s lack of clarity about how to implement the strategies (Aldao and Vine, 2014). I examined self-reported use, observer-coded quality of use, accuracy, and resulting effectiveness of three emotion regulation strategies (cognitive reappraisal, humor, and distraction) among undergraduates (n=97) when viewing video clips aimed at arousing disgust. Surprisingly, the accuracy correlations for each emotion regulation strategy, indexed by coherence between self-reported use and observer-coded quality of use, while significant, were small. Our results suggest that self-reported use of humor and distraction are associated more with effectiveness than either the quality or accuracy of the use. One possible explanation is that there may be a placebo-type effect such that an individual need only to believe that they are using the strategy correctly in order to reduce negative affect. These effects were surprisingly not mirrored in cognitive reappraisal, which may be a result of either a structural problem in the study’s design or reflective of a difficulty in implementing or measuring reappraisal use. This study may have implications for how emotion regulation strategies are taught and maintained in mental health therapy.
THE EFFECTIVENESS OF EMOTION REGULATION

Introduction

Mental illness affects nearly everybody in contemporary society, whether an individual is personally affected by it or it impacts a family member, a friend, or a coworker. In fact, the prevalence for any disorder in a 12-month period is estimated at 26.2% (Kessler et al., 2005). Recently, researchers have hypothesized that emotion regulation may play an important role in the etiology, maintenance, and treatment of these disorders. Emotion regulation is the process through which individuals control their emotions either consciously or unconsciously in response to everyday situations (Gross, 1998). While successful emotion regulation has been associated with improved health outcomes, relationship, and academic and work performance (Brackett & Salovey, 2004), difficulties in emotion regulation are associated with many forms of psychopathology (Gross & Muñoz 1995), such as depression and anxiety, borderline personality disorder, bipolar disorder, social anxiety, and eating and substance-use disorders, among others. One possibility is that individuals who habitually resort to these strategies over time experience longer and more severe periods of distress (Aldao, Nolen-Hoeksema & Schweizer, 2010).

Emotion regulation deficits have also been found to be a mediator between emotional clarity and psychopathology (Vine and Aldao, 2014). If a person cannot identify their feelings they may be unable to take the necessary steps, such as implementing an emotion regulation strategy, to help themselves (Barrett et al., 2001).

Due to their positive or negative associations with symptoms of psychopathology, different emotion regulation strategies have been categorized as either adaptive or maladaptive. Cognitive reappraisal, one of the focuses of this study, is an emotion regulation strategy that is typically considered adaptive because it is linked to better mental health (Aldao, Nolen-
THE EFFECTIVENESS OF EMOTION REGULATION

Hoeksema & Schweizer, 2010). It consists of reframing a stressful situation as benign or positive in order to reduce negative affect (Gross, 1998). For example, if a student performed poorly on a quiz, he could use cognitive reappraisal to generate statements such as ‘It’s not worth that much overall’ or ‘I’ll do better on the next assignment.’

More recent literature has suggested that humor can also act as an adaptive emotion regulation strategy because it allows for the expression of negative emotion without the individual discomfort that would normally accompany it. Humor as an emotion regulation strategy has not been as well studied as other strategies, but is has been found to be more effective at down-regulating negative emotion than cognitive reappraisal (Sampson, Glassco, Lee & Gross, 2014). Positive humor is associated with numerous health benefits. In addition to it relaxing muscles and increasing respiration it also increases the production of pain-killing endorphins while decreasing the production of stress-related hormones (Martin, 2004). It has also been shown to be associated with lower levels of loneliness, lower symptoms of depression and higher self-esteem (Overholser, 1992). More recent literature suggests that humor functions as a type of cognitive reappraisal, different than the more often studied rational reappraisal defined earlier in this section (Kugler & Kuhbandner, 2015). Thus, understanding how humor functions in regulating emotions is an important question for future research.

Distraction is one of several emotion regulation strategies considered maladaptive because it is linked to poor mental health (Aldao, Nolen-Hoeksema & Schweizer, 2010). Put simply, it is the avoidance of psychological experiences, such thoughts, emotions, sensations, memories, or urges. This strategy has been shown to increase negative thoughts and prevent the individual from taking necessary action (Aldao, Nolen-Hoeksema & Schweizer, 2010). The
THE EFFECTIVENESS OF EMOTION REGULATION

increased avoidance of these experiences is conceptualized by some to be at the core of psychopathology (e.g., Hayes, Strosahl, & Wilson, 1999).

In much of the existing research on this topic, emotion regulation usage is measured by asking participants the extent to which they were using various strategies (i.e., “To what extent were you trying to change your thoughts to feel differently?”) during emotional stimuli. However, this self-report does not necessarily tell us information about the accuracy of self-reported emotion regulation use. For instance, a participant may report that they are using certain strategies, but closer examination of the phrases or descriptions of their ER may reflect a poor understanding or misapplication of the strategy. As Troy and colleagues said, “self-reported reappraisal use may be crucially different from the ability to use cognitive reappraisal effectively” (Troy et al., 2010).

This may be true for cognitive reappraisal and for the many other emotion regulation strategies because self-report measures are subject to individual biases. An individual may report having used, for example, cognitive reappraisal, but there is often no way to determine whether their self-report measures are accurate by looking only at the rating of endorsement for using the strategy, without the specifics of how the strategy was used. Thus, the present study seeks to examine the relationships between self-reported use of emotion regulation and the descriptions participants provide for how they implemented the strategy (i.e., phrases that they used) and determine the extent to which these concepts are correlated. Discrepancies between these two could indicate a lack of clarity about how to use strategies or a lack of awareness of how these strategies are implemented and may play a part in an individual’s difficulties with emotion regulation. I will calculate the accuracy rating by examining whether self-reported use of
THE EFFECTIVENESS OF EMOTION REGULATION

emotion regulation correlates with descriptions that the participants provide as rated by myself and another research assistant. I will use this accuracy rating to make the following predictions.

Hypotheses:

1. Higher accuracy ratings will predict increased *effectiveness* of ER (as measured by change in affect after using the strategy)
2. Lower accuracy will predict increased levels of emotion dysregulation
3. Lower accuracy will predict increased levels of psychopathology (i.e., depression, generalized anxiety disorder, social anxiety disorder, and obsessive-compulsive disorder).

Methods

A total of 97 Ohio State undergraduate students (51.5% female) were recruited through the Department of Psychology’s Research Experience Program. Participants were required to be native English speakers. The mean age of the sample was 19.7 (SD = 2.26, Range: 18 to 32) and most of the participants (83%) self-identified as Caucasian. For participating in the study, the participants received 1.5 REP credits. The study took approximately 2 hours to complete. After signing the consent form, participants were asked to complete questionnaires assessing habitual use of emotion regulation strategies and symptoms of psychopathology. The present study consists of a secondary analysis from the below protocol, which more broadly measured the effectiveness of humor, reappraisal, and distraction in response to controllable and uncontrollable emotional stimuli. The Ohio State University Institutional Review Board approved all measures and procedures.

Self-report questionnaires.
THE EFFECTIVENESS OF EMOTION REGULATION

Centers for Epidemiological Studies – Depression Scale (CES-D). The CES-D (Radloff, 1977) is a 20-item self-report measure that assesses current depressive symptoms scored on a 3-point scale with higher scores indicating greater depressivity.

Social Interaction Anxiety Scale (SIAS). The SIAS (Mattick & Clarke, 1998) is a 20-item self-report measure that assesses symptoms of social anxiety disorder, particularly anxiety experienced in dyads or groups. Items are scored on a 5-point scale ranging from 0 to 4 with total scores ranging from 0 to 80. A score of 34 has been identified as a clinical cutoff score (Brown et al., 1997).

Obsessive Compulsive Inventory – Revised (OCI-R). The OCI-R (Foa et al., 2002) is an 18-item self-report measure that assesses symptoms of obsessive compulsive disorder over the past month. It has 6 subscales, which are washing, checking, obsessing, ordering, neutralizing, and hoarding.

Generalized Anxiety Disorder Questionnaire – IV (GADQ-IV). The GADQ-IV (Newman et al., 2002) is a 9-item self-report measure that assesses symptoms of GAD as delineated in DSM-IV (APA, 2000). Five items measure the excessiveness and uncontrollability of worry, one is open-ended and asks for a list of the most frequent worry topics, two items on a 9-point scale measure the clinical distress and functional impairment associated with excessive worry and anxiety, and a final item asks about the presence of six physical symptoms that fall under the DSM-IV criteria for GAD. Total scores range from 0 to 13 with a clinical cutoff of 5.7 (e.g., Newman et al., 2002).

Difficulties with Emotion Regulation Scale (DERS). The DERS (Gratz & Roemer, 2004) is a 36-item self-report measure that assesses habitual difficulties regulating emotions in a number of dimensions. Items are rated on a 5-point scale with higher scores indicating more
THE EFFECTIVENESS OF EMOTION REGULATION
difficulties regulating emotions. The DERS can be calculated as a total score or as 6 individual
subscales (Nonacceptance of Emotional Responses, Difficulties Engaging in Goal Directed
Behavior, Impulse Control Difficulties, Lack of Emotional Awareness, Limited Access to
Emotion Regulation Strategies, and Lack of Emotional Clarity)

Emotion Regulation Questionnaire (ERQ). The ERQ (Gross & John, 2003) measures
the habitual use of cognitive reappraisal (6 items) and excessive suppression (4 items).

Experimental Task.

Upon arriving to the lab, participants provided informed consent and then completed
questionnaires assessing use of emotion regulation strategies and symptoms of psychopathology.
The research assistant then hooked the participants up to the psychophysiological sensors for a 5-
minute resting baseline (data not included in the present study). The protocol consisted of a 2
(controllability) x 3 (ER strategy) within subject design, with a total of 6 blocks. The blocks were
presented in a counterbalanced order and corresponded to each possible combination of situation
type (controllable or uncontrollable) and emotion regulation strategy (distraction, reappraisal,
and positive humor). Each block consisted of a 2-minute long disgust video designed to provoke
high levels of disgust and anxiety. Prior to each block, participants were instructed on how to use
one of the three regulation strategies and then instructed to use it throughout the video. The
participants were also told whether the upcoming block would be controllable or uncontrollable.
In the controllable blocks, participants were able to reduce the size of the video, whereas in the
uncontrollable blocks participants were required to watch the video at full size for the entire
video. Additionally, participants rated their negative affect (anxiety, anger, desire to eat, disgust,
irritation, sadness, frustration) and positive affect before and after each block. The difference
score between their post-block affect and their pre-block affect will indicate the effectiveness of
THE EFFECTIVENESS OF EMOTION REGULATION

their emotion regulation. For example, lower negative affect scores would indicate a more successful use of emotion regulation. Disgust and desire to eat are the primary outcome variables we will be analyzing, as we expect that increased emotion regulation strategy use during a disgust-arousing video will be correlated strongly with a larger change in disgust. Participants were then asked to rate on a 0-100 rating scale their use of different emotion regulation strategies during the task (i.e. “To what extent were you [distracting, worrying, allowing/accepting, reframing, suppressing, using humor]”) and given a text box to describe phrases or methods they used to regulate their emotions during the stimulus.

Coding.

For the emotion regulation strategies, I first coded the number of statements generated by each participant for each condition. I then assessed the quality of the ER strategy on a 5-point scale. Using cognitive reappraisal as an example, 0 would indicate the participant used no reappraisal, 1 provided an unclear example of reappraisal, 2 used multiple examples with other ER strategies listed as well, 3 exclusively used one example of reappraisal, and 4 exclusively used multiple examples of reappraisal. After completing this coding, I trained a second research assistant using the same system, allowing me to calculate the interrater reliabilities. I then averaged my scores and the second-coder scores in order to generate my two desired ER measures: observer coded use of the strategy (objective use of strategy) and the correlation between this and the visual analog scale that the participant used to report their use of strategy (accuracy of use).
THE EFFECTIVENESS OF EMOTION REGULATION

Results

The questionnaire data was first examined to ensure that it meets assumptions of normality, with outliers that were plus or minus 3 standard deviations from the mean identified and removed. In this study, I collapsed across the controllable and uncontrollable ER blocks as analysis suggested the manipulation was unsuccessful and there were no differences in emotional responses or ER usage between these blocks.

The following table outlines the intraclass correlations (interrater reliability), all of which were high enough to use.

<table>
<thead>
<tr>
<th>Variable</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humor number correct</td>
<td>.965</td>
</tr>
<tr>
<td>Humor quality</td>
<td>.896</td>
</tr>
<tr>
<td>Reappraisal number correct</td>
<td>.948</td>
</tr>
<tr>
<td>Reappraisal quality</td>
<td>.943</td>
</tr>
<tr>
<td>Distraction number correct</td>
<td>.967</td>
</tr>
<tr>
<td>Distraction quality</td>
<td>.959</td>
</tr>
</tbody>
</table>
THE EFFECTIVENESS OF EMOTION REGULATION

Hypothesis 1: Predicting ER effectiveness

I calculated accuracy by using correlations between the self-reported use of emotion regulation and quality of use, which was determined by the objective coding of the participant’s responses. A high positive correlation would indicate greater coherence between self-reported and objective use of the strategy and indicate greater awareness of emotion regulation ability. In turn, a low, or divergent, correlation would indicate poorer coherence and decreased awareness.

The accuracy correlations graphed below (figures 1.1-1.3) were as follows: cognitive reappraisal (r = .205, p < .05), humor (r = .272, p < .05) and distraction (r = .303, p < .05). Through mixed MANOVAs we determined that accuracy predicted a change in disgust (β = -.629, t(181) = -2.871, p = .005) for humor, but not for reappraisal or for distraction (all p’s > .191).

Additionally, a change in disgust or desire to eat was not significantly correlated with the accuracy of any of the three ER strategies (all p’s > .10).

I expanded the analysis to also examine correlations between quality and self-reported use of emotion regulation strategies and effectiveness as measured by change in disgust and change in desire to eat. A change in disgust was observed in both humor quality (r= -.137, p <
THE EFFECTIVENESS OF EMOTION REGULATION

.01) and self-reported humor use (r = -.170, p < .01), an effect that was mirrored only in self-reported distraction use (r = -.175, p < .01). Unexpectedly, the reverse was found for cognitive reappraisal, which previous literature had suggested as being an adaptive strategy. Our results found a positive correlation (r = .210, p < .05) between self-reported cognitive reappraisal use and a change in disgust. This indicates that the more participants reported using cognitive reappraisal, the greater amount of disgust they reported experiencing. A change in desire to eat was correlated both with self-reported humor use (r = .154, p < .01) and with self-reported reappraisal use (r = -.186, p < .01), however the negative correlation with reappraisal is contrary to what we expected to find.

Hypothesis 2: Predicting emotion dysregulation

Accuracy and quality of reappraisal, humor, and distraction were not correlated with difficulties in emotion regulation as measured by the DERS. Self-reported use of reappraisal was significantly negatively correlated (r = -.185, p < .01). A similar correlation was found with self-reported use of humor (r = -.298, p < .05). This indicates that the more participants reported using the strategy, the less habitual difficulties regulating their emotions they experienced. All other p-values were greater than .05.

Hypothesis 3: Predicting symptoms of psychopathology

There were no significant correlations with symptoms of psychopathology for accuracy or self-reported use for cognitive reappraisal (all p’s > 0.001). Cognitive reappraisal quality had an opposite trend than expected such that it was positively correlated with symptoms of social anxiety (r = .142, p < .05). Reappraisal quality was also correlated with symptoms of OCD, as measured by the OCI-R (r = -.150, p < .05). There were no significant correlations between reappraisal quality and symptoms of generalized anxiety or depression.
THE EFFECTIVENESS OF EMOTION REGULATION

Humor accuracy was not significantly correlated with any symptoms of psychopathology (all p’s > .01). Symptoms of OCD were negatively correlated with humor quality (r = -.119, p < .01). Self-reported use of humor was also negatively correlated with different forms of psychopathology: depression (r = -.177, p < .01), generalized anxiety (r = -.242, p < .05) and social anxiety (r= -.290, p < .05).

None of the measurements of distraction had any significant correlations with symptoms of psychopathology (all p’s > .01)

Discussion

The findings for humor and distraction suggest that both emotion regulation strategies do play a role in reducing negative affect, in particular disgust. Surprisingly, however, was the finding that self-reported humor and distraction seems to have more of an impact on negative affect. This may reflect a placebo-type where the affective outcomes are more reliant on whether or not a participant believes he or she implemented the strategy correctly than whether they actually do. Though this effect is yet to be replicated in other studies, it could have a broad impact on how emotion regulation is research and implemented in a general population.

There are a few possible explanations for the unexpected reverse correlations we found between cognitive reappraisal and both a change in disgust and symptoms of psychopathology. The first is that the coding of the cognitive reappraisal statements by the research assistants, while high in interrater reliability (average ICC = .943, 95% CI: .933 to .952), may not have been an accurate reflection of the participants’ overall ability to use reappraisal correctly. This may be a result of a discrepancy between the measurement of cognitive reappraisal in the current study and as it is measured in the ERQ. The correlation between reappraisal quality and ERQ reappraisal was only .049. Humor and distraction may have been more straightforward, which is
THE EFFECTIVENESS OF EMOTION REGULATION

why the results are more consistent with expectations. However, the concept of reappraisal may be more difficult for participants to grasp or implement.

It has also previously been identified that reality based reappraisal (ex: “The film clip isn’t real”) is associated with smaller increases in positive affect (McRae, Ciesielski, & Gross, 2012). Though our study is interested in changes in negative affect, the same effect might be in play here. Future replications of this study may prompt participants to use a specific type of reappraisal or give a more thorough example, although this presents the opportunity for participants to copy the provided example rather than generate their own.

One last explanation for the unexpected cognitive reappraisal findings may be that a demand characteristic was in play. Participants might not have been using the strategy properly but, when prompted, felt the need to use a quality example of cognitive reappraisal due to their perception of the researcher’s expectations. In the future, participants could be prompted to provide more honest and thorough descriptions of their emotion regulation strategy use.

There are a few noteworthy limitations to this study. First, the sample consisted mostly of an undergraduate population, which limits the study in its external validity. Future replications would benefit from including a more broad population in age, race, and location. Additionally, it would be interesting to include a clinical population in future studies. Maybe we are seeing placebo-type effects with humor and distraction in an average population, but emotion regulation quality or accuracy may have a larger role in reducing negative affect among people with different forms of psychopathology. It would be interesting to explore further how different types of humor and reappraisal function using the present coding of this data. This may indicate that a specific type of either (ex: regulating thoughts about the content of the situation) may have more
THE EFFECTIVENESS OF EMOTION REGULATION

powerful down-regulating effects on negative emotion than other types (ex: regulating thoughts about the experimental situation).

Despite these limitations, this study may provide valuable information regarding how emotion regulation, in particular cognitive reappraisal, is researched and, in the long term, implemented in mental health therapy.
References

THE EFFECTIVENESS OF EMOTION REGULATION

consequences for experience, expression, and physiology. *Journal of personality and social psychology*, 74(1), 224.

Newman, M. G., Zuellig, A. R., Kachin, K. E., Constantino, M. J., Przeworski, A., Erickson, T.,
THE EFFECTIVENESS OF EMOTION REGULATION

THE EFFECTIVENESS OF EMOTION REGULATION

THE EFFECTIVENESS OF EMOTION REGULATION

Correlation Matrices

Reappraisal

<table>
<thead>
<tr>
<th></th>
<th>Reappraisal Quality</th>
<th>Reappraisal Self-Report</th>
<th>Reappraisal Accuracy</th>
<th>Change in Desire to Eat</th>
<th>CES-D total</th>
<th>GADQ-N Total Continues</th>
<th>CCI total</th>
<th>SAS Total score</th>
<th>SPS total</th>
<th>DERS total</th>
<th>DRO Reappraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reappraisal Quality</td>
<td>Pearson Correlation 1</td>
<td>0.265**</td>
<td>-0.563**</td>
<td>0.154</td>
<td>-0.186</td>
<td>0.071</td>
<td>-0.150**</td>
<td>0.147**</td>
<td>0.011</td>
<td>-0.051</td>
<td>0.643</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.006</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>364</td>
<td>181</td>
</tr>
</tbody>
</table>

Distraction

<table>
<thead>
<tr>
<th></th>
<th>Distraction Quality</th>
<th>Distraction Self-Report</th>
<th>Distraction Accuracy</th>
<th>Change in Desire to Eat</th>
<th>CES-D total</th>
<th>GADQ-N Total Continues</th>
<th>CCI total</th>
<th>SAS Total score</th>
<th>SPS total</th>
<th>DERS total</th>
<th>DRO Distraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distraction Quality</td>
<td>Pearson Correlation 1</td>
<td>0.307**</td>
<td>0.451**</td>
<td>-0.143</td>
<td>0.067</td>
<td>0.130</td>
<td>0.069</td>
<td>0.066</td>
<td>0.021</td>
<td>-0.311</td>
<td>0.523</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>364</td>
<td>182</td>
</tr>
<tr>
<td>Distraction Self-Report</td>
<td>Pearson Correlation 0.307**</td>
<td>0.533**</td>
<td>-0.175</td>
<td>0.032</td>
<td>-0.075</td>
<td>0.081</td>
<td>0.094</td>
<td>0.073</td>
<td>0.046</td>
<td>-0.108</td>
<td>0.350</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>364</td>
<td>182</td>
</tr>
<tr>
<td>Distraction Accuracy</td>
<td>Pearson Correlation -0.451**</td>
<td>0.533**</td>
<td>1</td>
<td>-0.223</td>
<td>-0.003</td>
<td>-0.027</td>
<td>0.025</td>
<td>0.185**</td>
<td>0.010</td>
<td>-0.034</td>
<td>-0.338</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>364</td>
<td>182</td>
</tr>
</tbody>
</table>

Humor

<table>
<thead>
<tr>
<th></th>
<th>Humor Quality</th>
<th>Humor Self-Report</th>
<th>Humor Accuracy</th>
<th>Change in Desire to Eat</th>
<th>CES-D total</th>
<th>GADQ-N Total Continues</th>
<th>CCI total</th>
<th>SAS Total score</th>
<th>SPS total</th>
<th>DERS total</th>
<th>DRO Humor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humor Quality</td>
<td>Pearson Correlation 1</td>
<td>0.272**</td>
<td>-0.641**</td>
<td>-0.173</td>
<td>0.004</td>
<td>0.020</td>
<td>0.026</td>
<td>-0.115**</td>
<td>-0.035</td>
<td>-0.040</td>
<td>-0.071</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>366</td>
<td>183</td>
</tr>
<tr>
<td>Humor Self-Report</td>
<td>Pearson Correlation 0.272**</td>
<td>0.415**</td>
<td>-0.173</td>
<td>0.154</td>
<td>-0.026</td>
<td>0.016</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>366</td>
<td>183</td>
</tr>
<tr>
<td>Humor Accuracy</td>
<td>Pearson Correlation -0.641**</td>
<td>0.415**</td>
<td>1</td>
<td>-0.015</td>
<td>0.127</td>
<td>-0.056</td>
<td>-0.203*</td>
<td>0.099</td>
<td>-0.117</td>
<td>-0.000</td>
<td>-0.118</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>366</td>
<td>183</td>
</tr>
</tbody>
</table>

Correlations are significant at the 0.01 level (2-tailed).

*Correlations are significant at the 0.05 level (2-tailed).