BULLETIN 62

PLEISTOCENE MOLLUSCA
OF OHIO

by

Aurèle La Rocque

COLUMBUS
1966
Part 1, pages 1-111

1967
Part 2, pages 113-356

1968
Part 3, pages 357-553

1970
Part 4, pages 555-800
Contents

Chapter 1 - Introduction

Nature and purpose .. 1
General nature of Pleistocene nonmarine molluscan faunas 2
Classification of the Pleistocene Mollusca of Ohio 3
Stratigraphic interpretation of molluscan assemblages 4
General statement ... 4
Diversity of molluscan provinces .. 5
Diversity of environmental requirements .. 5
Diversity of nonmarine molluscan assemblages .. 5
General factors, influencing all groups .. 5
Special factors for freshwater forms .. 6
Special factors for land forms .. 6
Conclusions ... 6
The framework of time ... 6
Stratigraphic framework for Ohio .. 7
Collecting methods ... 7
Purpose of collections ... 7
Measured sections ... 7
Sampling ... 8
Accessory material ... 8
Labeling ... 8
Laboratory methods ... 8
Sieving ... 8
Picking ... 9
Sorting ... 9
Distribution records ... 9
Previous work ... 10
Acknowledgments ... 10

Chapter 2 - Geologic Setting

General statement ... 12
Nature of deposits ... 12
Freshwater deposits ... 12
Great Lakes sediments ... 12
Sediments of smaller lakes and ponds .. 12
Silts ... 12
Marls ... 12
Peat and peaty marls ... 12
River and creek deposits ... 12
Terrestrial and semiterrestrial deposits .. 13
Buried soils and forest beds ... 13
Loess and loesslike deposits ... 13
Pleistocene history of Ohio ... 13
General statement ... 13
Maximum extent of glaciation in Ohio ... 13
Pre-Kansan events ... 13
Events of Kansan (?) time ... 14
Events of Yarmouth time ... 14
Events of Illinoian time ... 14
Events of Sangamon time ... 14
Events of Wisconsin time ... 14

Chapter 3 - Paleoecology

General statement ... 16
Basic assumptions in paleoecologic interpretation of molluscan assemblages ... 16
Primary data ... 16
Identification of species ... 16
Constancy of environmental preferences ... 17
Biocoenose and thanatocoenose ... 17
Rule of relative abundance ... 17
Relation of enclosing sediments to molluscan assemblages ... 18
Variability of stream environments and assemblages ... 18
Variability of lacustrine assemblages ... 18
Changing composition of the living fauna ... 19
Conclusions ... 19
Pliocene assemblages ... 19
Nebraskan or Aftonian assemblages ... 21
Aftonian assemblage ... 22
Kansan assemblages ... 22
Yarmouth assemblage ... 30
Illinoian assemblages ... 30
Sangamon assemblages ... 31
Wisconsin assemblages ... 34
Pleistocene assemblages of uncertain age ... 51
Living assemblages ... 53
CHAPTER 4 - NAIADES

Class Pelecypoda .. 113
Order Prionodesmacea .. 113
Family Margaritanidae .. 113
Genus Cumberlandia Ortmann 1912 113
C. monodonta (Say) 1829 114
Family Unionidae .. 116
Subfamily Unioninæ .. 116
Genus Fusconaia Simpson 1900 116
F. ebenus (Lea) 1831 ... 117
F. flavă (Rafinesque) 1820 117
F. flavă parvula Grier 1918 120
F. subrotunda (Lea) 1831 120
F. subrotunda kirtlandiana (Lea) 123
F. undata (Barnes) 1823 124
F. undata trigona (Lea) 1831 126
Genus Megalonaias Utterback 1915 127
M. gigantea (Barnes) 1823 128
Genus Amblema Rafinesque 1819 130
A. costata (Rafinesque) 1820 130
A. plicata (Say) 1817 ... 132
Genus Quadrula Rafinesque 1820 132
Q. cylindrica (Say) 1817 .. 133
Q. fragosa (Conrad) 1836 134
Q. metanevra Rafinesque 1820 135
Q. metanevra wardii (Lea) 1861 136
Q. nodulata Rafinesque 1820 138
Q. pilaris (Lea) 1840 ... 139
Q. pustulosa (Lea) 1831 .. 141
(Q. pustulosa kienneriana (Lea) 1852) 141
Q. pustulosa praesina (Conrad) 143
Q. quadrula Rafinesque 1820 144
Genus Trygonia Agassiz 1852 147
T. verrucosa (Rafinesque) 1820 148
Genus Cyclonaias Pilsbry 1822 149
C. tuberculata (Rafinesque) 1820 150
Genus Plethobasus Simpson 1900 151
P. cicatricosus (Say) 1829 152
P. cooperianus (Lea) 1834 154
P. cyphus (Rafinesque) 1820 155
Genus Pleurobema Rafinesque 1819 157
P. bounianum (Lea) 1840 157
P. clava (Lamarck) 1819 .. 159
P. cordatum (Rafinesque) 1820 160
P. cordatum catillus (Conrad) 1836 163
P. cordatum coccineum (Conrad) 1836 164
P. cordatum pauperculum (Simpson) 1900 165
P. cordatum plenum (Lea) 1840 168
P. cordatum pyramidatum (Lea) 1834 170
Genus Elliptio Rafinesque 1819 170
E. complanatus (Solanader) 1786 170
E. crassidens (Lamarck) 1819 172
E. dilatatus (Rafinesque) 1820 174
E. dilatatus sterkii Grier 1918 177
Genus Uniomerus Conrad 1853 177
U. tetralasmus (Say) 1830 178
[U. tetralasmus camptodon (Say) 1832] 180
U. tetralasmus sayi (Ward) 1839 181
Subfamily Anodontinae ... 182
Genus Anodontia Lamarck 1799 182
A. grandis Say 1829 ... 182
A. imbecillis Say 1829 ... 187
[A. implicata Say 1829] 189
Genus Lastena Rafinesque 1820 189
L. lata (Rafinesque) 1820 189
Genus Lasimigone Rafinesque 1831 191
L. (Pterosyna) complanata (Barnes) 1823 191
L. (Platynaias) compressa (Lea) 1829 193
L. (Lasimigone) costata (Rafinesque) 1820 195
L. (Lasimigone) costata eriganensis Grier 1918 196
[L. (Platynaias) subviridis (Conrad) 1835] 196
Genus Anodontoides Simpson 1898 197
A. ferussacianus (Lea) 1834 198
A. ferussacianus buchanensis (Lea) 1838 200
A. ferussacianus modestus (Lea) 1857 200
A. ferussacianus subcylindraceus (Lea) 1838 200
Genus Simpsoniconcha Frierson 1914 202
Simpsoniconcha ambigua (Say) 1825 202
Genus Alasmidonta Say 1818 204
A. calculeus (Lea) 1830 204
A. marginata (Say) 1819 206
Genus Arcidens Simpson 1900 208
A. confragosus (Say) 1829 208
Genus Strophitus Rafinesque 1820 208
S. undulatus (Say) 1817 209
Subfamily Lampsilinae ... 212
Genus Lampsilis Rafinesque 1820 212
L. anodontoides (Lea) 1831 213
L. anodontoides fallaciosa (Smith) 1899 214
L. fasciola Rafinesque 1820 215
CONTENTS

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. orbiculata (Hildreth) 1828</td>
<td>217</td>
</tr>
<tr>
<td>L. ovata (Say) 1817</td>
<td>220</td>
</tr>
<tr>
<td>L. ovata ventricosa (Barnes) 1823</td>
<td>220</td>
</tr>
<tr>
<td>L. ovata canadensis (Lea) 1857</td>
<td>222</td>
</tr>
<tr>
<td>L. radiata (Gmelin) 1792</td>
<td>223</td>
</tr>
<tr>
<td>L. radiata siliquoides (Barnes) 1823</td>
<td>224</td>
</tr>
<tr>
<td>Genus Psychobranchus Simpson 1900</td>
<td>228</td>
</tr>
<tr>
<td>P. fasciolare Rafinesque 1820</td>
<td>228</td>
</tr>
<tr>
<td>Genus Obliquaria Rafinesque 1820</td>
<td>230</td>
</tr>
<tr>
<td>O. reflexa Rafinesque 1820</td>
<td>230</td>
</tr>
<tr>
<td>Genus Cyprogenia Agassiz 1852</td>
<td>232</td>
</tr>
<tr>
<td>C. irorata (Lea) 1828</td>
<td>232</td>
</tr>
<tr>
<td>Genus Obovaria Rafinesque 1819</td>
<td>234</td>
</tr>
<tr>
<td>O. olivaria Rafinesque 1820</td>
<td>234</td>
</tr>
<tr>
<td>O. retusa (Lamarck) 1819</td>
<td>236</td>
</tr>
<tr>
<td>O. subrotunda (Rafinesque) 1820</td>
<td>239</td>
</tr>
<tr>
<td>O. subrotunda leibii (Lea) 1862</td>
<td>241</td>
</tr>
<tr>
<td>O. subrotunda lens (Lea) 1831</td>
<td>241</td>
</tr>
<tr>
<td>[O. subrotunda levigata]</td>
<td>242</td>
</tr>
<tr>
<td>Genus Actinonaias Crosse and Fischer 1894</td>
<td>243</td>
</tr>
<tr>
<td>A. carinata (Barnes) 1823</td>
<td>243</td>
</tr>
<tr>
<td>A. ellipsiformis (Conrad) 1836</td>
<td>245</td>
</tr>
<tr>
<td>Genus Truncilla Rafinesque 1820</td>
<td>246</td>
</tr>
<tr>
<td>T. donaciformis (Lea) 1828</td>
<td>247</td>
</tr>
<tr>
<td>T. truncata Rafinesque 1820</td>
<td>247</td>
</tr>
<tr>
<td>Genus Plagiola Rafinesque 1819</td>
<td>249</td>
</tr>
<tr>
<td>P. lineolata Rafinesque 1820</td>
<td>249</td>
</tr>
<tr>
<td>Genus Leptodea Rafinesque 1820</td>
<td>250</td>
</tr>
<tr>
<td>L. fragilis (Rafinesque) 1820</td>
<td>252</td>
</tr>
<tr>
<td>L. fragilis lacustris (F. C. Baker) 1922</td>
<td>252</td>
</tr>
<tr>
<td>L. laevissima (Lea) 1830</td>
<td>254</td>
</tr>
<tr>
<td>L. leptodon (Rafinesque) 1820</td>
<td>254</td>
</tr>
<tr>
<td>Genus Proptera Rafinesque 1819</td>
<td>255</td>
</tr>
<tr>
<td>P. alata (Say) 1817</td>
<td>256</td>
</tr>
<tr>
<td>P. alata megaptera Rafinesque 1820</td>
<td>259</td>
</tr>
<tr>
<td>P. capax (Green) 1832</td>
<td>260</td>
</tr>
<tr>
<td>Genus Carunculina Simpson 1898</td>
<td>261</td>
</tr>
<tr>
<td>C. glans (Lea) 1834</td>
<td>261</td>
</tr>
<tr>
<td>C. parva (Barnes) 1823</td>
<td>263</td>
</tr>
<tr>
<td>Genus Ligumia Swainson 1840</td>
<td>263</td>
</tr>
<tr>
<td>L. nasuta (Say) 1817</td>
<td>263</td>
</tr>
<tr>
<td>L. recta (Lamarck) 1819</td>
<td>265</td>
</tr>
<tr>
<td>L. recta latissima Rafinesque 1820</td>
<td>265</td>
</tr>
<tr>
<td>L. subrostrata (Say) 1831</td>
<td>267</td>
</tr>
<tr>
<td>Genus Villosa Frierson 1927</td>
<td>269</td>
</tr>
<tr>
<td>V. fabalis (Lea) 1831</td>
<td>269</td>
</tr>
<tr>
<td>V. iris (Lea) 1830</td>
<td>270</td>
</tr>
<tr>
<td>[V. iris novi-eboraci (Lea)]</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 5 - SPHAERIIDAE

Order *Teleodesmacea* Dall 286
Family *Sphaeriidae* Dall 1895 286
Genus *Sphaerium* Scopoli 1777 287

Group 1 ... 287

Sphaerium corneum (Linnaeus) 1758 287
S. occidentale (Prime) 1860 288
S. securis (Prime) 1851 290

[S. securis form sphaericum (Anthony) 1852] 291
[S. securis form succineum (Sterki) 1916] 293
S. nitidum Clessin 1876 293
S. transversum (Say) 1829 293
S. lacustre (Müller) 1774 295

[S. lacustre form jayense (Prime) 1851] 298
[S. lacustre form ryckboli (Normand) 1844] 298
S. partumeium (Say) 1822 299
S. rhomboideum (Say) 1822 300

Group 2 ... 303

Sphaerium sulcatum (Lamarck) 1818 303

[S. sulcatum planatum Sterki 1916] 304
[S. simile (Say) 1816] 305
S. striatinum (Lamarck) 1818 306

[S. striatinum form acuminatum (Prime) 1851] 307
[S. striatinum form corpulentum Sterki 1916] 309
[S. striatinum form emarginatum (Prime) 1851] 309
[S. striatinum form forbesi] 309

Page 1838 .. 271
Genus *Dysnomia* Agassiz 1852 275
[D. brevidens (Lea) 1834] 275
D. flexuosa (Rafinesque) 1820 275
D. personata (Say) 1829 278
D. (Scalenilla) sulcata (Lea) 1829 278
[D. (Scalenilla) sulcata delicata (Simpson) 1900] 280
D. (Pilea) torulosa (Rafinesque) 1820 3000 280
D. (Pilea) torulosa cincinnatensis (Lea) 1840 283
D. (Pilea) torulosa rangiana (Lea) 1839 283
D. (Truncillopsis) triquetra (Rafinesque) 1820 285
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>[P. fraudulentum peraltum Sterki 1900] 354</td>
</tr>
<tr>
<td>310</td>
<td>[P. obsioëns Sterki 1903] 355</td>
</tr>
<tr>
<td>311</td>
<td>[P. variabile(?) brevius Sterki 1906] 355</td>
</tr>
</tbody>
</table>

CHAPTER 6 - FRESHWATER GASTROPODA

Class Gastropoda ...	357
Subclass Streptoneura Spengel	357
Order Ctenobranchiata Schweigger	357
Suborder Platyypoda Lamarck	357
Superfamily Taenioglossa Bouvier	357
Family Valvatidae Gray	358
Genus Valvata Müller 1774	358
V. bicarinata Lea 1841	358
V. lewisi Currier 1868	360
V. perdepressa Walker 1906	360
V. perdepressa walkeri F. C. Baker 1930	363
V. piscinalis (Müller) 1774	363
V. sincera Say 1824 ..	363
V. tricarinata (Say) 1817	367
Family Viviparidae (Gray 1857) Gill 1863	369
Subfamily Viviparinae (Gill 1871) F. C. Baker 1926	369
Genus Viviparus Denys de Montfort 1810	369
V. contectoides Binney 1865	369
V. malleatus Reeve 1863	371
Subfamily Lioplacinae (Gill 1871) F. C. Baker 1926	371
Genus Lioplax Troschel 1857	371
L. subcarinata (Say) 1817	371
L. subcarinata occidentalis Pilbray 1935	372
Genus Campeloma Rafinesque 1819	374
C. decisum (Say) 1817	374
C. decisum fecundum (Lewis) 1868	376
C. integrum (Say) 1821	376
C. integrum obesum ("Lewis" Binney) 1865	376
C. ponderosum (Say) 1821	379
C. rufum (Haldeman) 1841	379
C. subsolidum (Anthony) 1860	382
Family Amnicolidae (Tryon 1862) Gill 1863	384
Subfamily Amnicolineae Gill 1871	384
Genus Amnicola Gould and Haldeman 1841	384
Subgenus Amnicola sensu stricto	384
A. limosa (Say) 1817 ...	384
A. limosa parvula Lea 1841	385
A. walkerii Pilsbry 1898	388
Subgenus Marstonia F. C. Baker 1926	388
A. lustrica Pilsbry 1890	388
A. gelida F. C. Baker 1921	390
A. pilbsyri Walker 1906	390
Subgenus Cincinnatus Pilsbry 1891	394
A. integra (Say) 1821	394
Subgenus Probrybinella Thiele 1928	394
A. (Probrybinella) lacustris (F. C. Baker) 1928	394
Group of Amnicola leightoni	396
A. leightoni F. C. Baker 1920	396
Genus Phyrulopsis Call and Pilsbry 1886	397
P. lotsoni (Walker) 1901	399
Genus Hydrobia Hartmann 1821	399
Il. nickliniana (Lea) 1839	399
Subfamily Lithoglyphinae Fischer 1885	402
Genus Somatogyrus Gill 1863	402
S. integer (Say) 1829	402
S. subglobosus (Say) 1825	404
S. trobish Doherty 1878	404
Subfamily Lyogyrinae Pilsbry 1916	405
Genus Lyogyres Gill 1863	406
L. pupoides (Gould) 1840	407
Subfamily Bulimininae Hannibal 1912	408
Genus Bulimus Scopoli 1777	408
B. tentaculatus (Linnaeus) 1767	408
Family Pomatiopsidae Simpson	410
Genus Pomatiopsis Tryon 1862	410
P. cincinnatensis (Lea) 1840	410
P. lapidaria (Say) 1817	412
Family Pleuroceridae	413
Genus Pleurocerta Rafinesque 1818	415
P. acutum Rafinesque 1831	415
P. canaliculatum (Say) 1821	417
P. canaliculatum undulatum (Say) 1829	417
[P. ellipticum Anthony]	418
[P. labiatum (Lea) 1862]	419
Genus Gonobiopsis Lea 1862	419
G. haldemani Tryon 1865	420
G. laqueata (Say) 1829	422
G. livescens (Menke) 1830	422
[G. livescens depygis (Say) 1829]	423
G. livescens gracilior (Anthony) 1854	425
G. semicarinata (Say) 1829	425
Genus Anculosa Say 1821	426
A. praerosa (Say) 1821	427
[A. subglobo (Say) 1825]	427
Genus Lithasia Haldeman 1840	427
Lithasia obovata (Say) 1829	429
L. obovata depygis (Say) 1829	429
[L. obovata consanguinea (Anthony) 1854]	429
L. verrucosa (Rafinesque) 1820	429
Genus Naticris H. and A. Adams 1858	432
N. trilineata (Say) 1829	432
Subclass Euthyneura Spengel	432
Order Pulmonata Cuvier	432
Suborder Basommatophora A. Schmidt	433
Superfamily Limnophila	433
Family Lymnaeidae Broderip 1839, mend. F. C. Baker 1828	434
Genus Lymnaea Lamarck 1799	434
L. stagnalis (Linnaeus) 1758	435
L. stagnalis jugularis Say 1817	435
Genus Stagnicola (Leach) Jeffreys 1830	437
S. caperata (Say) 1829	437
S. catascopium (Say) 1817	438
S. desidiosa (Say) 1821	439
S. exilis (Lea) 1837	441
S. lanceata (Gould) 1848	443
S. palustris (Müller) 1774	443
S. palustris elodes (Say) 1821	446
S. palustris jolietensis (F. C. Baker) 1901	446
S. kirtilandiana (Lea) 1841	446
S. reflexa (Say) 1821	450
S. reflexa Walkeri (F. C. Baker) 1902	450
S. umbrosa (Say) 1832	451
S. woodruffi (F. C. Baker) 1901	453
Genus Acella Haldeman 1841	454
A. haldemani ("Deshayes" Biney) 1867	455
Genus Pseudosuccinea F. C. Baker 1908	456
P. columella (Say) 1817	456
P. columella casta (Lea) 1841	459
P. columella chalybea (Gould) 1840	459
Genus Radix Montfort 1810	461
R. auricularia (Linnaeus) 1758	462
Genus Bulimnea Haldeman 1841	462
B. megasoma (Say) 1824	463
Genus Fossaria Westerlund 1885	464
F. dalli (F. C. Baker) 1906	466
F. exigua (Lea) 1841	467
F. galbana (Say) 1825	468
F. humiles (Say) 1822	469
F. modicella (Say) 1825	469
F. modicella rustica (Lea) 1841	473
F. obruissa (Say) 1825	473
F. obruissa decampi (Streng) 1906	476
F. parva (Lea) 1841	477
F. parva sterkii (F. C. Baker) 1905	478
<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planorbidae H. and A. Adams 1855</td>
<td>482</td>
</tr>
<tr>
<td>Subfamily Planorbinae H. A. Pilsbry 1934</td>
<td>482</td>
</tr>
<tr>
<td>Genus Anisus Studer 1820 (Gray 1847)</td>
<td>482</td>
</tr>
<tr>
<td>A. (Anisus) pattersoni (F. C. Baker) 1938</td>
<td>482</td>
</tr>
<tr>
<td>Genus Gyraulus Agassiz in J. de Charpentier 1837</td>
<td>483</td>
</tr>
<tr>
<td>Subgenus Gyraulus s.s.</td>
<td>483</td>
</tr>
<tr>
<td>G. arcticus (Beck' Moller) 1842</td>
<td>483</td>
</tr>
<tr>
<td>G. deflectus (Say) 1824</td>
<td>485</td>
</tr>
<tr>
<td>G. deflectus obliquus (De Kay) 1843</td>
<td>487</td>
</tr>
<tr>
<td>G. bursutus (Gould) 1840</td>
<td>488</td>
</tr>
<tr>
<td>Subgenus Torquis Dall 1905</td>
<td>489</td>
</tr>
<tr>
<td>P. parvus (Say) 1817</td>
<td>491</td>
</tr>
<tr>
<td>P. altissimus (F. C. Baker) 1919</td>
<td>492</td>
</tr>
<tr>
<td>G. circumstriatus (Tryon) 1866</td>
<td>493</td>
</tr>
<tr>
<td>Genus Armiger Hartmann 1840</td>
<td>496</td>
</tr>
<tr>
<td>A. cristia (Linnaeus) 1758</td>
<td>496</td>
</tr>
<tr>
<td>Genus Australorbid Pilsbry 1934</td>
<td>498</td>
</tr>
<tr>
<td>[A. glabratus (Say) 1818]</td>
<td>498</td>
</tr>
<tr>
<td>Subfamily Helisomatinae F. C. Baker 1928</td>
<td>498</td>
</tr>
<tr>
<td>Genus Helisoma Swainson 1840</td>
<td>498</td>
</tr>
<tr>
<td>Subgenus Helisoma s.s.</td>
<td>498</td>
</tr>
<tr>
<td>H. anceps (Menke) 1830</td>
<td>500</td>
</tr>
<tr>
<td>H. anceps striatum (F. C. Baker) 1902</td>
<td>500</td>
</tr>
<tr>
<td>Subgenus Piersoma Dall 1905</td>
<td>501</td>
</tr>
<tr>
<td>H. trivolvis (Say) 1817</td>
<td>501</td>
</tr>
<tr>
<td>Subgenus Planorbella Haldeman 1842</td>
<td>503</td>
</tr>
<tr>
<td>H. campanulatum (Say) 1821</td>
<td>504</td>
</tr>
<tr>
<td>Subfamily Planorbilinae Pilsbry 1934</td>
<td>505</td>
</tr>
<tr>
<td>Genus Planorba Haldeman 1842</td>
<td>505</td>
</tr>
<tr>
<td>P. armiger (Say) 1818</td>
<td>507</td>
</tr>
<tr>
<td>P. crassilabris (Walker) 1907</td>
<td>507</td>
</tr>
<tr>
<td>Genus Promenetus F. C. Baker 1935</td>
<td>508</td>
</tr>
<tr>
<td>P. exacuus (Say) 1821</td>
<td>510</td>
</tr>
<tr>
<td>P. rubellus (Sterki) 1894</td>
<td>510</td>
</tr>
<tr>
<td>P. (Phreatomenetus) umbilicatellus (Cockerell) 1887</td>
<td>512</td>
</tr>
<tr>
<td>Genus Menetus H. and A. Adams 1855</td>
<td>512</td>
</tr>
<tr>
<td>[Subgenus Menetus s.s.]</td>
<td>514</td>
</tr>
<tr>
<td>[M. cooperi multilineatus (Vanatta) 1899]</td>
<td>514</td>
</tr>
<tr>
<td>Subgenus Micromenetus F. C. Baker 1945</td>
<td>515</td>
</tr>
<tr>
<td>M. dilatatus (Gould) 1841</td>
<td>515</td>
</tr>
<tr>
<td>M. dilatatus buchnanensis (Lea) 1841</td>
<td>515</td>
</tr>
<tr>
<td>M. brogniartianus (Lea) 1842</td>
<td>517</td>
</tr>
<tr>
<td>Family Ancyliidae Menke 1828</td>
<td>519</td>
</tr>
<tr>
<td>Subfamily Ferrissiinae Walker 1917</td>
<td>519</td>
</tr>
<tr>
<td>Genus Ferrissia Walker 1903</td>
<td>519</td>
</tr>
<tr>
<td>Subgenus Ferrissia s.s.</td>
<td>519</td>
</tr>
<tr>
<td>F. (?Ferrissia) bartschi Walker 1920</td>
<td>519</td>
</tr>
<tr>
<td>F. rivularis (Say) 1819</td>
<td>521</td>
</tr>
<tr>
<td>F. parallela (Haldeman) 1841</td>
<td>521</td>
</tr>
<tr>
<td>F. meekiana (Stimpson) 1863</td>
<td>524</td>
</tr>
<tr>
<td>F. sbimekii (Pilsbry) 1890</td>
<td>525</td>
</tr>
<tr>
<td>F. tarda (Say) 1830</td>
<td>526</td>
</tr>
<tr>
<td>F. novangliae (Walker) 1908</td>
<td>527</td>
</tr>
<tr>
<td>Genus Laevapex Walker 1903</td>
<td>527</td>
</tr>
<tr>
<td>L. diaphanus (Haldeman) 1841</td>
<td>527</td>
</tr>
<tr>
<td>L. juscus (C. B. Adams) 1840</td>
<td>531</td>
</tr>
<tr>
<td>L. kirklandi (Walker) 1903</td>
<td>531</td>
</tr>
<tr>
<td>Subfamily Rhodacmeinae Walker 1917</td>
<td>534</td>
</tr>
<tr>
<td>Genus Rhodacmea Walker 1917</td>
<td>534</td>
</tr>
<tr>
<td>Section Rhodacmea s.s.</td>
<td>534</td>
</tr>
<tr>
<td>[R. elatior Anthony 1855]</td>
<td>534</td>
</tr>
<tr>
<td>Family Ancyliidae incertae sedis</td>
<td>534</td>
</tr>
<tr>
<td>Ancylius sternii "Walker MS" Sterki 1907</td>
<td>534</td>
</tr>
<tr>
<td>A. obioensis "Walker (ms)"</td>
<td>534</td>
</tr>
<tr>
<td>Family Physidae Dall 1870</td>
<td>534</td>
</tr>
<tr>
<td>Genus Physa Draparnaud 1801</td>
<td>535</td>
</tr>
<tr>
<td>P. anatina Lea 1864</td>
<td>535</td>
</tr>
<tr>
<td>[P. ancillaria Say 1825]</td>
<td>535</td>
</tr>
<tr>
<td>[P. ancillaria magnalacustris Walker 1901]</td>
<td>537</td>
</tr>
<tr>
<td>[P. aplectoides Sterki 1907]</td>
<td>538</td>
</tr>
<tr>
<td>P. elliptica Lea 1837</td>
<td>540</td>
</tr>
<tr>
<td>P. gyrina Say 1821</td>
<td>541</td>
</tr>
<tr>
<td>[P. gyrina bildeithiana Lea 1841]</td>
<td>543</td>
</tr>
<tr>
<td>P. heterostropha Say 1817</td>
<td>545</td>
</tr>
<tr>
<td>P. integra Haldeman 1841</td>
<td>545</td>
</tr>
<tr>
<td>P. michiganensis Clerch 1926</td>
<td>548</td>
</tr>
<tr>
<td>[P. sayii Tappan 1839]</td>
<td>548</td>
</tr>
<tr>
<td>Genus Aplexa Fleming 1820</td>
<td>551</td>
</tr>
<tr>
<td>A. hypnum (Linnaeus) 1758</td>
<td>551</td>
</tr>
</tbody>
</table>

CHAPTER 7 - TERRESTRIAL GASTROPODA

- Class Gastropoda ... 555
- Order Archaeogastropoda 555
- Family Helicinidae 555
- Genus Hendersonia A. J. Wagner 1905 555
- H. occulta (Say) 1831 555
- Order Pulmonata ... 556
- Suborder Basommatophora 556
- Family Carychiidae "Leach" Jeffreys 1829 556
- Genus Carychium Müller 1774 558
- C. exiguum (Say) 1822 558
<p>	CONTENTS
C. exile H. C. Lea 1842	559
C. exile canadense Clapp 1906	561
[Suborder Stylommatophora A. Schmidt]	562
Family Polygyridae Pilsbry	562
Genus Stenotrema Rafinesque 1819	564
S. stenotrema (Pfeiffer) 1842	564
S. hirsutum (Say) 1817	566
S. leaï (Binney) 1842	567
S. fraternum (Say) 1824	568
[S. fraternum cavum (Pilsbry and Vanatta) 1911]	570
Genus Mesodon Rafinesque 1821	572
M. thyroidus (Say) 1816	573
M. clausus (Say) 1821	575
M. mitchelliæus (Lea) 1839	575
M. zelus (Binney) 1837	578
M. pennsylvanicus (Green) 1827	578
M. elevatus (Say) 1821	581
M. appressus (Say) 1821	582
[M. sayanus (Pilsbry) 1906]	583
M. inflectus (Say) 1821	586
Genus Triodops Rafinesque 1819	586
T. tridentata (Say) 1816	587
T. tridentata juxtidens (Pilsbry) 1894	589
T. tridentata discoidea Pilsbry 1904	590
T. fraudulenta vulgar Pilsbry 1940	590
Subgenus Xolotrema Rafinesque 1819	591
T. denotata (Férussac) 1823	591
T. obstricta (Say) 1821	593
Subgenus Neobelix von Ihering 1892	593
T. albolabris (Say) 1816	594
[T. dentifera (Binney) 1837]	598
T. multilinæa (Say) 1821	598
Genus Allogona Pilsbry 1939	601
A. profunda (Say) 1821	601
A. profunda strontiana (Clapp) 1916	603
Family Achatinidae	603
Subfamily Subulinæae	603
Genus Subulina Beck 1837	603
S. octona Bruguière 1792	603
Family Haplotrematidae H. B. Baker 1930	604
Genus Haplotrema Ancey 1881	605
H. concavum (Say) 1821	605
Family Zonitidae	606
Subfamily Euconulinae H. B. Baker 1928	606
Genus Euconulus Reinhardt 1883	607
E. fulvus (Müller) 1774	608
E. chersinus (Say) 1821	610
E. chersinus polygyratus (Pilsbry) 1899	611
Genus Guppya Mörch 1867	612
G. sterki (Dall) 1888	612
Subfamily Zonitinae	614
Genus Oxychilus Fitzinger 1833	615
O. cellarius (Müller) 1774	615
O. draparnaldi (Beck) 1837	616
O. allarius (Müller) 1822	617
Genus Retinella 'Shuttleworth' Fischer 1877	617
R. indentata (Say) 1823	617
R. wbeatleyi (Bland) 1883	621
R. rhoadsi (Pilsbry) 1899	621
Genus Nesovitrea C. M. Cooke 1921	624
Subgenus Perpolita H. B. Baker 1928	624
N. electrina (Gould) 1841	624
N. binneyana (Morse) 1864	626
Genus Mesomphix Rafinesque 1819	626
M. inornatus (Say) 1821	627
[M. subplanus (Binney) 1842]	628
M. vulgaris H. B. Baker 1933	628
Subgenus Omphalina Rafinesque 1831	631
M. friabilis (W. G. Binney) 1857	631
M. cupreus (Rafinesque) 1831	631
Genus Paraarcteia Pilsbry 1898	634
P. multidentata (Binney) 1840	634
[P. lamellidens (Pilsbry) 1898]	636
P. capsella (Gould) 1851	636
Genus Hawaiia Gude 1911	636
H. minuscula (Binney) 1840	636
Subfamily Gastrodontinae Tryon 1866	639
Genus Gastrodonta Albers 1850	639
G. interna (Say) 1822	640
Genus Ventridens W. G. Binney 1863	641
V. suppressus (Say) 1829	641
[V. suppressus virginicus (Vanatta) 1936]	644
V. gularis (Say) 1822	644
[V. collisella (Pilsbry) 1896]	644
[V. lasmodon (Phillips) 1841]	647
V. demissus (Binney) 1843	647
V. ligera (Say) 1821	647
V. intertextus (Binney) 1841	649
Genus Zonitoides Lehmann 1862	652
Z. arbores (Say) 1816	652
Z. limatulus (Binney) 1840	654
Z. nitidus (Müller) 1774	654
Genus Striatura Morse 1864	656
S. exigua (Stimpson) 1850	656
S. ferrea Morse 1864	658
S. milium (Morse) 1859	659
Family Limacidae	660
Genus Limax Linnaeus 1758	662
L. maximus Linnaeus 1758	662
L. flavus Linnaeus 1758	663
Genus Deroceras Rafinesque 1820	664
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. aenigma Leonard 1950 664</td>
</tr>
<tr>
<td>D. laeve (Müller) 1774 667</td>
</tr>
<tr>
<td>D. reticulatum (Müller) 1774 669</td>
</tr>
<tr>
<td>Family Endodontidae 669</td>
</tr>
<tr>
<td>Subfamily Endodontinae 670</td>
</tr>
<tr>
<td>Genus Anguispira Morse 1864 670</td>
</tr>
<tr>
<td>A. alternata (Say) 1816 671</td>
</tr>
<tr>
<td>A. alternata eriensis Clapp 1916 672</td>
</tr>
<tr>
<td>A. kochi (Pfeiffer) 1845 673</td>
</tr>
<tr>
<td>A. kochi mynesites (Clapp) 1916 674</td>
</tr>
<tr>
<td>A. kochi roseoapicata (Clapp) 1916 675</td>
</tr>
<tr>
<td>A. kochi strontiana (Clapp) 1916 676</td>
</tr>
<tr>
<td>Genus Discus Fitzinger 1833 676</td>
</tr>
<tr>
<td>D. cronkbiitei (Newcomb) 1865 676</td>
</tr>
<tr>
<td>D. cronkbiitei catsskillensis (Pilsbury) 1898 677</td>
</tr>
<tr>
<td>D. macclintocki (F. C. Baker) 1928 680</td>
</tr>
<tr>
<td>D. patulus (Deshayes) 1830 680</td>
</tr>
<tr>
<td>Subfamily Helicodicolinae 683</td>
</tr>
<tr>
<td>Genus Helicodiscus Morse 1864 683</td>
</tr>
<tr>
<td>H. paralleleus (Say) 1821 683</td>
</tr>
<tr>
<td>H. singleyanus (Pilsbr) 1890 684</td>
</tr>
<tr>
<td>H. singleyanus inermis H. B. Baker 1929 686</td>
</tr>
<tr>
<td>**Subfamily Punctinae Morse 1864 686</td>
</tr>
<tr>
<td>Genus Punctum Morse 1864 686</td>
</tr>
<tr>
<td>P. minutissimum (Lea) 1841 686</td>
</tr>
<tr>
<td>Family Arionidae 688</td>
</tr>
<tr>
<td>Genus Arion Féussac 1821 688</td>
</tr>
<tr>
<td>Family Philomyidae Keverstein 1866 688</td>
</tr>
<tr>
<td>Family Succineidae 693</td>
</tr>
<tr>
<td>Genus Oxyloma Westerlund 1885 694</td>
</tr>
<tr>
<td>O. decampii gouldii Pilsbr 1948 695</td>
</tr>
<tr>
<td>O. retusa (Lea) 1834 697</td>
</tr>
<tr>
<td>Genus Quickella C. R. Boettger 1939 699</td>
</tr>
<tr>
<td>Q. vermeta (Say) 1829 699</td>
</tr>
<tr>
<td>Genus Succinea Draparnaud 1801 701</td>
</tr>
<tr>
<td>S. aurea Lea 1846 701</td>
</tr>
<tr>
<td>S. avara Say 1824 702</td>
</tr>
<tr>
<td>S. grosvenori Lea 1864 704</td>
</tr>
<tr>
<td>S. grosvenori gelida F. C. Baker 1927 706</td>
</tr>
<tr>
<td>S. ovalis Say 1817 708</td>
</tr>
<tr>
<td>S. ovalis optima Pilsbr 1908 710</td>
</tr>
<tr>
<td>Suborder Orthurethra 710</td>
</tr>
<tr>
<td>Family Strobilopsidae 710</td>
</tr>
<tr>
<td>Genus Strobilops Pilsbr 1893 710</td>
</tr>
<tr>
<td>S. labrinthica (Say) 1817 711</td>
</tr>
<tr>
<td>S. affinis Pilsbr 1893 713</td>
</tr>
<tr>
<td>S. aenea Pilsbr 1926 714</td>
</tr>
<tr>
<td>Family Pupillidae Turton 1831 716</td>
</tr>
<tr>
<td>Subfamily Gastrocoptinae Pilsbr 1918 717</td>
</tr>
<tr>
<td>Genus Gastrocopta Wollaston 1878 717</td>
</tr>
<tr>
<td>G. armifera (Say) 1821 717</td>
</tr>
<tr>
<td>G. contracta (Say) 1822 718</td>
</tr>
<tr>
<td>G. holzingeri (Sterki) 1889 720</td>
</tr>
<tr>
<td>Subgenus Vertigopsis Sterki 1893 723</td>
</tr>
<tr>
<td>Gastrocopta pentodon (Say) 1821 723</td>
</tr>
<tr>
<td>G. tappaniana (C. B. Adams) 1842 723</td>
</tr>
<tr>
<td>G. camegieii (Sterki) 1916 725</td>
</tr>
<tr>
<td>Subgenus Privatula Sterki 1893 727</td>
</tr>
<tr>
<td>Gastrocopta corticaria (Say) 1816 727</td>
</tr>
<tr>
<td>Subgenus Gastrocopta Wollaston 1878 727</td>
</tr>
<tr>
<td>Gastrocopta procera (Gould) 1840 727</td>
</tr>
<tr>
<td>Subfamily Pupillinae 730</td>
</tr>
<tr>
<td>Genus Pupoides Pfeiffer 1854 730</td>
</tr>
<tr>
<td>P. albilabris (C. B. Adams) 1841 730</td>
</tr>
<tr>
<td>Genus Pupilla Leach 1831 731</td>
</tr>
<tr>
<td>P. muscorum (Linnaeus) 1758 731</td>
</tr>
<tr>
<td>Subfamily Vertigininae 734</td>
</tr>
<tr>
<td>Genus Vertigo Müller 1774 734</td>
</tr>
<tr>
<td>Subgenus Angustula Sterki 1888 734</td>
</tr>
<tr>
<td>Vertigo milium (Gould) 1840 734</td>
</tr>
<tr>
<td>Subgenus Vertigo s.s. 735</td>
</tr>
<tr>
<td>Vertigo morsei Sterki 1894 735</td>
</tr>
<tr>
<td>V. ovata Say 1822 738</td>
</tr>
<tr>
<td>V. elatior Sterki 1894 738</td>
</tr>
<tr>
<td>V. ventricosa (Morse) 1865 741</td>
</tr>
<tr>
<td>V. pygmaea (Draparnaud) 1801 741</td>
</tr>
<tr>
<td>V. tridentata Wolf 1870 744</td>
</tr>
<tr>
<td>V. alpestris oughtoni Pilsbr 1849 744</td>
</tr>
<tr>
<td>V. parvula Sterki 1890 746</td>
</tr>
<tr>
<td>V. gouldii (Binney) 1843 747</td>
</tr>
<tr>
<td>V. bollesiana (Morse) 1865 751</td>
</tr>
<tr>
<td>V. modesta (Say) 1824 751</td>
</tr>
<tr>
<td>Genus Columella Westerlund 1878 753</td>
</tr>
<tr>
<td>C. edentula (Draparnaud) 1805 753</td>
</tr>
<tr>
<td>C. alticola (Ingersoll) 1875 755</td>
</tr>
<tr>
<td>Family Vallonididae 755</td>
</tr>
<tr>
<td>Genus Vallonia Risso 1826 756</td>
</tr>
<tr>
<td>V. pulchella (Miller) 1774 757</td>
</tr>
<tr>
<td>V. excentrica Sterki 1893 758</td>
</tr>
<tr>
<td>V. costata (Müller) 1774 759</td>
</tr>
<tr>
<td>V. parvula Sterki 1893 761</td>
</tr>
<tr>
<td>V. gracilicosta Reinhardt 1883 762</td>
</tr>
<tr>
<td>V. perspectiva Sterki 1893 765</td>
</tr>
<tr>
<td>Genus Planogyra Morse 1864 765</td>
</tr>
<tr>
<td>[P. asteriscus (Morse) 1857] 765</td>
</tr>
<tr>
<td>Genus Zoogenes Morse 1864 767</td>
</tr>
<tr>
<td>Z. harpa (Say) 1824 767</td>
</tr>
<tr>
<td>Family Cionellidae 768</td>
</tr>
<tr>
<td>Genus Cionella Jeffreys 1829 768</td>
</tr>
<tr>
<td>C. lubrica (Müller) 1774 768</td>
</tr>
<tr>
<td>C. lubrica morseana Doherty 1878 771</td>
</tr>
</tbody>
</table>

| Selected references 772 |
| Index 784 |
CONTENTS

ILLUSTRATIONS

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ohio end moraines</td>
<td>12</td>
<td>inset, three views of the shell, reduced; after Call (1900, pl. 13)</td>
</tr>
<tr>
<td>2. Lacustrine deposits in Ohio</td>
<td>13</td>
<td>inset, distribution in Ohio</td>
</tr>
<tr>
<td>3. Cumberlandia monodonta, exterior of the shell, X1; after Walker (1918, p. 41, fig. 142)</td>
<td>113</td>
<td>Distribution of Cumberlandia monodonta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>4. Distribution of Cumberlandia monodonta in North America; inset, distribution in Ohio</td>
<td>114</td>
<td>Amblema plicata, two views of the shell, X1; after Call (1900, pl. 14)</td>
</tr>
<tr>
<td>5. Fusconaia ebenus, three views of the shell, X1; after Call (1900, pl. 58)</td>
<td>115</td>
<td>Distribution of Fusconaia ebenus in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>6. Distribution of Fusconaia ebenus in North America; inset, distribution in Ohio</td>
<td>116</td>
<td>Quadrula cylindrica, slightly reduced; after Walker (1918, p. 44, fig. 144)</td>
</tr>
<tr>
<td>7. Fusconaia flava, three views of the shell, X1; after Call (1900, pl. 61)</td>
<td>117</td>
<td>Distribution of Quadrula cylindrica in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>8. Distribution of Fusconaia flava in North America; inset, distribution in Ohio</td>
<td>118</td>
<td>Quadrula fragosa, X0.25; after Conrad’s original figure (1836, pl. 6, fig. 2)</td>
</tr>
<tr>
<td>9. Distribution of Fusconaia flava parvula in North America; inset, distribution in Ohio</td>
<td>119</td>
<td>Distribution of Quadrula fragosa in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>10. Fusconaia subrotunda, two views of the shell, X1; after Lea (1831, Observations on the genus Unio, p. 127, pl. 18, fig. 45)</td>
<td>119</td>
<td>Quadrula metanevra, outline and three views of the shell, X1; after Call (1900, pl. 28)</td>
</tr>
<tr>
<td>11. Distribution of Fusconaia subrotunda in North America; inset, distribution in Ohio</td>
<td>120</td>
<td>Distribution of Quadrula metanevra in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>12. Distribution of Fusconaia subrotunda kirilindsayana in North America; inset, distribution in Ohio</td>
<td>121</td>
<td>Distribution of Quadrula metanevra in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>13. Fusconaia undata, three views of the shell, X1; after Call (1900, pl. 60)</td>
<td>122</td>
<td>Quadrula nodulata, three views of the shell, X1; after Call (1900, pl. 44)</td>
</tr>
<tr>
<td>14. Distribution of Fusconaia undata in North America; inset, distribution in Ohio</td>
<td>123</td>
<td>Distribution of Quadrula nodulata in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>15. Distribution of Fusconaia undata trigona in North America; inset, distribution in Ohio</td>
<td>124</td>
<td>Quadrula pilaris, three views of the shell, X1; after Lea (1840, pl. 14, fig. 24)</td>
</tr>
<tr>
<td>16. Megalonaias gigantea, outline of female shell (larger) and outline of male shell (smaller); views of the hinge region: upper figure, internal, lower figure, external, not to scale, after Call (1900, pl. 15)</td>
<td>125</td>
<td>Distribution of Quadrula pilaris in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>17. Distribution of Megalonaias gigantea in North America; inset, distribution in Ohio</td>
<td>126</td>
<td>Quadrula pustulosa, two views of each of three specimens, showing variation in the species, X1; after Call (1900, pl. 45)</td>
</tr>
<tr>
<td>18. Amblema costata, outline of female shell surrounding other figures, natural size;</td>
<td>127</td>
<td>Distribution of Quadrula pustulosa in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distribution of Quadrula pustulosa kierneriana in North America</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distribution of Quadrula pustulosa prasina in North America</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quadrula quadrula, several views showing variation, X1; after Call (1900,</td>
</tr>
<tr>
<td>Page</td>
<td>59. Distribution of Pleurobema cordatum pyramidatum in North America</td>
<td>169</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>147</td>
<td>60. Elliptio complanatus, X1; after Hartman and Michener (1874, p. 87, fig. 181)</td>
<td>170</td>
</tr>
<tr>
<td>148</td>
<td>61. Distribution of Elliptio complanatus in North America; inset, distribution in Ohio</td>
<td>171</td>
</tr>
<tr>
<td>149</td>
<td>62. Elliptio crassidens, three views, X1; after Call (1900, pl. 63)</td>
<td>172</td>
</tr>
<tr>
<td>150</td>
<td>63. Distribution of Elliptio crassidens in North America; inset, distribution in Ohio</td>
<td>173</td>
</tr>
<tr>
<td>151</td>
<td>64. Elliptio dilatatus, three views, X1; after Call (1900, pl. 16)</td>
<td>174</td>
</tr>
<tr>
<td>152</td>
<td>65. Distribution of Elliptio dilatatus in North America; inset, distribution in Ohio</td>
<td>175</td>
</tr>
<tr>
<td>153</td>
<td>66. Distribution of Elliptio dilatatus sternum in North America; inset, distribution in Ohio</td>
<td>176</td>
</tr>
<tr>
<td>154</td>
<td>67. Uniomerus tetralsmus, five views, X1; after Call (1900, pl. 67)</td>
<td>177</td>
</tr>
<tr>
<td>155</td>
<td>68. Distribution of Uniomerus tetralsmus in North America; inset, distribution in Ohio</td>
<td>178</td>
</tr>
<tr>
<td>156</td>
<td>69. Distribution of Uniomerus tetralsmus sayi in North America</td>
<td>179</td>
</tr>
<tr>
<td>157</td>
<td>70. Anodonta grandis, exterior of right valve, X1; after Goodrich (1932, pl. 2, fig. 1)</td>
<td>180</td>
</tr>
<tr>
<td>158</td>
<td>71. Distribution of Anodonta grandis in North America; inset, distribution in Ohio</td>
<td>181</td>
</tr>
<tr>
<td>159</td>
<td>72. Anodonta imbecillis, exterior of right valve, X1; after Goodrich (1932, pl. 2, fig. 2)</td>
<td>182</td>
</tr>
<tr>
<td>160</td>
<td>73. Distribution of Anodonta imbecillis in North America; inset, distribution in Ohio</td>
<td>183</td>
</tr>
<tr>
<td>161</td>
<td>74. Distribution of Anodonta implicata in North America; inset, distribution in Ohio</td>
<td>184</td>
</tr>
<tr>
<td>162</td>
<td>75. Lastena lata, three views, X1; after Call (1900, pl. 68)</td>
<td>185</td>
</tr>
<tr>
<td>163</td>
<td>76. Distribution of Lastena lata in North America; inset, distribution in Ohio</td>
<td>186</td>
</tr>
<tr>
<td>164</td>
<td>77. Lasigmone complanata, two views, X1; after Call (1900, pl. 71)</td>
<td>187</td>
</tr>
<tr>
<td>165</td>
<td>78. Distribution of Lasigmone complanata in North America; inset, distribution in Ohio</td>
<td>188</td>
</tr>
<tr>
<td>166</td>
<td>79. Lasigmone compressa, three views, X1; after Call (1900, pl. 24)</td>
<td>189</td>
</tr>
<tr>
<td>167</td>
<td>80. Distribution of Lasigmone compressa in North America; inset, distribution in Ohio</td>
<td>190</td>
</tr>
<tr>
<td>168</td>
<td>81. Lasigmone costata, exterior of right valve, X1; after Goodrich (1932, pl.</td>
<td></td>
</tr>
</tbody>
</table>
4, fig. 2) ... 82. Distribution of Lasmigona costata in North America; inset, distribution in Ohio 191
83. Distribution of Lasmigona costata eriganensis in North America 84. Distribution of Lasmigona subviridis in North America 85. Comparison of three forms of the genus Anodontoides based on Baker's (1928) measurements. A-E, A. ferussacianus (Lea), typical form; F-H, A. ferussacianus subcylindraceus (Lea); I-M, A. birgei F. C. Baker. Figures next to each letter indicate length of specimen in millimeters. ... 86. Anodontoides ferussacianus, exterior of right valve, XI; after Walker (1918, p. 57, fig. 172) 87. Distribution of Anodontoides ferussacianus in North America; inset, distribution in Ohio ... 88. Simpsoniconcha ambigua, exterior of right valve, XI; after Walker (1918, p. 64, fig. 186) 89. Distribution of Simpsoniconcha ambigua in North America; inset, distribution in Ohio 90. Alasmidonta calceolus, four views, XI; after Call (1900, pl. 68) 91. Distribution of Alasmidonta calceolus in North America; inset, distribution in Ohio ... 92. Alasmidonta marginata, three views, XI; after Call (1900, pl. 70) 93. Distribution of Alasmidonta marginata in North America; inset, distribution in Ohio 94. Arcidens confragosus, two views, XI; after Call (1900, pl. 69) 95. Distribution of Arcidens confragosus in North America; inset, distribution in Ohio ... 96. Strophitus undulatus, exterior of right valve, XI; after Walker (1918, p. 56, fig. 168) 97. Distribution of Strophitus undulatus in North America; inset, distribution in Ohio 98. Lampsis anodontoides, three views, XI; after Call (1900, pl. 18) 99. Distribution of Lampsis anodontoides in North America; inset, distribution in Ohio 100. Distribution of Lampsis anodontoides fallaciosa in North America; inset, distribution in Ohio ... 101. Lampsis fasciola, outlines of male and female shells (upper figure) and two views of female shell (lower figure), XI; after Call (1900, pl. 37) 102. Distribution of Lampsis fasciola in North America; inset, distribution in Ohio 103. Lampsis orbiculata, three views, XI; after Call (1900, pl. 50) 104. Distribution of Lampsis orbiculata in North America; inset, distribution in Ohio 105. Lampsis ovata, two views, XI; after Call (1900, pl. 39) 106. Distribution of Lampsis ovata in North America; inset, distribution in Ohio 107. Lampsis ovata ventricosa, three views, XI; after Call (1900, pl. 38) 108. Distribution of Lampsis ovata ventricosa in North America; inset, distribution in Ohio 109. Distribution of Lampsis ovata canadensis in North America; inset, distribution in Ohio 110. Lampsis radiata, XI; after Hartman and Michener (1874, p. 87, fig. 182) 111. Distribution of Lampsis radiata in North America; inset, distribution in Ohio 112. Lampsis radiata siliquoidea, four views, XI; after Call (1900, pl. 36) 113. Distribution of Lampsis radiata siliquoidea in North America; inset, distribution in Ohio 114. Ptychobranchus fasciolare, three views, XI; after Call (1900, pl. 19) 115. Distribution of Ptychobranchus fasciolare in North America; inset, distribution in Ohio 116. Obliquaria reflexa, three views, XI; after Call (1900, pl. 27) 117. Distribution of Obliquaria reflexa in North America; inset, distribution in Ohio 118. Cyprogenia irrorata, three views, XI; after Call (1900, pl. 43) 119. Distribution of Cyprogenia irrorata in North America; inset, distribution in Ohio 120. Obovaria olivaria, four views, XI; after Call (1900, pl. 53) 121. Distribution of Obovaria olivaria in North America; inset, distribution in Ohio 122. Obovaria retusa, four views, XI; after Call (1900, pl. 47)
<table>
<thead>
<tr>
<th>Page</th>
<th>Ohio</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>123. Distribution of Obovaria retusa in North America; inset, distribution in Ohio</td>
<td>232</td>
<td>146. Proptera alata, two views, X1; after Call (1900, pl. 25)</td>
</tr>
<tr>
<td>124. Obovaria subrotunda, three views, X1; after Call (1900, pl. 51)</td>
<td>233</td>
<td>147. Distribution of Proptera alata in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>125. Distribution of Obovaria subrotunda in North America; inset, distribution in Ohio</td>
<td>234</td>
<td>148. Distribution of Proptera alata megaptera in North America</td>
</tr>
<tr>
<td>126. Distribution of Obovaria subrotunda leibii in North America</td>
<td>235</td>
<td>149. Proptera capax, three views, X1; after Call (1900, pl. 40)</td>
</tr>
<tr>
<td>127. Distribution of Obovaria subrotunda lens in North America</td>
<td>236</td>
<td>150. Distribution of Proptera capax in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>128. Distribution of Obovaria subrotunda levigata in North America</td>
<td>237</td>
<td>151. Carunculina glans, three views, X1; after Call (1900, pl. 65)</td>
</tr>
<tr>
<td>129. Actinonaias carinata, three views, X1; after Call (1900, pl. 41)</td>
<td>238</td>
<td>152. Distribution of Carunculina glans in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>130. Distribution of Actinonaias carinata in North America; inset, distribution in Ohio</td>
<td>239</td>
<td>153. Carunculina parva, three views, X1; after Call (1900, pl. 65)</td>
</tr>
<tr>
<td>131. Actinonaias ellipsiformis, three views, X1; after Call (1900, pl. 20)</td>
<td>240</td>
<td>154. Distribution of Carunculina parva in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>132. Distribution of Actinonaias ellipsiformis in North America; inset, distribution in Ohio</td>
<td>241</td>
<td>155. Ligumia nasuta, X1; after Hartman and Michener (1874, p. 90, fig. 186)</td>
</tr>
<tr>
<td>133. Truncilla donaciformis, four views, X1; after Call (1900, pl. 23)</td>
<td>242</td>
<td>156. Distribution of Ligumia nasuta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>134. Distribution of Truncilla donaciformis in North America; inset, distribution in Ohio</td>
<td>243</td>
<td>157. Ligumia recta, four views, X1; after Call (1900, pl. 17)</td>
</tr>
<tr>
<td>135. Truncilla truncata, three views, X1; after Call (1900, pl. 31)</td>
<td>244</td>
<td>158. Distribution of Ligumia recta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>136. Distribution of Truncilla truncata in North America; inset, distribution in Ohio</td>
<td>245</td>
<td>159. Ligumia recta latissima, side view of a left valve, X1; after Goodrich (1932, pl. 6, fig. 1)</td>
</tr>
<tr>
<td>137. Plagiola lineolata, four views, X1; after Call (1900, pl. 30)</td>
<td>246</td>
<td>160. Distribution of Ligumia recta latissima in North America</td>
</tr>
<tr>
<td>138. Distribution of Plagiola lineolata in North America; inset, distribution in Ohio</td>
<td>247</td>
<td>161. Ligumia subrostrata, five views, X1; after Call (1900, pl. 22)</td>
</tr>
<tr>
<td>139. Leptodea fragilis, exterior of right valve, X1; after Walker (1918, p. 73, fig. 202)</td>
<td>248</td>
<td>162. Distribution of Ligumia subrostrata in North America</td>
</tr>
<tr>
<td>140. Distribution of Leptodea fragilis in North America; inset, distribution in Ohio</td>
<td>249</td>
<td>163. Villosa fabalis, five views, X1; after Call (1900, pl. 23)</td>
</tr>
<tr>
<td>141. Distribution of Leptodea fragilis lacustris in North America</td>
<td>250</td>
<td>164. Distribution of Villosa fabalis in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>142. Leptodea laevissima, X1; original figure by D. H. Stansbery</td>
<td>251</td>
<td>165. Villosa iris, three views, X1; after Call (1900, pl. 21)</td>
</tr>
<tr>
<td>143. Distribution of Leptodea laevissima in North America; inset, distribution in Ohio</td>
<td>252</td>
<td>166. Distribution of Villosa iris in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>144. Leptodea leptodon, X1; original figure by D. H. Stansbery</td>
<td>253</td>
<td>167. Dysnomia flexuosa, four views, X1; after Call (1900, pl. 64)</td>
</tr>
<tr>
<td>145. Distribution of Leptodea leptodon in North America; inset, distribution in Ohio</td>
<td>254</td>
<td>168. Distribution of Dysnomia flexuosa in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>169. Dysnomia personata, three views, X1; after Call (1900, pl. 33)</td>
<td>277</td>
<td>170. Distribution of Dysnomia personata in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>Page</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>192. Distribution of Pisidium dubium in North America; inset, distribution in Ohio</td>
<td>320</td>
</tr>
<tr>
<td>279</td>
<td>193. Distribution of Pisidium fallax in North America; inset, distribution in Ohio</td>
<td>322</td>
</tr>
<tr>
<td>280</td>
<td>194. Distribution of Pisidium milium in North America</td>
<td>323</td>
</tr>
<tr>
<td>281</td>
<td>195. Distribution of Pisidium conventus in North America</td>
<td>325</td>
</tr>
<tr>
<td>282</td>
<td>196. Distribution of Pisidium punctiferum in North America; inset, distribution in Ohio</td>
<td>327</td>
</tr>
<tr>
<td>283</td>
<td>197. Distribution of Pisidium cruciatum in North America; inset, distribution in Ohio</td>
<td>329</td>
</tr>
<tr>
<td>284</td>
<td>198. Distribution of Pisidium compressum in North America; inset, distribution in Ohio</td>
<td>330</td>
</tr>
<tr>
<td>289</td>
<td>199. Distribution of Pisidium nitidum in North America; inset, distribution in Ohio</td>
<td>332</td>
</tr>
<tr>
<td>290</td>
<td>200. Distribution of Pisidium aequilaterale in North America</td>
<td>335</td>
</tr>
<tr>
<td>292</td>
<td>201. Distribution of Pisidium variabile in North America; inset, distribution in Ohio</td>
<td>337</td>
</tr>
<tr>
<td>294</td>
<td>202. Distribution of Pisidium ferrugineum in North America; inset, distribution in Ohio</td>
<td>339</td>
</tr>
<tr>
<td>296</td>
<td>203. Distribution of Pisidium casertanum in North America; inset, distribution in Ohio</td>
<td>341</td>
</tr>
<tr>
<td>297</td>
<td>204. Distribution of Pisidium walkeri in North America; inset, distribution in Ohio</td>
<td>344</td>
</tr>
<tr>
<td>301</td>
<td>205. Distribution of Pisidium obtusale in North America; inset, distribution in Ohio</td>
<td>346</td>
</tr>
<tr>
<td>302</td>
<td>206. Distribution of Pisidium subtruncatum in North America; inset, distribution in Ohio</td>
<td>348</td>
</tr>
<tr>
<td>304</td>
<td>207. Distribution of Pisidium lilljeborgii in North America; inset, distribution in Ohio</td>
<td>351</td>
</tr>
<tr>
<td>308</td>
<td>208. Distribution of Pisidium henslowanum in North America</td>
<td>353</td>
</tr>
<tr>
<td>309</td>
<td>Valvata bicarinata, magnified; after Walker (1906, Naut. 20, pl. 1, figs. 14)</td>
<td>354</td>
</tr>
<tr>
<td>315</td>
<td>Valvata lewisi, magnified; after Walker (1906, Naut. 20, pl. 1, figs. 12, 13)</td>
<td>358</td>
</tr>
<tr>
<td>317</td>
<td>Valvata lewisi, magnified; after Walker (1906, Naut. 20, pl. 1, figs. 12, 13)</td>
<td>359</td>
</tr>
<tr>
<td>319</td>
<td>Valvata lewisi, magnified; after Walker (1906, Naut. 20, pl. 1, figs. 12, 13)</td>
<td>361</td>
</tr>
<tr>
<td>321</td>
<td>Valvata lewisi, magnified; after Walker (1906, Naut. 20, pl. 1, figs. 12, 13)</td>
<td>361</td>
</tr>
<tr>
<td>Page</td>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>213. Valvata perdepressa, magnified; after Walker (1906, Naut. 20, pl. 1, figs. 15, 16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>214. Distribution of Valvata perdepressa in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>215. Valvata perdepressa walkeri, magnified; after F. C. Baker (1930c, p. 190)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>216. Distribution of Valvata perdepressa walkeri in North America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>217. Valvata piscinalis, X3; after Locard (1893, p. 123, fig. 125)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>218. Distribution of Valvata piscinalis in North America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>219. Valvata sincera, magnified; after Walker (1906, Naut. 20, pl. 1, figs. 4-6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220. Distribution of Valvata sincera in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>221. Distribution of Valvata tricarinata in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>222. Viviparus contectoides, X1; after Call (1900, pl. 9, figs. 13, 13a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>223. Distribution of Viviparus contectoides in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>224. Distribution of Viviparus malleatus in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>225. Lioplax subcarinata, X1; after Call (1900, pl. 9, figs. 14, 14a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>226. Distribution of Lioplax subcarinata in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>227. Campeloma decisum, X1; after Call (1900, pl. 10, figs. 2, 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>228. Distribution of Campeloma decisum in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>229. Campeloma integrum, X1; after W. G. Binney (1965, pt. III, p. 48, fig. 96)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>230. Distribution of Campeloma integrum in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>231. Campeloma integrum obesus, X1; after W. G. Binney (1865, pt. III, p. 47, fig. 95)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>232. Distribution of Campeloma integrum obesus in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>233. Campeloma ponderosum, X1; after Call (1900, pl. 10, figs. 5, 6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>234. Distribution of Campeloma ponderosum in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235. Campeloma rufum, X1; after W. G. Binney (1865, pt. III, p. 49, fig. 102)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>236. Distribution of Campeloma rufum in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>237. Campeloma subsolidum, X1; after W. G. Binney (1865, pt. III, p. 50, fig. 104)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>238. Distribution of Campeloma subsolidum in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>239. Distribution of Amnicola limosa in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>240. Distribution of Amnicola limosa parva in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>241. Distribution of Amnicola walkeri in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>242. Distribution of Amnicola lastrica in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>243. Amnicola gelida, magnified outline of shell; after F. C. Baker (1928a, pt. I, p. 104, fig. 45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>244. Distribution of Amnicola gelida in North America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>245. Amnicola pilsbryi, magnified outline of shell; after F. C. Baker (1928a, pt. I, p. 106, fig. 47, no. 10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>246. Distribution of Amnicola pilsbryi in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>247. Distribution of Amnicola integrum in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>248. Distribution of Amnicola lacustris in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>249. Amnicola leightoni, magnified; after F. C. Baker (1928a, pt. I, pl. 6, figs. 34, 39)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250. Distribution of Amnicola leightoni in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>251. Distribution of Pygulopsis leteroni in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>252. Distribution of Hydrobia nickliniana in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>253. Somatogyrus integer, X1; after Call (1900, pl. 8, fig. 19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>254. Distribution of Somatogyrus integer in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>255. Distribution of Somatogyrus subglobosus in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>256. Distribution of Somatogyrus subglobosus isogonus in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>257. Distribution of Somatogyrus trobis in North America; inset, distribution in Ohio</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Distribution of Lyogyrus pupoides in North America; inset, distribution in Ohio</th>
<th>407</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distribution of Bulimus tentaculatus in North America; inset, distribution in Ohio</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Distribution of Pomatiopsis cincinnatensis in North America; inset, distribution in Ohio</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>Distribution of Pomatiopsis lapidaria in North America; inset, distribution in Ohio</td>
<td>412</td>
</tr>
<tr>
<td>262.</td>
<td>Pleurocera acutum, X1; after Walker (1918, p. 36, fig. 128)</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>Distribution of Pleurocera acutum in North America; inset, distribution in Ohio</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>Pleurocera canaliculatum, X1; after Call (1900, pl. 12, figs. 21-23)</td>
<td>418</td>
</tr>
<tr>
<td>263.</td>
<td>Distribution of Pleurocera canaliculatum in North America; inset, distribution in Ohio</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>Pleurocera canaliculatum undulatum, X1; after Call (1900, pl. 12, figs. 24-25)</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>Distribution of Pleurocera canaliculatum undulatum in North America</td>
<td>424</td>
</tr>
<tr>
<td>264.</td>
<td>Goniobasis haldemani, X1; after Tryon (1873, p. 282, fig. 547a)</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>Distribution of Goniobasis haldemani in North America; inset, distribution in Ohio</td>
<td>428</td>
</tr>
<tr>
<td>265.</td>
<td>Goniobasis laqueata, three specimens, X1; after Tryon (1873, p. 176, figs. 340-342)</td>
<td>430</td>
</tr>
<tr>
<td>266.</td>
<td>Distribution of Goniobasis laqueata in North America</td>
<td>432</td>
</tr>
<tr>
<td>267.</td>
<td>Goniobasis livescens, X1; after Call (1900, pl. 12, fig. 11)</td>
<td>434</td>
</tr>
<tr>
<td>268.</td>
<td>Distribution of Goniobasis livescens in North America; inset, distribution in Ohio</td>
<td>436</td>
</tr>
<tr>
<td>269.</td>
<td>Goniobasis semicarinata, X1; after Call (1900, pl. 12, fig. 10)</td>
<td>438</td>
</tr>
<tr>
<td>270.</td>
<td>Distribution of Goniobasis semicarinata in North America; inset, distribution in Ohio</td>
<td>440</td>
</tr>
<tr>
<td>271.</td>
<td>Anculosa praerosa, X1; after Call (1900, pl. 12, fig. 13)</td>
<td>442</td>
</tr>
<tr>
<td>272.</td>
<td>Distribution of Anculosa praerosa in North America; inset, distribution in Ohio</td>
<td>444</td>
</tr>
<tr>
<td>273.</td>
<td>Lithasia obovata, X1; after Call (1900, pl. 12, fig. 12)</td>
<td>446</td>
</tr>
<tr>
<td>274.</td>
<td>Distribution of Lithasia obovata in North America; inset, distribution in Ohio</td>
<td>448</td>
</tr>
<tr>
<td>275.</td>
<td>Lithasia verrucosa, X1; after Call (1900, pl. 12, fig. 18)</td>
<td>450</td>
</tr>
<tr>
<td>276.</td>
<td>Distribution of Lithasia verrucosa in North America; inset, distribution in Ohio</td>
<td>452</td>
</tr>
<tr>
<td>277.</td>
<td>Nitocris trilineata, X1; after Call (1900, pl. 12, fig. 12)</td>
<td>454</td>
</tr>
<tr>
<td>278.</td>
<td>Distribution of Nitocris trilineata in North America; inset, distribution in Ohio</td>
<td>456</td>
</tr>
<tr>
<td>279.</td>
<td>Lymnaea stagnalis jugularis, X1; after Walker (1918, p. 6, fig. 1)</td>
<td>458</td>
</tr>
<tr>
<td>280.</td>
<td>Distribution of Lymnaea stagnalis jugularis in North America; inset, distribution in Ohio</td>
<td>460</td>
</tr>
<tr>
<td>281.</td>
<td>Distribution of Stagnicola caperata in North America; inset, distribution in Ohio</td>
<td>462</td>
</tr>
<tr>
<td>282.</td>
<td>Stagnicola catascopium, X1; after W. G. Binney (1865, pt. II, p. 53, fig. 80)</td>
<td>464</td>
</tr>
<tr>
<td>283.</td>
<td>Distribution of Stagnicola catascopium in North America; inset, distribution in Ohio</td>
<td>466</td>
</tr>
<tr>
<td>284.</td>
<td>Stagnicola desidiosa, X1; after W. G. Binney (1865, pt. II, p. 48, fig. 68)</td>
<td>468</td>
</tr>
<tr>
<td>285.</td>
<td>Distribution of Stagnicola desidiosa in North America</td>
<td>470</td>
</tr>
<tr>
<td>286.</td>
<td>Distribution of Stagnicola exilis in North America; inset, distribution in Ohio</td>
<td>472</td>
</tr>
<tr>
<td>287.</td>
<td>Stagnicola lanceata, X1; after W. G. Binney (1865, pt. II, p. 68, fig. 112)</td>
<td>474</td>
</tr>
<tr>
<td>288.</td>
<td>Distribution of Stagnicola lanceata in North America; inset, distribution in Ohio</td>
<td>476</td>
</tr>
<tr>
<td>289.</td>
<td>Stagnicola palustris, X1; after Call (1900, pl. 8, fig. 5)</td>
<td>478</td>
</tr>
<tr>
<td>290.</td>
<td>Distribution of Stagnicola palustris in North America; inset, distribution in Ohio</td>
<td>480</td>
</tr>
<tr>
<td>291.</td>
<td>Stagnicola palustris elodes, X1; after W. G. Binney (1865, pt. II, p. 44, fig. 60)</td>
<td>482</td>
</tr>
<tr>
<td>292.</td>
<td>Distribution of Stagnicola palustris elodes in North America; inset, distribution in Ohio</td>
<td>484</td>
</tr>
<tr>
<td>293.</td>
<td>Stagnicola palustris jolietensis in North America; inset, distribution in Ohio</td>
<td>486</td>
</tr>
<tr>
<td>294.</td>
<td>Stagnicola kirtlandiana, X1; after W. G. Binney (1865, pt. II, p. 67, fig. 111)</td>
<td>488</td>
</tr>
<tr>
<td>295.</td>
<td>Distribution of Stagnicola kirtlandiana in North America; inset, distribution in Ohio</td>
<td>490</td>
</tr>
<tr>
<td>296.</td>
<td>Stagnicola reflexa walkeri in North America</td>
<td>492</td>
</tr>
<tr>
<td>297.</td>
<td>Stagnicola umbrosa, X1; after W. G. Binney (1865, pt. II, p. 40, fig. 49)</td>
<td>494</td>
</tr>
<tr>
<td>298.</td>
<td>Distribution of Stagnicola umbrosa in North America</td>
<td>496</td>
</tr>
<tr>
<td>299.</td>
<td>Distribution of Stagnicola umbrosa in Ohio</td>
<td>498</td>
</tr>
<tr>
<td>300.</td>
<td>Distribution of Stagnicola reflexa in North America; inset, distribution in Ohio</td>
<td>500</td>
</tr>
<tr>
<td>301.</td>
<td>Distribution of Stagnicola reflexa walkeri in North America</td>
<td>502</td>
</tr>
<tr>
<td>302.</td>
<td>Distribution of Stagnicola reflexa walkeri in Ohio</td>
<td>504</td>
</tr>
<tr>
<td>303.</td>
<td>Distribution of Stagnicola umbrosa in Ohio</td>
<td>506</td>
</tr>
<tr>
<td>304.</td>
<td>Distribution of Stagnicola umbrosa in North America</td>
<td>508</td>
</tr>
<tr>
<td>305.</td>
<td>Distribution of Stagnicola umbrosa in inset, distribution in North America</td>
<td>510</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Ohio</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>329. Distribution of Fossaria obruissa in North America; inset, distribution in Ohio</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>330. Fossaria obruissa decampi, magnified; after Streng (1896, Naut. 9, p. 123, 2 figs.)</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>331. Distribution of Fossaria obruissa decampi in North America; inset, distribution in Ohio</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>332. Fossaria parva, magnified; after F. C. Baker (1931c, p. 279, pl. 32, fig. 10A)</td>
<td>477</td>
<td></td>
</tr>
<tr>
<td>333. Distribution of Fossaria parva in North America; inset, distribution in Ohio</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>334. Fossaria parva sterkii, magnified; after F. C. Baker (1911a, pl. 29, figs. 17, 22)</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>335. Distribution of Fossaria parva sterkii in North America; inset, distribution in Ohio</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>336. Fossaria sayi, magnified; after F. C. Baker (1928a, pt. 1, pl. 18, figs. 38, 39)</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>337. Distribution of Fossaria sayi in North America</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>338. Distribution of Anisus pattersoni in North America; inset, distribution in Ohio</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td>339. Gyraulus arcticus, two views, greatly enlarged; after F. C. Baker (1928a, pt. 1, p. 375)</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>340. Distribution of Gyraulus arcticus in North America</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>341. Gyraulus deflectus, magnified; after Call (1900, pl. 8, fig. 13)</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td>342. Distribution of Gyraulus deflectus in North America; inset, distribution in Ohio</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>343. Gyraulus deflectus obliquus, magnified; after W. G. Binney (1865, pt. II, p. 130, fig. 217)</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>344. Distribution of Gyraulus deflectus obliquus in North America</td>
<td>489</td>
<td></td>
</tr>
<tr>
<td>345. Distribution of Gyraulus hirsutus in North America; inset, distribution in Ohio</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>346. Distribution of Gyraulus parus in North America; inset, distribution in Ohio</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>347. Gyraulus altissimus and related species, shells greatly enlarged; after F. C. Baker (1928a, pt. I, p. 375, fig. 162)</td>
<td>492</td>
<td></td>
</tr>
<tr>
<td>348. Distribution of Gyraulus altissimus in North America; inset, distribution in Ohio</td>
<td>493</td>
<td></td>
</tr>
<tr>
<td>349. Distribution of Gyraulus circumstriatus in North America; inset, distribution in Ohio</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>350. Armiger crista, magnified; after Walker (1918, fig. 34, p. 13)</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>351. Distribution of Armiger crista in North America; inset, distribution in Ohio</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>CONTENTS</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>352.</td>
<td>Distribution of Helisoma anceps in North America; inset, distribution in Ohio</td>
<td>499</td>
</tr>
<tr>
<td>353.</td>
<td>Helisoma anceps striatum, X2; after Whitaker (1921, pl. 7, figs. 16a-i)</td>
<td>500</td>
</tr>
<tr>
<td>354.</td>
<td>Distribution of Helisoma anceps striatum in North America; inset, distribution in Ohio</td>
<td>502</td>
</tr>
<tr>
<td>355.</td>
<td>Distribution of Helisoma trivolvis in North America; inset, distribution in Ohio</td>
<td>504</td>
</tr>
<tr>
<td>356.</td>
<td>Helisoma campanulatum, magnified, after Call (1900, pl. 8, fig. 12)</td>
<td>505</td>
</tr>
<tr>
<td>357.</td>
<td>Distribution of Helisoma campanulatum in North America; inset, distribution in Ohio</td>
<td>506</td>
</tr>
<tr>
<td>358.</td>
<td>Planorbula armigera, magnified; after Walker (1918, p. 14)</td>
<td>507</td>
</tr>
<tr>
<td>359.</td>
<td>Distribution of Planorbula armigera in North America; inset, distribution in Ohio</td>
<td>508</td>
</tr>
<tr>
<td>360.</td>
<td>Planorbula crassilabris and Planorbula armigera; apertural lamellae compared; magnified; after Winslow (1921)</td>
<td>509</td>
</tr>
<tr>
<td>361.</td>
<td>Distribution of Planorbula crassilabris in North America; inset, distribution in Ohio</td>
<td>510</td>
</tr>
<tr>
<td>362.</td>
<td>Promenetus exacuous, X2.5; after Goodrich (1932, p. 68)</td>
<td>511</td>
</tr>
<tr>
<td>363.</td>
<td>Distribution of Promenetus exacuous in North America; inset, distribution in Ohio</td>
<td>511</td>
</tr>
<tr>
<td>365.</td>
<td>Distribution of Promenetus tubellus in North America; inset, distribution in Ohio</td>
<td>513</td>
</tr>
<tr>
<td>366.</td>
<td>Distribution of Promenetus umbilicatellus in North America; inset, distribution in Ohio</td>
<td>514</td>
</tr>
<tr>
<td>368.</td>
<td>Distribution of Menetus dilatatus in North America; inset, distribution in Ohio</td>
<td>516</td>
</tr>
<tr>
<td>369.</td>
<td>Distribution of Menetus dilatatus buchanensis in North America; inset, distribution in Ohio</td>
<td>517</td>
</tr>
<tr>
<td>370.</td>
<td>Distribution of Menetus brogniartianus in North America; inset, distribution in Ohio</td>
<td>518</td>
</tr>
<tr>
<td>371.</td>
<td>Ferrissia bartschi, magnified; after Walker's original figure (1920, p. 525, fig. 1)</td>
<td>519</td>
</tr>
<tr>
<td>372.</td>
<td>Distribution of Ferrissia bartschi in North America</td>
<td>520</td>
</tr>
<tr>
<td>373.</td>
<td>Ferrissia rivularis, magnified; after W.G. Binney (1865, pt. II, p. 142, fig. 238)</td>
<td>521</td>
</tr>
<tr>
<td>374.</td>
<td>Distribution of Ferrissia rivularis in North America; inset, distribution in Ohio</td>
<td>522</td>
</tr>
<tr>
<td>376.</td>
<td>Distribution of Ferrissia parallae in North America; inset, distribution in Ohio</td>
<td>523</td>
</tr>
<tr>
<td>377.</td>
<td>Distribution of Ferrissia meekiana in North America; inset, distribution in Ohio</td>
<td>524</td>
</tr>
<tr>
<td>378.</td>
<td>Ferrissia shimekii, magnified; after Walker (1904, Naut. 18, pl. 6, figs. 17-19)</td>
<td>525</td>
</tr>
<tr>
<td>379.</td>
<td>Distribution of Ferrissia shimekii in North America; inset, distribution in Ohio</td>
<td>526</td>
</tr>
<tr>
<td>380.</td>
<td>Ferrissia tarda, magnified; after Call (1900, pl. 8, fig. 15)</td>
<td>527</td>
</tr>
<tr>
<td>381.</td>
<td>Distribution of Ferrissia tarda in North America; inset, distribution in Ohio</td>
<td>528</td>
</tr>
<tr>
<td>382.</td>
<td>Ferrissia novangliae, magnified; after Walker (1908, Naut. 21, pl. 9, figs. 5-7)</td>
<td>529</td>
</tr>
<tr>
<td>383.</td>
<td>Distribution of Ferrissia novangliae in North America</td>
<td>529</td>
</tr>
<tr>
<td>385.</td>
<td>Distribution of Laevapex diaphanus in North America; inset, distribution in Ohio</td>
<td>530</td>
</tr>
<tr>
<td>387.</td>
<td>Distribution of Laevapex fuscs in North America; inset, distribution in Ohio</td>
<td>532</td>
</tr>
<tr>
<td>388.</td>
<td>Distribution of Laevapex kirklandi in North America; inset, distribution in Ohio</td>
<td>533</td>
</tr>
<tr>
<td>389.</td>
<td>Distribution of Physa anatina in North America; inset, distribution in Ohio</td>
<td>536</td>
</tr>
<tr>
<td>390.</td>
<td>Physa ancillaria, XI; after W.G. Binney (1865, pt. II, p. 81, fig. 139)</td>
<td>537</td>
</tr>
<tr>
<td>391.</td>
<td>Distribution of Physa ancillaria in North America; inset, distribution in Ohio</td>
<td>538</td>
</tr>
<tr>
<td>392.</td>
<td>Distribution of Physa ancillaria magnalacustris in North America</td>
<td>539</td>
</tr>
<tr>
<td>393.</td>
<td>Distribution of Physa aplectoides in North America; inset, distribution in Ohio</td>
<td>540</td>
</tr>
<tr>
<td>395.</td>
<td>Distribution of Physa elliptica in North America; inset, distribution in Ohio</td>
<td>542</td>
</tr>
<tr>
<td>396.</td>
<td>Physa gyrina, magnified; after Call (1900, pl. 8, fig. 1)</td>
<td>543</td>
</tr>
<tr>
<td>397.</td>
<td>Distribution of Physa gyrina in North America; inset, distribution in Ohio</td>
<td>543</td>
</tr>
<tr>
<td>398.</td>
<td>Distribution of Physa gyrina beldrethiana in North America</td>
<td>544</td>
</tr>
<tr>
<td>399.</td>
<td>Physa heterostropha, slightly magnified;</td>
<td>544</td>
</tr>
<tr>
<td>Distribution of $\text{Physa heterostropha}$ in North America; inset, distribution in Ohio</td>
<td>Page 545</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Physa integra, magnified; after W. G. Binney (1865, pt. II, p. 101, fig. 172)</td>
<td>Page 547</td>
<td></td>
</tr>
<tr>
<td>Distribution of Physa integra in North America; inset, distribution in Ohio</td>
<td>Page 547</td>
<td></td>
</tr>
<tr>
<td>$\text{Physa michiganensis}$, magnified; after Clench (1926, pl. 1, fig. 4)</td>
<td>Page 548</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Physa michiganensis}$ in North America; inset, distribution in Ohio</td>
<td>Page 549</td>
<td></td>
</tr>
<tr>
<td>Physa sayii, magnified; after F. C. Baker (1939a, p. 50)</td>
<td>Page 550</td>
<td></td>
</tr>
<tr>
<td>Distribution of Physa sayii in North America; inset, distribution in Ohio</td>
<td>Page 550</td>
<td></td>
</tr>
<tr>
<td>Aplexa hypnorum, magnified; after Call (1900, pl. 8, fig. 2)</td>
<td>Page 552</td>
<td></td>
</tr>
<tr>
<td>Distribution of Aplexa hypnorum in North America; inset, distribution in Ohio</td>
<td>Page 552</td>
<td></td>
</tr>
<tr>
<td>$\text{Hendersonia occulta}$, magnified; after F. C. Baker (1939a, p. 39)</td>
<td>Page 556</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Hendersonia occulta}$ in North America; inset, distribution in Ohio</td>
<td>Page 557</td>
<td></td>
</tr>
<tr>
<td>Distribution of Carychium exile magnified; after Walker (1939a, p. 5, upper fig.)</td>
<td>Page 560</td>
<td></td>
</tr>
<tr>
<td>Distribution of Carychium exile in North America; inset, distribution in Ohio</td>
<td>Page 561</td>
<td></td>
</tr>
<tr>
<td>Distribution of Carychium exile magnified; after F. C. Baker (1939a, p. 59)</td>
<td>Page 566</td>
<td></td>
</tr>
<tr>
<td>Distribution of Carychium exile in North America; inset, distribution in Ohio</td>
<td>Page 567</td>
<td></td>
</tr>
<tr>
<td>Stenotrema stenotrema, XI; after F. C. Baker (1939a, pl. 6, fig. 172)</td>
<td>Page 563</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Stenotrema stenotrema}$ in North America; inset, distribution in Ohio</td>
<td>Page 564</td>
<td></td>
</tr>
<tr>
<td>Stenotrema bursutum, magnified; after F. C. Baker (1939a, p. 59)</td>
<td>Page 565</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Stenotrema bursutum}$ in North America; inset, distribution in Ohio</td>
<td>Page 566</td>
<td></td>
</tr>
<tr>
<td>Stenotrema leati, magnified; after F. C. Baker (1939a, p. 60)</td>
<td>Page 567</td>
<td></td>
</tr>
<tr>
<td>Distribution of Stenotrema leati in North America; inset, distribution in Ohio</td>
<td>Page 568</td>
<td></td>
</tr>
<tr>
<td>Stenotrema fraternum, magnified; after F. C. Baker (1939a, p. 61)</td>
<td>Page 569</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Stenotrema fraternum}$ in North America; inset, distribution in Ohio</td>
<td>Page 570</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Stenotrema fraternum cavum}$</td>
<td>Page 571</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Stenotrema fraternum}$ in North America; inset, distribution in Ohio</td>
<td>Page 572</td>
<td></td>
</tr>
<tr>
<td>Mesodon thyroidus, magnified; after F. C. Baker (1939a, p. 56)</td>
<td>Page 573</td>
<td></td>
</tr>
<tr>
<td>Distribution of Mesodon thyroidus in North America; inset, distribution in Ohio</td>
<td>Page 574</td>
<td></td>
</tr>
<tr>
<td>Mesodon clausus, magnified; after F. C. Baker (1939a, p. 57)</td>
<td>Page 575</td>
<td></td>
</tr>
<tr>
<td>Distribution of Mesodon clausus in North America; inset, distribution in Ohio</td>
<td>Page 576</td>
<td></td>
</tr>
<tr>
<td>Mesodon mitchellianus, magnified; after Call (1900, pl. 6, fig. 2)</td>
<td>Page 577</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Mesodon mitchellianus}$ in North America; inset, distribution in Ohio</td>
<td>Page 578</td>
<td></td>
</tr>
<tr>
<td>Mesodon zaletus, magnified; after F. C. Baker (1939a, p. 53)</td>
<td>Page 579</td>
<td></td>
</tr>
<tr>
<td>Distribution of Mesodon zaletus in North America; inset, distribution in Ohio</td>
<td>Page 580</td>
<td></td>
</tr>
<tr>
<td>Mesodon pennsylvanicus, magnified; after F. C. Baker (1939a, p. 59, lower fig.)</td>
<td>Page 582</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Mesodon pennsylvanicus}$ in North America; inset, distribution in Ohio</td>
<td>Page 583</td>
<td></td>
</tr>
<tr>
<td>Mesodon elevatus, magnified; after F. C. Baker (1939a, p. 55, upper fig.)</td>
<td>Page 584</td>
<td></td>
</tr>
<tr>
<td>Distribution of Mesodon elevatus in North America; inset, distribution in Ohio</td>
<td>Page 585</td>
<td></td>
</tr>
<tr>
<td>Mesodon appressus, magnified; after F. C. Baker (1939a, p. 54)</td>
<td>Page 586</td>
<td></td>
</tr>
<tr>
<td>Distribution of Mesodon appressus in North America; inset, distribution in Ohio</td>
<td>Page 587</td>
<td></td>
</tr>
<tr>
<td>Mesodon sayanus in North America</td>
<td>Page 588</td>
<td></td>
</tr>
<tr>
<td>Mesodon inductus, magnified; after F. C. Baker (1939a, p. 47)</td>
<td>Page 589</td>
<td></td>
</tr>
<tr>
<td>Distribution of Mesodon inductus in North America; inset, distribution in Ohio</td>
<td>Page 590</td>
<td></td>
</tr>
<tr>
<td>Triodopsis tridentata, magnified; after F. C. Baker (1939a, p. 45)</td>
<td>Page 591</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Triodopsis tridentata}$ in North America; inset, distribution in Ohio</td>
<td>Page 592</td>
<td></td>
</tr>
<tr>
<td>Triodopsis fraudulenta vulgata, magnified; after F. C. Baker (1939a, p. 46)</td>
<td>Page 593</td>
<td></td>
</tr>
<tr>
<td>Distribution of $\text{Triodopsis fraudulenta vulgata}$ in North America; inset, distribution in Ohio</td>
<td>Page 594</td>
<td></td>
</tr>
<tr>
<td>Triodopsis obstricta, magnified; after F. C. Baker (1939a, p. 53)</td>
<td>Page 595</td>
<td></td>
</tr>
</tbody>
</table>
449. **Triodopsis albolabris**, magnified; after F. C. Baker (1939a, p. 49) .. 595
450. Distribution of **Triodopsis albolabris** in North America; inset, distribution in Ohio ... 596
451. Distribution of **Triodopsis dentifera** in North America .. 597
452. **Triodopsis multilineata**, magnified; after F. C. Baker (1939a, p. 51) .. 598
453. Distribution of **Triodopsis multilineata** in North America; inset, distribution in Ohio ... 599
454. **Allogona profunda**, magnified; after F. C. Baker (1939a, p. 48) .. 600
455. Distribution of **Allogona profunda** in North America; inset, distribution in Ohio ... 601
456. **Subulina octona**, after Burch (1960, pl. II, fig. C) .. 602
457. Distribution of **Subulina octona** in North America; inset, distribution in Ohio ... 603
458. **Haplotrema concavum**, magnified; after F. C. Baker (1939a, p. 92) .. 604
459. Distribution of **Haplotrema concavum** in North America; inset, distribution in Ohio ... 605
460. **Euconulus fulvus**, magnified; after Walker (1928, p. 93, fig. 128) .. 606
461. Distribution of **Euconulus fulvus** in North America; inset, distribution in Ohio ... 607
462. **Euconulus chersinus**, magnified; after F. C. Baker (1939a, p. 76, upper figs.) .. 608
463. Distribution of **Euconulus chersinus** in North America; inset, distribution in Ohio ... 609
464. **Euconulus chersinus polygyratus**, magnified; after F. C. Baker (1939a, p. 76, lower fig.) .. 610
465. Distribution of **Euconulus chersinus polygyratus** in North America .. 611
466. **Guppya sterkii**, magnified; after Walker (1928, p. 94, fig. 129) .. 612
467. Distribution of **Guppya sterkii** in North America; inset, distribution in Ohio ... 613
468. **Oxychilus cellarius**, magnified; after F. C. Baker (1939a, p. 140, top fig.) .. 614
469. Distribution of **Oxychilus cellarius** in North America; inset, distribution in Ohio ... 615
470. **Oxychilus draparnaldi**, magnified; after Burch (1960, pl. II, fig. H) .. 616
471. Distribution of **Oxychilus draparnaldi** in North America; inset, distribution in Ohio ... 617
472. Distribution of **Oxychilus alliarius** in North America; inset, distribution in Ohio ... 618
473. **Retinella indentata**, magnified; after F. C. Baker (1939a, p. 71) .. 619
474. Distribution of **Retinella indentata** in North America; inset, distribution in Ohio ... 620
475. **Retinella wheateyli**, magnified; after F. C. Baker (1939a, p. 70, fig. B) .. 621
476. Distribution of **Retinella wheateyli** in North America; inset, distribution in Ohio ... 622
477. **Retinella rhoadsi**, magnified; after F. C. Baker (1939a, p. 70, fig. C) .. 623
478. Distribution of **Retinella rhoadsi** in North America; inset, distribution in Ohio ... 624
479. Distribution of **Nesovitrea electrina** in North America; inset, distribution in Ohio ... 625
480. **Nesovitrea binneyana**, magnified; after Morse (1864, p. 61, fig. 25) .. 626
481. Distribution of **Nesovitrea binneyana** in North America; inset, distribution in Ohio ... 627
482. **Mesomphix inomatus**, magnified; after Call (1900, pl. 4, fig. 14) .. 628
483. Distribution of **Mesomphix inomatus** in North America; inset, distribution in Ohio ... 629
484. **Mesomphix vulgatus**, magnified; after F. C. Baker (1939a, p. 68) .. 630
485. Distribution of **Mesomphix vulgatus** in North America; inset, distribution in Ohio ... 631
486. **Mesomphix friabilis**, magnified; after F. C. Baker (1939a, p. 67) .. 632
487. Distribution of **Mesomphix friabilis** in North America; inset, distribution in Ohio ... 633
488. **Mesomphix cupreus**, magnified; after F. C. Baker (1939a, p. 66) .. 634
489. Distribution of **Mesomphix cupreus** in North America; inset, distribution in Ohio ... 635
490. **Paravitrea multidentata**, magnified; after Walker (1928, p. 89, fig. 121) .. 636
491. Distribution of **Paravitrea multidentata** in North America; inset, distribution in Ohio ... 637
492. Distribution of **Paravitrea lamellidens** in North America .. 638
493. **Paravitrea capsella**, magnified; after F. C. Baker (1939a, p. 74, upper two figs.) .. 639
494. Distribution of **Paravitrea capsella** in North America; inset, distribution in Ohio ... 640
495. Distribution of **Hawaii minuscilla** in North America; inset, distribution in Ohio ... 641
CONTENTS

Page 640 America; inset, distribution in Ohio 661
521. Limax maximus, approximately X1; after Burch (1960, pl. III, fig. H) 662
522. Distribution of Limax maximus in North America; inset, distribution in Ohio 663
523. Limax flavus, approximately X1; after Burch (1960, pl. III, fig. G) 664
524. Distribution of Limax flavus in North America; inset, distribution in Ohio 665
525. Distribution of Deroceras aenigma in North America; inset, distribution in Ohio 665
526. Deroceras laeve, magnified; after F. C. Baker (1939a, p. 129) 667
527. Distribution of Deroceras laeve in North America; inset, distribution in Ohio 668
528. Deroceras reticulatum, magnified; after F. C. Baker (1939a, p. 130) 669
529. Distribution of Deroceras reticulatum in North America; inset, distribution in Ohio 670
530. Anguisspira alternata, magnified; after F. C. Baker (1939a, p. 84) 671
531. Distribution of Anguisspira alternata in North America; inset, distribution in Ohio 673
532. Anguisspira kochi, magnified; after F. C. Baker (1939a, p. 85) 674
533. Distribution of Anguisspira kochi (eastern subspecies only) in North America; inset, distribution in Ohio 675
534. Distribution of Discus crenkhitei in North America; inset, distribution in Ohio 678
535. Distribution of Discus crenkhitei catskillensis in North America; inset, distribution in Ohio 679
536. Discus macclintockii, magnified; after F. C. Baker (1931c, pl. 32, figs. 3A, B) 680
537. Distribution of Discus macclintockii in North America; inset, distribution in Ohio 681
538. Discus patulus, magnified; after F. C. Baker (1939a, p. 87) 682
539. Distribution of Discus patulus in North America; inset, distribution in Ohio 682
540. Distribution of Helicodiscus parallelus in North America; inset, distribution in Ohio 685
541. Helicodiscus singleyanus inermis, magnified; after F. C. Baker (1939a, p. 89) 686
542. Distribution of Helicodiscus singleyanus inermis in North America; inset, distribution in Ohio 687
543. Punctum minutissimum, magnified; after F. C. Baker (1939a, p. 90) 688
544. Distribution of Punctum minutissimum in North America; inset, distribution in Ohio 689
CONTENTS

545. Distribution of Arion hortensis in North America ... 690
546. Distribution of Philomyus carolinianus in North America; the records on this map may include a few that should be referred to P. carolinianus flexuolaris; inset, distribution in Ohio 691
547. Distribution of Philomyus carolinianus flexuolaris in North America; some of these records may refer to other subspecies; inset, distribution in Ohio 692
548. Distribution of Pallifera dorsalis in North America; inset, distribution in Ohio 693
549. Distribution of Pallifera fosteri in North America; inset, distribution in Ohio 694
550. Distribution of Pallifera oboiensis in North America; inset, distribution in Ohio 695
551. Philomyxus carolinianus, magnified; after F. C. Baker (1939a, p. 131) 696
552. Distribution of Oxyloma decampii gouldi in North America; inset, distribution in Ohio 696
553. Oxyloma retusa, magnified; after F. C. Baker (1939a, p. 125, fig. A) 697
554. Distribution of Oxyloma retusa in North America; inset, distribution in Ohio 698
555. Quickella vermeta, magnified; after F. C. Baker (1931c, pl. 32, fig. 20B) 699
556. Distribution of Quickella vermeta in North America; inset, distribution in Ohio ... 700
557. Succinea aurea, magnified; after Walker (1928, p. 171, fig. 269) 701
558. Distribution of Succinea aurea in North America; inset, distribution in Ohio 702
559. Succinea avara, magnified; after Call (1900, pl. 7, fig. 3) 703
560. Distribution of Succinea avara in North America; inset, distribution in Ohio 704
561. Succinea grosvenori, magnified; after Walker (1928, p. 169, fig. 267) 705
562. Distribution of Succinea grosvenori in North America; inset, distribution in Ohio 706
563. Distribution of Succinea grosvenori gelida in North America; inset, distribution in Ohio 707
564. Succinea ovalis, magnified; after Call (1900, pl. 7, fig. 2) 708
565. Distribution of Succinea ovalis in North America; inset, distribution in Ohio 709
566. Succinea ovalis optima, magnified; after F. C. Baker (1939a, p. 122, fig. B) 710
567. Distribution of Succinea ovalis optima in North America 711
568. Strobilops labrinthica, magnified; after Call (1900, pl. 5, fig. 5) 712
569. Distribution of Strobilops labrinthica in North America; inset, distribution in Ohio 713
570. Strobilops affinis, magnified; after Walker (1928, p. 159, fig. 244) 714
571. Distribution of Strobilops affinis in North America; inset, distribution in Ohio 715
572. Strobilops aenea, magnified; after Walker (1928, p. 157, fig. 243) 716
573. Distribution of Strobilops aenea in North America; inset, distribution in Ohio 716
574. Distribution of Gastrocopta armifera in North America; inset, distribution in Ohio 719
575. Gastrocopta contracta, magnified; after F. C. Baker (1939a, p. 97) 720
576. Distribution of Gastrocopta contracta in North America; inset, distribution in Ohio 721
577. Distribution of Gastrocopta boltingeri in North America; inset, distribution in Ohio 722
578. Gastrocopta pentodon, magnified; several specimens, to show variation; after Walker (1928, p. 133, fig. 201) 723
579. Distribution of Gastrocopta pentodon in North America; inset, distribution in Ohio 724
580. Gastrocopta tappaniana, magnified; several specimens to show variation; after Walker (1928, p. 135, fig. 203) 725
581. Distribution of Gastrocopta tappaniana in North America; inset, distribution in Ohio 726
582. Gastrocopta corticaria, magnified; after Call (1900, pl. 6, fig. 12) 727
583. Distribution of Gastrocopta corticaria in North America; inset, distribution in Ohio 728
584. Distribution of Gastrocopta procera in North America; inset, distribution in Ohio 729
585. Distribution of Pupoides albilaris in North America; inset, distribution in Ohio 732
586. Distribution of Pupilla muscorum in North America; inset, distribution in Ohio 733
587. Vertigo milium, magnified; after Walker (1928, p. 148, fig. 227) 734
588. Distribution of Vertigo milium in North America; inset, distribution in Ohio 736
589. Vertigo morsei, magnified; after F. C. Baker (1939a, p. 104) 737
590. Distribution of Vertigo morsei in North America; inset, distribution in Ohio 737
591. Distribution of Vertigo ovata in North America; inset, distribution in Ohio 739

xxiii
CONTENTS

592. Vertigo elatior, magnified; after F. C. Baker (1939a, p. 106) 740
593. Distribution of Vertigo elatior in North America; inset, distribution in Ohio ... 740
594. Vertigo ventricosa, magnified; after Walker (1928, p. 144, fig. 221) 741
595. Distribution of Vertigo ventricosa in North America; inset, distribution in Ohio 742
596. Vertigo pygmaea, magnified; after Pilsbry (1948, p. 958, figs. 11, 12) 743
597. Distribution of Vertigo pygmaea in North America; inset, distribution in Ohio 743
598. Vertigo tridentata, magnified; after F. C. Baker (1939a, p. 106) 744
599. Distribution of Vertigo tridentata in North America; inset, distribution in Ohio ... 745
600. Vertigo alpestris oughtoni, magnified; after Pilsbry (1948, p. 968, fig. 519) ... 746
601. Distribution of Vertigo alpestris oughtoni in North America; inset, distribution in Ohio ... 747
602. Vertigo parvula, magnified; after Pilsbry (1948, p. 967, figs. 7, 9) 748
603. Distribution of Vertigo parvula in North America; inset, distribution in Ohio ... 748
604. Distribution of Vertigo gouldii in North America; inset, distribution in Ohio ... 749
605. Vertigo bollesiana, magnified; after Walker (1928, p. 146, fig. 223) 750
606. Distribution of Vertigo bollesiana in North America; inset, distribution in Ohio ... 750
607. Vertigo modesta, magnified; after Pilsbry (1948, p. 991, figs. 1, 2) 751
608. Distribution of Vertigo modesta in North America; inset, distribution in Ohio ... 752
609. Columella edentula, magnified; after Walker (1928, p. 153, fig. 238) 753

610. Distribution of Columella edentula in North America; inset, distribution in Ohio ... 754
611. Columella alticola, magnified; after Pilsbry (1948, p. 1004, fig. 536) 755
612. Distribution of Columella alticola in North America; inset, distribution in Ohio ... 756
613. Vallonia pulchella, magnified; after Call (1900, pl. 4, fig. 9) 757
614. Distribution of Vallonia pulchella in North America; inset, distribution in Ohio ... 758
615. Vallonia excentrica, magnified; after F. C. Baker (1939a, p. 118) 759
616. Distribution of Vallonia excentrica in North America; inset, distribution in Ohio ... 760
617. Vallonia costata, magnified; after F. C. Baker (1939a, p. 119) 761
618. Distribution of Vallonia costata in North America; inset, distribution in Ohio ... 761
619. Distribution of Vallonia parvula in North America; inset, distribution in Ohio ... 763
620. Distribution of Vallonia gracilicosta in North America; inset, distribution in Ohio ... 764
621. Vallonia perspectiva, magnified; after Walker (1928, p. 163, fig. 252) 765
622. Distribution of Vallonia perspectiva in North America 766
623. Cionella lubrica, magnified; two specimens, showing shell and living animal; after Call (1900, pl. 4, fig. 8) 769
624. Distribution of Cionella lubrica in North America; inset, distribution in Ohio ... 770

PLATES

1. Shells of Sphaerium 800 and Somatogyrus 800
2. Shells of Sphaerium 800
3. Hinges of Pisidium 800
4. Hinges of Pisidium 800
5. Hinges of Pisidium 800
6. Hinges of Pisidium 800
7. Cardinal teeth of Pisidium 800
8. Shells of Amnicola, Carychium, Quadrula, and Sphaerium 800
9. Shells of Anisus, Armiger, Fossaria, Stagnicola, and Valvata 800
10. Shells of Amnicola, Hydrobia, Lyogyrus, and Pyrgulopsis 800
11. Shells of Bulimus, Lyogyrus, Pomatiopsis, Pyrgulopsis, 800
12. Shells of Gyraulus and Stenotrema 800
13. Shells of Ferrissia, Helisoma, Laevapex, and Physis 800
14. Shells of Deroceras, Discus, Euconulus, and Promenetus ... 800
15. Shells of Allogona, Anguispira, and Triodopsis 800
16. Shells of Hawaii, Helicodiscus, Nesovitrea, Promenetus, and Zonitoides 800
17. Shells of Gastrocopta, Pupilla, Pupoides, Vallonia, and Vertigo 800
18. Shells of Vallonia 800
BULLETIN 62
PART 4
(OF 4 PARTS)

PLEISTOCENE MOLLUSCA
OF OHIO

by
Aurèle La Rocque

COLUMBUS
1970
CONTENTS

CHAPTER 7 - TERRESTRIAL GASTROPODA

Class Gastropoda .. 555
Order Archaeogastropoda 555
Family Helicinidae 555
 Genus Hendersonia A. J. Wagner 1905 555
 H. occulta (Say) 1831 555
Order Pulmonata .. 556
Suborder Basommatophora 556
Family Carychiidae “Leach” Jefferys 1829 556
 Genus Carychiwm Müller 1774 558
 C. exiguum (Say) 1822 558
 C. exile H. C. Lea 1842 559
 C. exile canadense Clapp 1906 561
 [Suborder Stylommatophora A. Schmidt] 562
 Family Polygyridae Pilsbr 1862 562
 Genus Stenotrema Rafinesque 1819 564
 S. stenotrema (Pfeiffer) 1842 564
 S. bursutm (Say) 1817 566
 S. leaii (Binney) 1842 567
 S. fratenum (Say) 1824 568
 [S. fratenum caicum (Pilsbr and Vanatta) 1911] 570
 Genus Mesodon Rafinesque 1821 572
 M. thyroidus (Say) 1816 573
 M. clausus (Say) 1821 575
 M. mitchellianus (Lea) 1839 579
 M. zaelus (Binney) 1837 578
 M. pennsylvanicus (Green) 1827 ... 578
 M. elevatus (Say) 1821 581
 M. appressus (Say) 1821 581
 [M. sayanus (Pilsbr) 1906] 583
 M. inflectus (Say) 1821 586
 Genus Triodopsis Rafinesque 1819 586
 T. tridentata (Say) 1816 587
 T. tridentata justidens (Pilsbr) 1894 ... 589
 T. tridentata discoidea Pilsbr 1904 590
 T. fraudulenta vulgata Pilsbr 1940 590
Subgenus Xoloentrema Rafinesque 1819 591
 T. denotata (Férussac) 1823 591
 T. obstincta (Say) 1821 593
Subgenus Neoelichion from hering 1892 593
 T. albolabris (Say) 1816 594

[Page]
T. dentifera (Binney) 1837 598
T. multilinata (Say) 1821 598
Genus Allogona Pilsbr 1939 601
 A. profunda (Say) 1821 601
 A. profunda strontiana (Clapp) 1916 603
 Family Achatinidae 603
 Subfamily Subulinoidea 603
 Genus Subulina Beck 1837 603
 S. octona Bruguier 1792 603
 Family Haplotrematidae H. B. Baker 1930 604
 Genus Haplotrema Aney 1881 605
 H. concavum (Say) 1821 605
 Family Zonitidae 606
 Subfamily Euconulinae H. B. Baker 1928 606
 Genus Euconulus Reinhardt 1883 607
 E. fulvis (Müller) 1774 608
 E. chersinius (Say) 1821 610
 E. chersius polygyratus (Pilsbr) 1899 611
 Genus Guppy Mörs 1867 612
 G. kirkii (Dall) 1888 612
 Subfamily Zonitinae 614
 Genus Oxychilus Fitzinger 1833 615
 O. cellarius (Müller) 1774 615
 O. drapamalci (Beck) 1837 616
 O. allarius (Miller) 1822 617
 Genus Retinella “Shuttleworth” Fischer 1877 617
 R. indentata (Say) 1823 617
 R. uoateleyi (Bland) 1883 621
 R. rhoadsi (Pilsbr) 1899 621
 Genus Nesovittrea C. M. Cooke 1921 624
 Subgenus Perpolita H. B. Baker 1928 624
 N. electrina (Gould) 1841 624
 N. binneyana (Morse) 1864 626
 Genus Mesomphix Rafinesque 1819 626
 M. inornatus (Say) 1821 627
 [M. subplanus (Binney) 1842] 628
 M. vulgatus H. B. Baker 1933 628
 Subgenus Ompbitala Rafinesque 1831 631
 M. friabilis (W. G. Binney) 1857 631
 M. cupreus (Rafinesque) 1831 631
 Genus Parasitrea Pilsbr 1898 634
 P. multidentata (Binney) 1840 634

xxvii
<table>
<thead>
<tr>
<th>Page</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>636</td>
<td>[P. lamellidens (Pilsbry) 1898] ..</td>
</tr>
<tr>
<td>636</td>
<td>P. capsella (Gould) 1851</td>
</tr>
<tr>
<td>636</td>
<td>Genus Hawaiiia Gude 1911</td>
</tr>
<tr>
<td>636</td>
<td>H. minuscula (Binney) 1840</td>
</tr>
<tr>
<td>639</td>
<td>Subfamily Gastrodontinae Tryon 1866</td>
</tr>
<tr>
<td>639</td>
<td>Genus Gastrodonta Albers 1850</td>
</tr>
<tr>
<td>640</td>
<td>G. interna (Say) 1822</td>
</tr>
<tr>
<td>641</td>
<td>Genus Ventridens W. G. Binney 1863</td>
</tr>
<tr>
<td>641</td>
<td>V. suppressus (Say) 1829</td>
</tr>
<tr>
<td>641</td>
<td>[V. suppressus virginius (Vanatta) 1936]</td>
</tr>
<tr>
<td>644</td>
<td>V. gularis (Say) 1822</td>
</tr>
<tr>
<td>644</td>
<td>[V. collisella (Pilsbry) 1896]</td>
</tr>
<tr>
<td>647</td>
<td>[V. lasmodon (Phillips) 1841]</td>
</tr>
<tr>
<td>647</td>
<td>V. demissus (Binney) 1843</td>
</tr>
<tr>
<td>647</td>
<td>V. ligera (Say) 1821</td>
</tr>
<tr>
<td>647</td>
<td>V. intertextus (Binney) 1841</td>
</tr>
<tr>
<td>652</td>
<td>Genus Zonotoides Lehmann 1862</td>
</tr>
<tr>
<td>652</td>
<td>Z. arbores (Say) 1816</td>
</tr>
<tr>
<td>654</td>
<td>Z. limatulus (Binney) 1840</td>
</tr>
<tr>
<td>654</td>
<td>Z. nitidus (Müller) 1774</td>
</tr>
<tr>
<td>656</td>
<td>Genus Striatura Morse 1864</td>
</tr>
<tr>
<td>656</td>
<td>S. exigua (Stimpson) 1850</td>
</tr>
<tr>
<td>658</td>
<td>S. ferrea Morse 1864</td>
</tr>
<tr>
<td>659</td>
<td>S. milium (Morse) 1859</td>
</tr>
<tr>
<td>662</td>
<td>Family Limacidae</td>
</tr>
<tr>
<td>662</td>
<td>Genus Limax Linnaeus 1758</td>
</tr>
<tr>
<td>662</td>
<td>L. maximus Linnaeus 1758</td>
</tr>
<tr>
<td>663</td>
<td>L. flavus Linnaeus 1758</td>
</tr>
<tr>
<td>664</td>
<td>Genus Deroceras Rafinesque 1820</td>
</tr>
<tr>
<td>664</td>
<td>D. aenigma Leonard 1950</td>
</tr>
<tr>
<td>664</td>
<td>D. laeve (Müller) 1774</td>
</tr>
<tr>
<td>667</td>
<td>D. reticulatum (Müller) 1774</td>
</tr>
<tr>
<td>669</td>
<td>Family Endodontidae</td>
</tr>
<tr>
<td>670</td>
<td>Subfamily Endodontinae</td>
</tr>
<tr>
<td>670</td>
<td>Genus Anguispina Morse 1864</td>
</tr>
<tr>
<td>671</td>
<td>A. alternata (Say) 1816</td>
</tr>
<tr>
<td>672</td>
<td>A. alternata eriensis Clapp 1916</td>
</tr>
<tr>
<td>672</td>
<td>A. kochi (Pfeiffer) 1845</td>
</tr>
<tr>
<td>674</td>
<td>A. kochi mynesites (Clapp) 1916</td>
</tr>
<tr>
<td>674</td>
<td>A. kochi roseoapicata (Clapp) 1916</td>
</tr>
<tr>
<td>675</td>
<td>A. kochi strontiana (Clapp) 1916</td>
</tr>
<tr>
<td>676</td>
<td>D. Discus Fitzinger 1833</td>
</tr>
<tr>
<td>676</td>
<td>D. cronkhitei (Newcomb) 1865</td>
</tr>
<tr>
<td>676</td>
<td>D. cronkhitei catskillensis (Pilsbry) 1898</td>
</tr>
<tr>
<td>677</td>
<td>D. macclintocki (F. C. Baker) 1928</td>
</tr>
<tr>
<td>680</td>
<td>D. patulus (Deshayes) 1830</td>
</tr>
<tr>
<td>683</td>
<td>Subfamily Helicodiscinae</td>
</tr>
<tr>
<td>683</td>
<td>Genus Helicodiscus Morse 1864</td>
</tr>
<tr>
<td>683</td>
<td>H. parallelus (Say) 1821</td>
</tr>
<tr>
<td>684</td>
<td>H. singleanus (Pilsbry) 1890</td>
</tr>
<tr>
<td>684</td>
<td>H. singleanus inermis H. B. Baker 1929</td>
</tr>
<tr>
<td>686</td>
<td>Subfamily Punctinae Morse 1864</td>
</tr>
<tr>
<td>686</td>
<td>Genus Punctum Morse 1864</td>
</tr>
<tr>
<td>686</td>
<td>P. minutissimum (Lea) 1841</td>
</tr>
<tr>
<td>688</td>
<td>Family Arionidae</td>
</tr>
<tr>
<td>688</td>
<td>Genus Arion Féussac 1821</td>
</tr>
<tr>
<td>688</td>
<td>Family Philomyzidae Keferstein 1866</td>
</tr>
<tr>
<td>693</td>
<td>Family Succineidae</td>
</tr>
<tr>
<td>694</td>
<td>Genus Oxyloma Westerlund 1885</td>
</tr>
<tr>
<td>694</td>
<td>O. decampis gouldi Pilsbry 1948</td>
</tr>
<tr>
<td>697</td>
<td>O. retusa (Lea) 1834</td>
</tr>
<tr>
<td>699</td>
<td>Genus Quickeii C. R. Boettger 1939</td>
</tr>
<tr>
<td>701</td>
<td>Q. vermeta (Say) 1829</td>
</tr>
<tr>
<td>701</td>
<td>Genus Succinea Draparnaud 1801</td>
</tr>
<tr>
<td>701</td>
<td>S. aurea Lea 1846</td>
</tr>
<tr>
<td>702</td>
<td>S. avara Say 1824</td>
</tr>
<tr>
<td>704</td>
<td>S. grosvenori Lea 1864</td>
</tr>
<tr>
<td>706</td>
<td>S. grosvenori gelida F. C. Baker 1827</td>
</tr>
<tr>
<td>708</td>
<td>S. ovalis Say 1817</td>
</tr>
<tr>
<td>710</td>
<td>S. ovalis optima Pilsbry 1898</td>
</tr>
<tr>
<td>710</td>
<td>Suborder Orthurethra</td>
</tr>
<tr>
<td>710</td>
<td>Family Strobilopidae</td>
</tr>
<tr>
<td>710</td>
<td>Genus Strobilops Pilsbry 1893</td>
</tr>
<tr>
<td>711</td>
<td>S. labyrinthica (Say) 1817</td>
</tr>
<tr>
<td>713</td>
<td>S. affinis Pilsbry 1893</td>
</tr>
<tr>
<td>714</td>
<td>S. aenea Pilsbry 1926</td>
</tr>
<tr>
<td>716</td>
<td>Family Pupillidae Turton 1831</td>
</tr>
<tr>
<td>717</td>
<td>Subfamily Gastrocoptinae Pilsbry 1918</td>
</tr>
<tr>
<td>717</td>
<td>Genus Gastrocopta Wollaston 1878</td>
</tr>
<tr>
<td>717</td>
<td>G. armifera (Say) 1821</td>
</tr>
<tr>
<td>718</td>
<td>G. contracta (Say) 1822</td>
</tr>
<tr>
<td>720</td>
<td>G. holzingeri (Sterki) 1889</td>
</tr>
<tr>
<td>723</td>
<td>Subgenus Vertigopsis Sterki 1893</td>
</tr>
<tr>
<td>723</td>
<td>Gastrocopta pentodon (Say) 1821</td>
</tr>
<tr>
<td>723</td>
<td>G. tappaniana (C. B. Adams) 1842</td>
</tr>
<tr>
<td>725</td>
<td>G. carneigii (Sterki) 1916</td>
</tr>
<tr>
<td>727</td>
<td>Subgenus Privata Sterki 1893</td>
</tr>
<tr>
<td>727</td>
<td>Gastrocopta corticaria (Say) 1816</td>
</tr>
<tr>
<td>727</td>
<td>Subgenus Gastrocopta Wollaston 1878</td>
</tr>
<tr>
<td>727</td>
<td>Gastrocopta procera (Gould) 1840</td>
</tr>
<tr>
<td>730</td>
<td>Subfamily Pupillinae</td>
</tr>
<tr>
<td>730</td>
<td>Genus Pupoides Pfeiffer 1854</td>
</tr>
<tr>
<td>730</td>
<td>P. albibilalis (C. B. Adams) 1841</td>
</tr>
<tr>
<td>731</td>
<td>Genus Pupilla Leach 1831</td>
</tr>
<tr>
<td>731</td>
<td>P. muscorum (Linnaeus) 1758</td>
</tr>
<tr>
<td>734</td>
<td>Subfamily Vertigininae</td>
</tr>
<tr>
<td>734</td>
<td>Genus Vertigo Müller 1774</td>
</tr>
<tr>
<td>734</td>
<td>Subgenus Angustula Sterki 1888</td>
</tr>
<tr>
<td>734</td>
<td>Vertigo milium (Gould) 1840</td>
</tr>
<tr>
<td>734</td>
<td>Subgenus Vertigo s.s.</td>
</tr>
<tr>
<td>735</td>
<td>Vertigo morsei Sterki 1894</td>
</tr>
<tr>
<td>735</td>
<td>V. ovata Say 1822</td>
</tr>
<tr>
<td>738</td>
<td>V. elater Sterki 1894</td>
</tr>
<tr>
<td>741</td>
<td>V. ventricosa (Morse) 1865</td>
</tr>
<tr>
<td>741</td>
<td>V. pygmaea (Draparnaud) 1801</td>
</tr>
<tr>
<td>744</td>
<td>V. tridentata Wolf 1870</td>
</tr>
<tr>
<td>744</td>
<td>V. alpestris oughtoni Pilsbry 1948</td>
</tr>
</tbody>
</table>
CONTENTS

Page
V. parvula Sterki 1890 746
V. gouldii (Binney) 1843 747
V. bollesiana (Morse) 1865 751
V. modesta (Say) 1824 751
Genus Columella Westerlund 1878 753
C. edentula (Draparnaud) 1805 753
C. alticola (Ingersoll) 1875 755
Family Valloniidae 755
Genus Vallonia Risso 1826 756
V. pulchella (Müller) 1774 757
V. excentrica Sterki 1893 758
V. costata (Müller) 1774 759
V. parvula Sterki 1893 761
V. gracilicosta Reinhardt 1883 762
V. perspectiva Sterki 1893 765
Genus Planogyrus Morse 1864 765
[P. asteriscus (Morse) 1857] 765
Genus Zoögenetis Morse 1864 767
Z. harpa (Say) 1824 767
Family Cionellidae 768
Genus Cionella Jeffreys 1829 768
C. lubrica (Müller) 1774 768
C. lubrica morseana Doherty 1878 ... 771
Selected references 772
Index 784

ILLUSTRATIONS

FIGURES

409. Hendersonia occulta, magnified; after F. C. Baker (1939a, p. 39) 556
410. Distribution of Hendersonia occulta in North America; inset, distribution in Ohio ... 556
411. Distribution of Carychium exiguum in North America; inset, distribution in Ohio ... 557
412. Carychium exile, magnified; after Walker (1928, p. 173, figs. 275, 276) 557
413. Distribution of Carychium exile in North America; inset, distribution in Ohio 560
414. Distribution of Carychium exile canadense in North America; inset, distribution in Ohio ... 561
415. Stenotrema stenotrema, XI; after F. C. Baker (1939a, p. 59) 562
416. Distribution of Stenotrema stenotrema in North America; inset, distribution in Ohio ... 563
417. Stenotrema bissatum, magnified; after F. C. Baker (1939a, p. 59) 564
418. Distribution of Stenotrema bissatum in North America; inset, distribution in Ohio ... 565
419. Stenotrema leaii, magnified; after F. C. Baker (1939a, p. 60) 566
420. Distribution of Stenotrema leaii in North America; inset, distribution in Ohio 567
421. Stenotrema fraternum, magnified; after F. C. Baker (1939a, p. 61) 568
422. Distribution of Stenotrema fraternum in North America; inset, distribution in Ohio ... 569
423. Distribution of Stenotrema fraternum cavum in North America; inset, distribution in Ohio ... 570
424. Mesodon thyroidus, magnified; after F. C. Baker (1939a, p. 56) 571
425. Distribution of Mesodon thyroidus in North America; inset, distribution in Ohio ... 572
426. Mesodon clausus, magnified; after F. C. Baker (1939a, p. 57) 573
427. Distribution of Mesodon clausus in North America; inset, distribution in Ohio ... 574
428. Mesodon michellianus, magnified; after Call (1900, pl. 6, fig. 2) 575
429. Distribution of Mesodon michellianus in North America; inset, distribution in Ohio ... 576
430. Mesodon zaletus, magnified; after F. C. Baker (1939a, p. 50) 577
431. Distribution of Mesodon zaletus in North America; inset, distribution in Ohio ... 578
432. Mesodon pennsylvanicus, magnified; after F. C. Baker (1939a, p. 55, lower fig.) .. 579
433. Distribution of Mesodon pennsylvanicus in North America; inset, distribution in Ohio ... 580
434. Mesodon elevatus, magnified; after F. C. Baker (1939a, p. 55, upper fig.) 581
435. Distribution of Mesodon elevatus in North America; inset, distribution in Ohio ... 582
436. Mesodon appressus, magnified; after F. C. Baker (1939a, p. 54) 583
437. Distribution of Mesodon appressus in North America; inset, distribution in Ohio ... 584
438. Distribution of Mesodon sayanus in North America 585
439. Mesodon inflectus, magnified; after F. C. Baker (1939a, p. 47) 586
440. Distribution of Mesodon inflectus in North America; inset, distribution in Ohio 587
441. Triodopsis tridentata, magnified; after F. C. Baker (1939a, p. 45) 588
442. Distribution of Triodopsis tridentata in North America; inset, distribution in Ohio ... 589
443. Triodopsis fraudulenta vulgata, magnified; after F. C. Baker (1939a, p. 46) 590
444. Distribution of Triodopsis fraudulenta vulgata in North America; inset, distribution in Ohio ... 591
445. Triodopsis dentifera, magnified; after F. C. Baker (1939a, p. 52) 592
446. Distribution of Triodopsis dentifera in North America; inset, distribution in Ohio 593
447. Triodopsis obstricta, magnified; after F. C. Baker (1939a, p. 53) 594
448. Distribution of Triodopsis obstricta in North America; inset, distribution in Ohio ... 595
449. Triodopsis albolabris, magnified; after F. C. Baker (1939a, p. 49) 596
450. Distribution of Triodopsis albolabris in North America; inset, distribution in Ohio ... 597
451. Distribution of Triodopsis dentifera in North America ... 598
452. Triodopsis multilineata, magnified; after F. C. Baker (1939a, p. 51) 599
453. Distribution of Triodopsis multilineata in North America; inset, distribution in Ohio ... 600
454. Allogona profunda, magnified; after F. C. Baker (1939a, p. 48) 601
455. Distribution of Allogona profunda in North America; inset, distribution in Ohio ... 602
456. Subulina octona, after Burch (1960, pl. II, fig. C) ... 603
457. Distribution of Subulina octona in North America; inset, distribution in Ohio ... 604
458. Haplortrema concavum, magnified; after F. C. Baker (1939a, p. 92) 605
459. Distribution of Haplortrema concavum in North America; inset, distribution in Ohio ... 606
460. Euconulus fulvus, magnified; after Walker (1928, p. 93, fig. 128) 607
461. Distribution of Euconulus fulvus in North America; inset, distribution in Ohio ... 608
462. Euconulus chersinus, magnified; after F. C. Baker (1939a, p. 76, upper figs.) 609
463. Distribution of Euconulus chersinus in North America; inset, distribution in Ohio ... 610
464. Euconulus chersinus polygyratus, magnified; after F. C. Baker (1939a, p. 76, lower fig.) ... 611
465. Distribution of Euconulus chersinus polygyratus in North America ... 612
466. Guppya sterkii, magnified; after Walker (1928, p. 94, fig. 129) ... 613
467. Distribution of Guppya sterkii in North America; inset, distribution in Ohio ... 614
468. Oxychilus cellarius, magnified; after F. C. Baker (1939a, p. 140, top fig.) 615
469. Distribution of Oxychilus cellarius in North America; inset, distribution in Ohio ... 616
470. Oxychilus drapamaldi, magnified; after Burch (1960, pl. II, fig. H) 617
471. Distribution of Oxychilus drapamaldi in North America; inset, distribution in Ohio ... 618
472. Distribution of Oxychilus allarius in North America; inset, distribution in Ohio ... 619
473. Retinella indentata, magnified; after F. C. Baker (1939a, p. 71) ... 620
474. Distribution of Retinella indentata in North America; inset, distribution in Ohio ... 621
475. Retinella wheatleyi, magnified; after F. C. Baker (1939a, p. 70, fig. B) 622
476. Distribution of Retinella wheatleyi in North America; inset, distribution in Ohio ... 623
477. Retinella rhoodsi, magnified; after F. C. Baker (1939a, p. 70, fig. C) 624
478. Distribution of Retinella rhoodsi in North America; inset, distribution in Ohio ... 625
479. Distribution of Nesotritrea electrina in North America; inset, distribution in Ohio ... 626
480. Nesotritrea chersinus magnified; after Morse (1864, p. 61, fig. 25) 627
481. Distribution of Nesotritrea chersinus in North America; inset, distribution in Ohio ... 628
482. Mesomphix inomatus, magnified; after Call (1900, pl. 4, fig. 14) 629
483. Distribution of Mesomphix inomatus in North America; inset, distribution in Ohio ... 630
484. Mesomphix vulgatus, magnified; after F. C. Baker (1939a, p. 68) 631
485. Distribution of Mesomphix vulgatus in North America; inset, distribution in Ohio ... 632

CONTENTS
CONTENTS

510. Distribution of Zonitoides arboreus in North America; inset, distribution in Ohio ... 653

511. Zonitoides limatulus, magnified; after F. C. Baker (1939a, p. 80, lower two figs.) ... 654

512. Distribution of Zonitoides limatulus in North America; inset, distribution in Ohio ... 655

513. Zonitoides nitidus, magnified; after F. C. Baker (1939a, p. 80, upper two figs.) .. 656

514. Distribution of Zonitoides nitidus in North America; inset, distribution in Ohio .. 657

515. Striatura exigua, magnified; after Billsby (1946, p. 490, fig. 268) ... 658

516. Distribution of Striatura exigua in North America; inset, distribution in Ohio .. 659

517. Striatura ferraria, magnified; after Morse (1864, p. 17, figs. 36-38) ... 660

518. Distribution of Striatura ferraria in North America; inset, distribution in Ohio ... 661

519. Striatura milium, magnified; after F. C. Baker (1939a, p. 77) .. 662

520. Distribution of Striatura milium in North America; inset, distribution in Ohio ... 663

521. Limax maximus, approximately XI; after Burch (1960, pl. III, fig. H) ... 664

522. Distribution of Limax maximus in North America; inset, distribution in Ohio ... 665

523. Limax flavus, approximately XI; after Burch (1960, pl. III, fig. G) ... 666

524. Distribution of Limax flavus in North America; inset, distribution in Ohio ... 667

525. Distribution of Deroceras aenigma in North America; inset, distribution in Ohio ... 668

526. Deroceras laeve, magnified; after F. C. Baker (1939a, p. 129) .. 669

527. Distribution of Deroceras laeve in North America; inset, distribution in Ohio ... 670

528. Deroceras reticulatum, magnified; after F. C. Baker (1939a, p. 130) ... 671

529. Distribution of Deroceras reticulatum in North America; inset, distribution in Ohio ... 672

530. Anguispira altemata, magnified; after F. C. Baker (1939a, p. 84) ... 673

531. Distribution of Anguispira altemata in North America; inset, distribution in Ohio ... 674

532. Anguispira kochi, magnified; after F. C. Baker (1939a, p. 85) ... 675

533. Distribution of Anguispira kochi (eastern subspecies only) in North America; inset, distribution in Ohio ... 676

534. Distribution of Discus cronkhteli in North America; inset, distribution in Ohio ... 677

535. Distribution of Discus cronkhteli catskill-
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>558</td>
<td>Distribution of Succinea aurea in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>559</td>
<td>Succinea aurea, magnified; after Call (1900, pl. 7, fig. 3)</td>
</tr>
<tr>
<td>560</td>
<td>Distribution of Succinea aurea in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>561</td>
<td>Succinea grossonori, magnified; after Walker (1928, p. 169, fig. 267)</td>
</tr>
<tr>
<td>562</td>
<td>Distribution of Succinea grossonori in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>563</td>
<td>Distribution of Succinea grossonori gelida in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>564</td>
<td>Succinea ovalis, magnified; after Call (1900, pl. 7, fig. 2)</td>
</tr>
<tr>
<td>565</td>
<td>Distribution of Succinea ovalis in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>566</td>
<td>Succinea ovalis optima, magnified; after F. C. Baker (1939a, p. 122, fig. B)</td>
</tr>
<tr>
<td>567</td>
<td>Distribution of Succinea ovalis optima in North America</td>
</tr>
<tr>
<td>568</td>
<td>Strobilops labyrinthicus, magnified; after Call (1900, pl. 5, fig. 5)</td>
</tr>
<tr>
<td>569</td>
<td>Distribution of Strobilops labyrinthicus in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>570</td>
<td>Strobilops affinis, magnified; after Walker (1928, p. 159, fig. 244)</td>
</tr>
<tr>
<td>571</td>
<td>Distribution of Strobilops affinis in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>572</td>
<td>Strobilops aenea, magnified; after Walker (1928, p. 157, fig. 243)</td>
</tr>
<tr>
<td>573</td>
<td>Distribution of Strobilops aenea in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>574</td>
<td>Distribution of Gastrocopta armifera in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>575</td>
<td>Gastrocopta contracta, magnified; after F. C. Baker (1939a, p. 97)</td>
</tr>
<tr>
<td>576</td>
<td>Distribution of Gastrocopta contracta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>577</td>
<td>Distribution of Gastrocopta bolzingeri in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>578</td>
<td>Gastrocopta pentodon, magnified; several specimens, to show variation; after Walker (1928, p. 133, fig. 201)</td>
</tr>
<tr>
<td>579</td>
<td>Distribution of Gastrocopta pentodon in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>580</td>
<td>Gastrocopta tappaniana, magnified; several specimens to show variation; after Walker (1928, p. 135, fig. 203)</td>
</tr>
<tr>
<td>581</td>
<td>Distribution of Gastrocopta tappaniana in North America; inset, distribution</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>726</td>
<td>Distribution of Gastrocopta corticaria in Ohio; inset, distribution in Ohio</td>
</tr>
<tr>
<td>727</td>
<td>Distribution of Vertigo gouldii in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>728</td>
<td>Distribution of Vertigo bollesiana in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>729</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>730</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>731</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>732</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>733</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>734</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>735</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>736</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>737</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>738</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>739</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>740</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>741</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>742</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>743</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>744</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>745</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>746</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>747</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
<tr>
<td>748</td>
<td>Distribution of Vertigo modesta in North America; inset, distribution in Ohio</td>
</tr>
</tbody>
</table>
CONTENTS

PLATES

15. Shells of Allogona, Anguispira, and Triodopsis 800
16. Shells of Hawaiia, Helicodiscus, Nesovitrea, Promenetus, and Zonitoides ... 800
17. Shells of Gastrocopta, Pupilla, Pupoides, Vallonia, and Vertigo ... 800
18. Shells of Vallonia ... 800

Complete contents for Bulletin 62, parts 1-4, follows plates.
TERRESTRIAL GASTROPODA

Class GASTROPODA

The land snails do not belong to a separate order but are members of several orders which are also represented in aquatic habitats. They are treated separately here purely for convenience but it should be borne in mind that they are closely related at the sub-ordinal level to aquatic species, some of which are represented in Ohio. The families are distinct in all cases so it has been possible to separate the aquatic groups from the terrestrial ones. Characteristics of the shell alone do not distinguish a land snail from an aquatic snail; in fact, some species sometimes termed amphibious because of their habits have been included under Freshwater Gastropoda (Chapter 6) in this report whereas others are included with the terrestrial gastropods.

Order ARCHAEOGASTROPODA
Family HELICINIDAE

Members of this family have a shell that is strongly depressed to conic, composed of rather few whorls, imperforate, the umbilical region occupied by a callus pad; operculum with thin or moderate calcareous layer, mainly concentric, may be paucispiral; radula rhipidoglossate; foot not divided; locomotion rhythmic and retrograde.

General distribution. — "Tropical and north temperate America; eastern border of Asia, from Japan south; many islands of the Pacific" (Pilsbry, 1948, p. 1078).

Remarks. —In the United States, the family is represented by three genera and five species. Only one species reached Ohio in Pleistocene time and it appears to be extinct in the State now.

Genus Hendersonia A. J. Wagner 1905

Type. — Helicina occulta Say.
Diagnosis. — Shell conic, of 4½ to 5 flattened whorls, increasing slowly and regularly; peripheral carina sharp in the early whorls, more or less obsolete in the last whorl; sculpture of sharp, close, retractorily axial striae; operculum with a very thin calcareous layer and a spiral basocolumellar nucleus.

General distribution. — The typical subgenus is found in the upper Mississippi Valley east to the Alleghenies in Pennsylvania and North Carolina; other subgenera in Japan and China. In North America, the type species is very sporadically distributed. It has been recorded for Ohio but the record for the living species has not been substantiated in the last 25 years and the older records were doubtful.

Geologic range. — Recorded for the Paleocene and Miocene of western North America, with some doubt. The type species is a living form and goes back in the Pleistocene to Yarmouth time, though not in Ohio.

Hendersonia occulta (Say) 1831

Fig. 409

Helicina occulta Say 1831, Transylvania Jour. Medicine, v. 4, p. 528.
--- --- Stecki 1907, Ohio Acad. Sci. Proc., v. 4, p. 384; "has been cited, but I have seen no specimens."
--- --- La Rocque and Conley 1956, Hunter's Run, p. 326 ff.
Type locality. — South of New Harmony, Indiana.

Diagnosis. — Shell somewhat depressed, with conic spire, rather solid, of 4½ to 5 nearly flat whorls with scarcely impressed suture; surface dull, with fine axial striae after the smooth embryonic whorl; periphery rather sharply keeled in early whorls, less so in later whorls; aperture oblique, subtriangular to semicircular; peristome narrowly expanded, thickened (modified from Pilsbry, 1948).

Ecology. — Found on well-shaded, leafy, and rather humid slopes, on limestone terranes. See also van der Schalie (1939b).

In Crawford County, Wisconsin, Morrison (1929, p. 43-44) found this species in three stations, as follows: Station III. That portion of the floodplain of Trout Creek that is above the reach of ordinary high waters. This station includes the very mesophytic slopes of the sides of the creek valley that are rather heavily overgrown with brush and small trees. The snails were found under small logs (not drift logs) and in the leaf mold. Station IV. Wooded portions of the ravines that branch off Trout Creek Valley; the exposure of the slopes studied (on the Himley Farm) was mostly to the northeast. The ravine studied in detail is about one mile up from the mouth of Trout Creek, and nearly two miles out of town. Station V. Slopes of northern exposure in the valley of the Kickapoo. These were studied on Asper Heims Hill, which is an outlier, just to the west of the town. The slope here is very steep, and heavily wooded, with a good many fallen logs. Snails were collected from the leaf mold and from under the logs, which were mostly in stage three of decay, with the heartwood still solid.

In Iowa, Jones (1930, Naut. 43, p. 119) found this species alone, under stones, high up on the hill just north of the old stone quarry at East Bluffs. Two dozen specimens were taken. The boundaries of the colony were very limited. F. C. Baker (1925, Naut. 39, p. 40) reported the species abundant in the deep limestone gorge at the base of the Virginia Natural Bridge, but quite absent from the rich forests of the surrounding hills, just as it is from most parts of its remarkably discontinuous range.

Dawley (1955, Naut. 69, p. 61) found it in several places on the wooded hills and wet rocky ravines along the Mississippi River and its tributaries in Houston and Winona Counties, Minnesota. Teskey (1954, Naut. 68, p. 25) found it in three widely separated, ecologically distinct stations in Brown County, Wisconsin: (1) in woods pool not over 10 feet in diameter; abundant, 300 specimens; (2) in dry detritus on limestone ledges of the escarpment overlooking Green Bay; (3) on shoulder of a secondary road under loose gravel which in turn was drifted over with recently fallen leaves.

Associations. — Living: MICHIGAN - 40; WISCONSIN - 140, 141, 142. Fossil: K - 2, 4, 6, 9, 14; Y - 1; I - 5; S - 7; W - 4, 5, 60, 61, 62, 64, 65, 73.

General distribution (fig. 410). — Living specimens have been collected in the following states: Pennsylvania, Virginia, North Carolina, Tennessee, Illinois, Michigan, Wisconsin, Minnesota, and Iowa.

Distribution in Ohio (inset, fig. 410). — The species has been cited but Sterki had seen no specimens; no record for the living form is known to me.

Geologic range. — F. C. Baker (1920a, p. 385) gave Aftonian, Yarmouth, Sangamon, Peorian, and "Wabash." Pilsbry (1948) quoted Shimek's data on the distribution of this species as a fossil. Shimek gave records for the following states: Nebraska, Iowa, Illinois, Indiana, Missouri, Tennessee, and, by implication, Kansas. Leonard (1950) gave its range as Yarmouth to Recent, Kansas and elsewhere. Leonard (1952) recorded it from the Sappa silts, Peoria Loess, and Bignell Loess in Kansas. Later (1953) he recorded it as a fossil from Ohio (Cleveland area, Sangamon, Farmdale? Loess, lower and upper pro-Tazewell loess). Wayne (1954) obtained it from pro-Kansan loess in Indiana; La Rocque and Conley (1956) from a late Wisconsin deposit in Fairfield County, Ohio.

Order PULMONATA

The majority of the Pulmonata are terrestrial and are treated in this chapter. The freshwater Pulmonata have been described in Chapter 6, starting on page 357.

Suborder BASOMMATOPHORA

Most of the members of this suborder are aquatic and have been dealt with in Chapter 6. The terrestrial forms are described in the following pages.

Family CARYCHIIDAE "Leach" Jeffreys 1829

The Carychiidae are very minute terrestrial snails with long-ovate to cylindric thin shells of several whorls, the axis and internal whorl partitions of the spire absorbed in the adult stage; axis perforate or closed; aperture oblong or ovate, the lip commonly expanded, often thick; foot rounded posteriorly, not divided, tentacles short and blunt (modified from Pilsbry, 1948).

General distribution. — The four genera of this family inhabit the northern continents; all four occur in Europe, only two in North America. Of the latter, Carychium is represented by numerous species, Coilostele by only one, which is recorded only for Mexico.

Remarks. — Within the State, this is the only group of basommatophores that may be described as truly terrestrial. The character of sessile eyes at the base

FIGURE 410.—Distribution of Hendersonia occulta in North America; inset, distribution in Ohio.
of the tentacles is useful in the identification of living material.

Genus Carychium Müller 1774

Type.—Carychium minimum Müller.

Diagnosis.—Shell perforate or rimate, oblong or turreted, pupiform, thin, uniform whitish or corneous and somewhat transparent; of 4 to 5½ whorls, the first obtuse, smooth; aperture oval or ovate, the outer lip expanded or reflected, thickened, narrower in its upper third; columella armed with a low entering lamella near the base and a prominent lamella above, which expands within the last whorl; internal partitions and axis absorbed in the upper whorls.

General distribution.—Holarctic mainly, but extending into the oriental region (Philippine Islands, Java), and into the North American tropics (Jamaica, Mexico to Costa Rica). The present distribution is not entirely natural; one European species (C. minimum Müller) has been widely introduced into North America and the southern records both in Asia and North America may be due to comparatively recent human introductions.

Geologic range.—Paleocene to present.

Remarks.—Harry (1952, p. 5-7) has intimated that there is only one species of Carychium in the Michigan area where he studied the species. Hibbard and Taylor (1960, p. 85) stated that "hence, by implication C. exile and C. exile canadense are to be added to the synonymy of C. exiguum." This seems logical and there is reason to believe that only one species is represented in the Ohio area as well. All those who have worked on the genus in Pleistocene deposits have had difficulty separating the two species and some of them have expressed doubt on the soundness of their final identification. Hubricht (1963, p. 108-109) has registered his disagreement with this opinion and finds no real difficulty in separating the species on shell characters. The distribution of the species is so extensive that the named forms may well be separable in one area and not in another. A similar case, discussed earlier (p. 224) is that of Lamellis radiata and of L. radiata siliquoidea. Clarke’s argument for joining these two forms under one specific name has been accepted in this report on the basis of his careful analysis of the problem. In the case of Carychium the arguments are not as clear cut and some doubt remains. I have therefore treated the two species separately in this report without being entirely convinced of their specific distinctness.

Carychium exiguum (Say) 1822

Pl. 8, fig. 3

Carychium exiguum Call 1900, Moll. Ind., p. 405.

--- --- Dall 1905, Harriman-Alaska Exped., v. 13, p. 116, fig. 83.

--- --- Sterki 1907, Ohio Acad. Sci. Proc., v. 4, p. 381.

--- --- Oughton 1948, Zoogeogr. study, Ontario, p. 77.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 50, pl. 4, fig. 13.

Type locality.—“Harrigate, Philadelphia.”

Diagnosis.—Shell rimate, oblong, whitish-corneous, somewhat pellucid, thin, glossy; spire convexly conic, the penultimate whorl nearly as wide as the last, summit obtuse; whorls about 4½, convex, those of the spire nearly smooth, the last two whorls more or less, but usually quite weakly, striate; aperture definitely overlogs, and under sprung bark of dead trees and stumps; on floodplains of rivers and creeks, on the edges of
swamps and marshy areas.

A species of moist leaf mold and plant debris, found under logs and bark, or among leaves, moss, or grass, in moist situations not far from water (Taylor). Oughton (1948, p. 94 ff.) collected it in wet locations and from stream drift; it lives along margins of ponds, streams, and marshes; on seeping hillsides; and on sandy flats that receive water by percolation. H. B. Baker (1922b) collected it from the following habitats in Dickinson County, Michigan: (44) ash-cedar swamp, snails in humus around bases of trees; (47) floodplain of a creek, about 2 feet above July water level; (48) floodplain of river, in a damp hollow, with brush of tag alders, dogwoods, hazels, and small ashes. He found it much less numerous than C. exile canadense.

Burch (1955, Naut. 69, p. 66) gave a very instructive table showing the relationships of this species to soil factors in eastern Virginia. Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. In Virginia, it is generally distributed under and among leaves in damp places, but is not common (Burch, 1954, Naut. 68, p. 31).

Harry (1952, p. 5-7) studied this species in Lower Michigan. He obtained live specimens from more than 60 localities and concluded that C. exiguum and C. exile are not specifically distinct. He found that C. exiguum has a short phenological period in July; immature specimens in nature are in quantities greater than 10 percent only until November. Darkness, constant high moisture, and decaying vegetation appear to be essential factors in their environment; in microhabitats, chiefly in Thuja forests, open grassy areas, and some hardwood forests.

Associations.--Living: MICHIGAN--2, 20, 22, 25; OHIO--1, 6, 43; ONTARIO--7. Fossil: P-3; N-2; S-1 (cf.), 2, 3, 4, 6; W-6, 16, 27, 28, 56, 57, 58, 59.

General distribution (fig. 411).--Newfoundland to British Columbia, south to Florida and New Mexico.

Distribution in Ohio (inset, fig. 411).--Over the State (Sterki, 1907a, p. 381); records are few and do not cover all counties but this is due rather to lack of collecting than to actual absence. This is one of the commonest species in stream drift.

Geologic range.--F. C. Baker (1920a, p. 388) recorded this species from Aftonian, Yarmouth, Sangamon, and "Wabash" beds. Cret-Loveland sediments and Peoria silts of Kansas to present (A. B. Leonard, 1952, p. 17); Sangamon of Kansas (Taylor and Hibbard, 1955, p. 10). In Ohio, it is a common species in late Wisconsin deposits such as the Tinkers Creek and Castalia marls (Sterki, 1920, p. 174, 181). Castalia marl (Clark, 1961, p. 27).

Carychium exile H. C. Lea 1842

Fig. 412

Carychium exile H. C. Lea 1842, Am. Jour. Sci., 1stser., v. 42, p. 109, pl. 1, fig. 5.

--- --- Sterki 1907, Ohio Acad. Sci. Proc., v. 4, p. 381.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 50.

Type locality.--Wissahickon Creek, near Philadelphia, Pennsylvania.

Diagnosis.--Shell rimate, slender and long, whitish or clear conoence, thin; spire long, gradually tapering, its outlines convex, summit obtuse; whorls 5 to 5½, convex, regularly increasing, the last two closely, distinctively, and regularly striate; aperture small, oblique, about one-third the length of the shell; outer lip slightly expanded, thickened, thickest near the middle; small horizontal lamella at the junction of the columellar and parietal margins, the lamella, one whorl within, expanding into a broad warped plate which ascends almost vertically, abruptly diminishing again above the plate; columnal lamella obtuse, ascending in a long spiral curve within, where it is more or less dilated on the ventral side (Pilsbry, 1948).

Ecology.--Similar to that of C. exiguum. Oughton (1948, p. 94 ff.) characterizes this as a species of damp woodlands, especially those of deciduous trees. Vanatta (1928, Naut. 42, p. 20-21) found this species in leaf mold collected at "The Devil's Mill Hopper" and "Buzzards Roost" near Gainesville, Alachua County, Florida. In the northern part of its range, Morrison (1929, p. 43-44) found it at three of his stations, as follows: Station III. Crawford County, Wisconsin, that portion of the floodplain of Trout Creek that is above the reach of ordinary high waters. This station includes the very mesophytic slopes of the sides of the creek valley that are rather heavily overgrown with brush and small trees. The snails were found under small logs (not drift logs) and in the leaf mold. Station IV. Same state and county, wooded portions of the ravines that branch off Trout Creek Valley; the exposure of the slopes studied (on the Himley Farm) was mostly to the northeast. The ravine studied in detail is about one mile up from the mouth of Trout Creek, and nearly
two miles out of town. Station VI. Same state and county, smaller ravines branching directly off the valley of the river. These ravines have no permanent streams in them; they are covered with rather open woods and brush. The exposure is to the north. Snails were found under logs, under rocks, and in the rather dry and loose leaf mold. Morrison (1939, Naut. 53, p. 45-47) recorded an unusual occurrence of this species in a cave (Skyline Caverns) one mile south of Front Royal, Warren County, Virginia, in stream drift deposited on the roof of a cave chamber. The same species was living nearby in the leaf mold on the upper slopes of Dickey's Hill just above one of the sinkhole entrances, through which the drift was washed into the cave. Hubricht (1941, Naut. 54, p. 111) also found it in a cave in Missouri.

FIGURE 411.—Distribution of Carychium exiguum in North America; inset, distribution in Ohio.
Associations.—Living: OHIO-43; ONTARIO-3; WISCONSIN-140, 141, 143. Fossil: W-282, 51, 58, 73.

General distribution (fig. 413).—Maine west to Manitoba, south to Texas and Alabama. Pilsbry gave no records for the upper Mississippi drainage, from which the type form may be absent. Presence of the form in Manitoba and South Dakota raises the possibility that the lack of records for the Mississippi drainage is due rather to lack of collection or recognition than to actual absence.

Distribution in Ohio (inset, fig. 413).—Sterki (1907a, p. 381) gave "over the state." Actual records available are only for Fulton and Auglaize Counties (University of Michigan records); Adams and Washington Counties (Eggleson, ms. records).

--- --- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 50, pl. 4, fig. 10.

Type locality.—Kennebunkport, Maine.

Diagnosis.—Shell larger than that of C. exile, length 2.15 mm., diameter 0.75 mm., to length 2 mm., diameter 0.7 mm.; the type 2.1 mm. by 0.75 mm.; folds similar to those of C. exile, but with downward bend farther from the aperture, i.e., after about 1/4 turns of the lamella around the columella (Pilsbry, 1948, and Winslow, 1922).

Ecology.—"Found in much drier situations than C. exiguum, always, in my experience, some distance from water" (G. H. Clapp, quoted by Pilsbry, 1948, p. 1059). H. B. Baker (1922b) found this species most abundant on stream flats and in swamps. He notes the following specific habitats: (40) hardwoods of Menominee Trough, a stand of virgin hardwoods; (41) maple logs, in hardwoods of the Calumet Trough; (42) a cedar-tamarack bog, under bark of freshly cut cedar stumps; (44) an ash-cedar swamp, snails in humus around bases of trees; (47) stream flats of Hancock Creek, about 2 feet above July water level; (48) stream flats in a damp hollow of Menominee River floodplain, with brush of tag alders, dogwoods, hazels, and small ashes. Dawley (1955, Naut. 69, p. 61) found it common in leaf sifting from all parts of Minnesota.

Associations.—Living: MINNESOTA-3, 4, 5. Fossil: K-6; Y-1; 1-5, 6; W-43, 44, 56, 57, 59, 60, 64.

General distribution (fig. 414).—"Canadian Zone, Maine to Ontario to Michigan and Manitoba, and reported by Dr. Hanna from Vancouver Island" (Pilsbry, 1948). In Canada, known from the provinces of Quebec, Ontario, Manitoba, and British Columbia (La Rocque, 1953). In the United States, probably the northern tier of states; recorded for New York (Robertson and Blakeslee, 1948); Ohio (University of Michigan records); and Michigan (Goodrich, 1932, and Pilsbry, 1948). Its occurrence as a fossil is much more extensive (see below).

Distribution in Ohio (inset, fig. 414).—One record only, for Auglaize County (University of Michigan records). Here also it is more widespread in Pleistocene deposits.

Geologic range.—Indiana, in pro-Kansas loess (Wayne, 1954); Ohio, in Farmdale loess (A. B. Leonard, 1953); in early Wisconsin deposits (La Rocque and Forsyth, 1957). Castalia deposit (late Wisconsin), Ohio (Clark, 1961, p. 28).

FIGURE 412.—Carychiun exile, magnified; after Walker (1928, p. 173, figs. 275, 276).

Geologic range.—Pleistocene; possibly only late Wisconsin. F. C. Baker (1920a, p. 388) gave Afromian, Yarmouth, Sangamon, Peorian and "Wabash." The majority of fossil specimens are referred to the variety canadense Clapp; the only other records I have for fossil C. exile are those of Sterki (1920, p. 181) for the Castalia marl (late Wisconsin) of northern Ohio, and of Mowery (1961, p. 13) for the Jewell deposit.

Remarks.—This species may be a synonym of C. exiguum (Say). See remarks under genus Carychiun.

Carychiun exile canadense Clapp 1906

Carychiun exile canadense Clapp 1906, Nautilus, v. 19, p. 139, pl. 8, figs. 1, 2, 6, 7.
Carychiun exile canadense Oughton 1948, Zoögeogr. study, Ontario, p. 78.
[Suborder STYLOMMATOPHORA A. Schmidt]

This suborder is composed of animals with two tentacles, the upper pair cylindrical and bearing the eyes at their tips, the lower sensory, cylindrical; both pairs of tentacles retractile; shell external, partly or completely imbedded in the mantle, or almost entirely absent, though represented by a few calcareous granules in some genera; no operculum; terrestrial in habitat.

Family POLYGYRIDAE Pilsbry

Polygyrinae Pilsbry 1895, Man. Conch., v. 9, Index to Helices, p. 123.

FIGURE 413.—Distribution of Carychium exile in North America; inset, distribution in Ohio.
Members of this family have the shell one-colored, rarely banded, discoidal or lens-shaped to globose-conic; aperture with reflected lip, toothed in many genera.

Remarks.—The diagnostic characters of the family are in the soft parts; the shell resembles that of many other families in North America, although the toothed forms are characteristic. The family is typically North American and is not known on other continents. The genera and species recognized to 1948 are listed by Pilsbry (1948, p. xviii ff.). The typical genus of the family does not occur in Ohio, although earlier records list under that genus, Polygyra, species which have been assigned to other genera (Stenotrema, Mesodon, Triodopsis, and Allogona) in Pilsbry's system, here adopted.

FIGURE 414.—Distribution of Carychium exile canadense in North America; inset, distribution in Ohio.
Genus Stenotrema Rafinesque 1819

Stenotrema Rafinesque 1815, Analyse, p. 136 (nomen nudum); 1819, Jour. Physique, v. 88, p. 425 (fide Neave).

Toxotrema Rafinesque 1819, ibid.

Stenostoma Rafinesque 1831, Enum. and acct., p. 3.

Toxostoma Rafinesque 1831, ibid.

Stenotrema La Rocque 1953, Cat. Recent Moll. Canada, p. 304.

Type.—S convexa Rafinesque = S. stenotrema (Pfeiffer).

Diagnosis.—Shell globose-conic to lens-shaped, compact, close-whelled, with a narrow basal aperture, having a long radial parietal tooth and calloused basal lip, which is often notched in the middle or bluntly toothed; axis with a vertical buttress (the "fulcrum") within the last whorl at its last fourth; embryonic whorls generally with a dense pattern of radially lengthened granules, or sometimes radially striate (Pilsbry, 1940).

General distribution.—Humid eastern Canada and the United States, from the boreal zone (at James Bay) to the Gulf of Mexico.

Geologic range.—Pleistocene: Aftonian to present.

Remarks.—The truly diagnostic characters are those of the soft parts but the shell characters permit distinction of the species of this genus from others. Members of other genera of Polygyridae have complex lip armature and plentiful epidermal hairs, but minor shell characters distinguish them specifically from members of the genus Stenotrema.

According to Pilsbry (1940, p. 639), Rafinesque first used the name Stenotrema in 1815 for a serpulid annelid for which he gave no description. He used it again in 1819, this time for a land snail, the single species S. convexa, which automatically becomes the type, although not defined at the time of naming. Pilsbry has shown that S. convexa is the same as Helix stenotrema Pfeiffer 1842, which is the name used by Pilsbry for the species. The specific name convexa cannot be used as it was first defined by Deshayes (1830) and based on another species, S. fraternum (Say), which has priority.

Pilsbry (1940, p. 643 ff.) has divided the genus into groups but separates sections Maxillifer (p. 674) and Euchemotrema (p. 675). The species are given in the same order as in Pilsbry's work but the sections are not named.

Stenotrema stenotrema (Pfeiffer) 1842

Fig. 415

Stenotrema convexa Rafinesque 1819, Jour. Physique, v. 85, p. 425 (not defined).

Stenotrema stenotrema Call 1900, Moll. Ind., p. 383, pl. 5, fig. 6.

—— Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 266.

Type locality.—Indiana.

Diagnosis.—Shell imperforate, depressed-globose, with low conoid spire, strongly convex base and rounded periphery, of some shade of brown; postembryonic whorls with uneven striae bearing short hairs in forwardly descending trends; aperture narrow, with buff to brown borders; parietal tooth high, but not rising to the level of the basal lip, leaning towards the latter, gently curved, its outer end turning into the interdenticular sinus (and often curved into a very short hook at the end); a low and inconspicuous buttress between parietal tooth and termination of outer lip; basal lip with a thin, wholly adnate outer margin; inner margin nearly straight in basal view, with a small but well-marked median notch, with slightly raised callous border; interdenticular sinus moderately deep and rather narrow; outer lip with a low tooth or none; fulcrum well developed, with convex edge.

Ecology.—This species was found in Kentucky on the bushy and forested slopes and creek bottoms with

FIGURE 415.—Stenotrema stenotrema, magnified; after F. C. Baker (1939a, p. 58).
highly calcareous soil (Conkin, 1957, Naut. 71, p. 11). In West Virginia, Wurtz (1948, Naut. 61, p. 83) found it on planks and stones bordering a dirt road along a hillside. Teskey (1955, Naut. 69, p. 70-71) recorded it for two localities in the Warm Springs area of Georgia: in forest on slope at base of Pine Mountain fire tower and from detritus in crannies of stone walls and rotting timbers of an old mill, Parkman Pond. In Tennessee, Lutz (1950, Naut. 63, p. 102) found it on the bluff on the bank of the Clinch River; red and black oak communities; rocky rubble, bluff overlooking the Clinch River. Hubricht (1950, Naut. 64, p. 7) listed it as common along Roanoke River bluffs, Pittsylvania County, Virginia.

General distribution (fig. 416). — Virginia west to

FIGURE 416.—Distribution of Stenotrema stenotrema in North America; inset, distribution in Ohio.
Missouri and Oklahoma, south to Louisiana, Mississippi, Alabama, and Georgia.

Distribution in Ohio (inset, fig. 416).—Pilsbry (1948, p. 656) gave only Hamilton and Warren Counties, in the extreme southwestern corner of the State. Eggleston (ms. records) collected it in Morgan, Noble, Monroe, and Washington Counties. Sterki (1907a, p. 376) gave only Hamilton County.

Geologic range.—Pleistocene: F. C. Baker (1920a, p. 390) gave Sangamon. Wisconsin and perhaps older, in Indiana: "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51) and Sangamon?, Flat Rock River, Bartholomew County, Indiana (Baker, 1920b, p. 457).

The species has not so far been recorded as a fossil in Ohio but the "Old Forest bed" or similar deposits are represented in Ohio and it may well occur in them.

Stenotrema hirsutum (Say) 1817

Fig. 417

Stenotrema hirsutum Call 1900, Moll. Ind., p. 383, pl. 5, fig. 7.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 10.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 14, pl. 1, figs. 4, 5.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 304.

Type locality.—Wissahickon Creek, Germantown, Philadelphia (Pilsbry, 1940, p. 664).

Diagnosis.—Shell depressed-globose with rather low convexly conoid spire, rounded periphery and strongly convex base; cinnamon-buff to clay color; postembryonic whorls with close radially lengthened granules, on later whorls short moderately stiff hairs with rounded bases, arranged in oblique series; parietal tooth slightly bowed, rather high but lower than the level of the basal lip, slightly sinuous in the outer third, the end not turning toward the interdenticular sinus; basal lip rather broad, its outer edge closely appressed, the calloused inner edge with a large and deep slightly oblique notch with slightly raised edges; interdenticular sinus rather broadly rounded; tooth in the outer lip rather well developed, bluntly conic (modified from Pilsbry, 1940, p. 662).

Ecology.—In Ontario, the species occurs in wet locations and is abundant in stream drift, according to Oughton (1948, p. 94 ff.). Burch (1955, Naut. 69, p. 66) has given data on its relationships to soil factors in eastern Virginia. Ingram (1944, Naut. 57, p. 135-137) has noted that its enemies include shrews (Blarina) at Ithaca, New York. He (1941, Naut. 55, p. 14-15) has collected the species under stones on the floodplain of a creek and (1944, Naut. 58, p. 25-27) in beech—yellow-birch and sycamore woodlands in the Ithaca, New York, region, where he studied its winter habits. In West Virginia, Wurtz (1948, Naut. 61, p. 83) recorded it from a very steep hillside covered with leaf mold. Hubricht (1950, Naut. 64, p. 7) found it abundant throughout Pittsylvania County, Virginia, on dry oak ridges, preferring a southern exposure. Burch (1954, Naut. 68, p. 33) found it only in the woods surrounding a lake in Virginia, but very common there; these were a small race, averaging somewhat less than 7 mm. in diameter. In North Carolina, Rehder (1949, Naut. 62, p. 123) collected it among stones, bricks, etc., along the sea wall bordering Albemarle Sound; common. In Maryland, Grimm (1959, Naut. 72, p. 123) recorded it for quarries and woods. Its mating habits are described by Webb (1947, p. 224).

Associations.—Living: MICHIGAN- 21, 25, 28, 29, 36; OHIO- 23, 24, 25, 26, 27, 29, 43; WISCONSIN- 140. Fossil: Y- 1; I- 5; W- 25, 26, 28.

General distribution (fig. 418).—Massachusetts, New York, Ontario, Michigan, Wisconsin, and Minnesota, south to Kansas, Missouri, Louisiana, Mississippi, Georgia, and North Carolina.

Distribution in Ohio (inset, fig. 418).—Sterki (1907a, p. 377) gave "over the state," which is substantiated by later records, although the species has not been as yet recorded for all counties.

Geologic range.—F. C. Baker (1920a, p. 389) gave Yarmouth, Sangamon, Peoria, and "Wabash." Loess of Indiana, Illinois, Iowa, Missouri, and Mississippi (Pilsbry, 1940, p. 662); in Ohio, Middletown "preglacial deposits," "Defiance sandy deposit (loess?)" (Sterki, 1907a, p. 401, 402), and Castalia marl (Sterki, 1920, p. 179).
Stenotrema leaii (Binney) 1842
Fig. 419; pl. 12, figs. 1, 4, 7

Helix monodon Rackett 1821, Trans. Linnaean Soc.,
v. 13, p. 42 (non Férussac 1807).
Helix leaii "Ward, Ms." A. Binney 1840, Boston Jour.
v. II, p. 149, pl. 41, 4th to 9th figs.

Stenotrema monodon Call 1900, MoH. Ind., p. 384, pl.
5, fig. 8.
---- ---- Dall 1905, Harriman-Alaska Exp., v. 13,
p. 26, fig. 3.
---- ---- Sterki 1907, Ohio Acad. Sci. Proc., v. 4,
p. 377, 401.
---- ---- F. C. Baker 1920, Life of Pleistocene,

FIGURE 418.—Distribution of Stenotrema hirsutum in North America; inset, distribution in Ohio.
Polygyra monodon Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.

--- --- Ahlstrom 1930, Nautilus, v. 44, p. 44.
--- --- Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 266.
--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 10.

Stenotrema monodon Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 14, pl. 1, figs. 6, 7.

Stenotrema monodon La Rocque 1953, Cat. Recent Moll. Canada, p. 304.

FIGURE 419.—Stenotrema leaii, magnified; after F. C. Baker (1939a, p. 60).

Type locality.—Alpena County, Michigan (H. monodon Rackett).

Diagnosis.—Shell depressed, with low convexly conoid spire of narrow, very closely coiled whorls; bluntly subangular or rounded at periphery, which is above the middle; base convex; postembryonic whorls with faint lines of growth, the last with very short, delicate hairs rising from little acute bases, which alone remain in most adult shells; aperture oblique, ovate-lunate, with brownish or white peristome, thickened within, well reflected on its outer and basal margins; parietal tooth short, white, straight, standing obliquely on the thin parietal callus, and typically not prolonged towards the columella; fulcrum quite short, with convex edge (modified from Pilsbry, 1940, p. 677).

Ecology.—Found in damp places near the water (as opposed to drier situations for S. fraternum, q.v.). Taylor summarized the habitat of this species as follows: Wooded area: in leaf litter or under logs and bark in wooded spots. In Ontario, Oughton (1948, p. 94 ff.) found it in the wetter locations, abundant in stream drift. Solem (1952, Naut. 65, p. 129) collected it in a large tract of virgin pine timber with some deciduous growth and undergrowth of thimbleberry, and in an exceedingly damp area on the shore line, where piles of reeds were tossed up after storms, in the Door County area of Wisconsin. In Minnesota, Dawley (1955, Naut. 69, p. 58) listed it as abundant in a moist, shady glen on the banks of the Mississippi, and in damp places elsewhere in Minnesota. Mating habits are described by Webb (1947, p. 223).

Associations.—Living: MICHIGAN-6, 30; OHIO-4, 7, 43; ONTARIO-7, 8; QUEBEC-6. Fossil: K-1, 3, 6, 12, 14, 15, 18, 19, 20, 23; Y-1; I-4, 5, 7; S-1, 2, 3, 4, 5; W-24, 25, 28, 35, 36, 61, 64, 65, 67, 73.

General distribution (fig. 420).—New York west to Minnesota (including southern but not northern Ontario) and South Dakota, south to Kansas, Missouri, Illinois, Indiana, Ohio, Pennsylvania, and Maryland.

Distribution in Ohio (inset, fig. 420).—Sporadically recorded (perhaps due to insufficient collecting) from Ottawa, Erie, and Cuyahoga Counties in the north to Hamilton, Brown, Adams, Meigs, and Washington Counties in the south. The southwestern and southeastern records are from Egegleston (ms. records).

Geologic range.—F. C. Baker (1920a, p. 389) gave Aftonian, Yarmouth, Sangamon, Peorian, and "Wabash." A. B. Leonard (1950, p. 35) gave the range of the species as Yarmouth to Recent, Kansas and Oklahoma. D. W. Taylor and Hibbard (1955, p. 8) recorded it for the Bar M local fauna, probably Illinoian, of Oklahoma. In Ohio Billups (1902b, p. 51) listed it for the "Old Forest bed of the Ohio River," Sterki (1907a, p. 401) for the "Middletown 'pre-glacial deposits,'" and (1920, p. 179) for the Castalia marl; A. B. Leonard (1953, p. 372) recorded it for lower and upper pro-Tazewell loess in the Cleveland region; La Rocque (1952, p. 12) identified it from the Orleton site, late Wisconsin, of Madison County.

Stenotrema fraternum (Say) 1824
Fig. 421

Helix fraterna Say 1824, Long's Exped., p. 257, pl. 15, fig. 3.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 14, pl. 1, figs. 8, 9.
Stenotrema fraternum fraternum La Rocque 1953, Cat. Recent Moll. Canada, p. 304.

Type locality.—Pennsylvania.
Diagnosis.—Shell imperforate or nearly so, with convexly conoid spire of closely coiled whorls, which

FIGURE 420.—Distribution of Stenotrema leaii in North America; inset, distribution in Ohio.
are noticeably wider than in S. leaii; the rather strongly convex base impressed around the axis; the rounded periphery above the middle; postembryonic whorls densely covered with short hairs on their bases; parietal tooth short, rather low, nearly straight but with the ends commonly a trifle turned towards the basal lip; basal lip well thickened within, fulcrum rather short.

Figure 421. *Stenotrema fraternum,* magnified; after F. C. Baker (1939a, p. 61).

Ecology.—In Ontario, this species occurs in woodlands, especially those of deciduous trees, both in damp situations and drier, more open woods or fields. H. B. Baker (1922b) has found it in the drier habitats in Dickinson County, Michigan, specifically: (37) outcrop of Sturgeon quartzite; cliffs along Fern Creek, scattered hardwoods and plants; (38) sandy outwash plains, pines and second growth; (41) higher moraines with fine hardwood cover; snails particularly in maple logs. Muchmore (1959, Naut. 72, p. 85-88) recorded it under stones in various woodland areas in New York State. Ingram (1940, Naut. 54, p. 87) has noted its daylight activity. He (1944, Naut. 58, p. 25-27) has also studied its winter habits at Ithaca, New York, in beech—yellow-birch and sycamore woodlands. Solem (1952, Naut. 65, p. 129) found it in a large tract of virgin pine timber with some deciduous growth, undergrowth of thimbleberry, in Door County, Wisconsin. Archer (1934c, p. 139) found a few unusually large specimens at the base of the bluffs, among herbs, on Mackinac Island, Michigan. The process of egg laying, the eggs, and the young were studied by Ingram (1944, p. 91-93). In Virginia, the species is common in the hills above the Dan and Roanoke Rivers, Pittsylvania County (Hubricht, 1950, Naut. 64, p. 7). Webb (1948, Naut. 62, p. 8-12) studied the mating habits of specimens collected from a level woodland in Hancock County, Indiana.

Ingram (1946, Naut. 59, p. 89) gave the following data: "Individuals were generally collected from beneath logs and on stumps in the beech-hemlock, beech-maple, and maple areas. They were rarely found in the humus layer. Young individuals were occasionally found in hedgerows adjoining forest strips. They were marginal forms in flood-plain areas. The short tailed shrew and the white-footed deer mouse feed on this species."

Associations.—Living: MICHIGAN-1, 2, 3, 4, 7, 8, 9, 21, 23, 25, 26, 27, 29, 31, 32, 33, 34, 39, 40; OHIO-1, 23, 24, 25, 26, 28; ONTARIO-11; WISCONSIN-138, 139, 140, 141, 142.

General distribution (fig. 422).—New Hampshire, Vermont, Ontario, Michigan, and Minnesota, south to Missouri, Alabama, and North Carolina.

Distribution in Ohio (inset, fig. 422).”—"Throughout the state" (Sterki, 1907a; Pilsbry, 1940); county records so far available indicate presence of the species in the western part of the State in Williams, Fulton, Hancock, Allen, Auglaize, Mercer, and Hamilton Counties (all University of Michigan records); in southern Ohio in Brown, Pike, Ross, Athens, Washington, and Noble Counties (Wurtz, 1949; Eggleton, ms. records).

Geologic range.—F. C. Baker (1920a, p. 389) gave Yarmouth, Sangamon, Peorian, and "Wabash." He (Baker, 1920b, p. 457) also recorded it doubtfully for the Sangamon in Indiana. Wayne (1954, p. 1320) listed it from pro-Kansan loess in Indiana. Apparently there is no Ohio record although its occurrence in our Pleistocene is likely.

[Stenotrema fraternum cavum (Pilsbry and Vanatta) 1911]

Polygyra monodon cava Pilsbry and Vanatta 1911, Nautilus, v. 25, p. 12.

Polygyra fraterna cava Vanatta 1920, Nautilus, v. 33, p. 97.

Stenotrema fraternum cavum Pilsbry 1940, Land Moll. N. America, v. 1, pt. 2, p. 684, fig. 422d.

Stenotrema fraternum cavum Oughton 1948, Zoögeogr. study, Ontario, p. 9.

--- --- --- La Rosque 1953, Cat. Recent Moll. Canada, p. 304.

Type locality.—Cazenovia, Madison County, New York.

Diagnosis.—Shell larger and more depressed than S. fraternum; more openly umbilicate, deeply impressed or excavated around umbilicus; parietal tooth either straight or slightly curved, short, its ends about equally remote from the terminations of the lip; internal "fulcrum" well developed, notched above and below as in S. fraternum (modified from Pilsbry, 1940, p. 684).

Ecology.—Archer (1941, Naut. 54, p. 113-116) noted that S. fraternum and S. fraternum cavum occupy separate territories in Michigan and that the latter is more northern in its distribution. He found it not only in the uplands, but also along streams, under drift on lake shores, and in cedar bogs.

General distribution (fig. 423).—New Brunswick, Quebec, Ontario, and Minnesota, south to Iowa, Indiana, Pennsylvania, and Massachusetts.

Distribution in Ohio (inset, fig. 423).—Not as yet recorded, but probable, because of the Indiana and Pennsylvania records.
POLYGYRIDAE

Geologic range.—Unknown.

Remarks.—Pilsbry's (1940, p. 685) remarks are worth noting: "When typically developed this form is easily distinguishable from *fraternum*; but the glaciated region it inhabits is new snail territory, and *cavum* has not yet been fully differentiated; the assigned characters are variable. So many lots of intermediate character are found that I am now inclined to think that its recognition as a subspecies is of little practical utility. However, the data are given for what they may be worth." In view of these observations, the subspecies or form is listed here but so far there are no definite records for Ohio. The subspecies should be found in late Pleistocene deposits in Ohio but the fact is that it has not. Could this possibly indicate that its Pleistocene history has been different from that of other

FIGURE 422.—Distribution of *Stenotrema fraternum* in North America; inset, distribution in Ohio.
land snails of the family Polygyridae and that its migration route or routes did not include Ohio? The point is worth bearing in mind as fossil *Stenotrema* from the Midwest are studied.

Genus *Mesodon* Rafinesque 1821

Mesodon Rafinesque 1821, in Férussac, Tabl. Syst.

Odomphium Rafinesque 1831, Enum. and acct., p. 3.
Odontophalum Agassiz 1846, Nomenclator Zool., Index Univ., p. 255 (emendation of *Odomphium*).

FIGURE 423.—Distribution of *Stenotrema fraternum cavum* in North America; inset, distribution in Ohio.
Type. — *Helix thyroides* Say, by subsequent designation of Pilsbry, 1930.

Diagnosis. — Shell of medium or large size, umbilicate or closed, in shape from globose with conoid spire to strongly depressed; aperture with reflected lip, toothless or with one or two teeth (or in the subgenus *Infectarius*, three teeth).

General distribution. — Eastern United States and Canada, west to eastern Nebraska and Texas.

Geologic range. — Pleistocene to present.

Remarks. — The shell characteristics are not diagnostic for identification of the genus. Fortunately, the Pleistocene species all have living representatives and can be placed indirectly in the correct genus.

Mesodon thyroidus (Say) 1816

Fig. 424

Mesodon thyroidus Call 1900, Moll. Ind., p. 394, pl. 6, figs. 5, 5a, b.

Polygyra thyroides Billups 1902, Nautilus, v. 16, p. 51.

--- --- Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.

--- --- Ahlstrom 1930, Nautilus, v. 44, p. 44.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 15, pl. 1, figs. 11, 12.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 305.

Type locality. — Near the mouth of Wissahickon Creek, near Philadelphia, Pennsylvania.

Diagnosis. — Shell half-covered umbilicate, depressed-globose, rather thin, ivory yellow, with the back of the lip cream buff; surface somewhat glossy, with oblique striate and microscopic spiral lines which may be obsolete; aperture rotund-lunate, somewhat dished; peristome rather widely reflected in its outer and basal margins, dilated about half over the narrow umbilicus; parietal wall bearing a short, obliquely placed tooth, but this is frequently wanting (modified from Pilsbry, 1940, p. 707).

Ecology. — Pilsbry (1940, p. 710) has noted that the food of this species is chiefly woods nettles (*Laportea canadensis*) but also that the species is mycophagous, preferring fungi of any kind to green plants.

In Ontario, occurs in damp woodlands, especially those of deciduous trees; the species is confined to Paleozoic terranes (mainly limestones) in that area, according to Oughton (1948, p. 94 ff.). Archer (1935, p. 82) recorded it from banks above a road, rare, in the Asheville, North Carolina, region. It thrives in deciduous woods, even sparse stands of second growth, in the Columbus area, on limestone soils or glacial drift.

Conkin (1957, Naut. 71, p. 11) collected it in Kentucky on bushy and forested slopes and creek bottoms with highly calcareous soil. Solem (1952, Naut. 65, p. 129) found it near a small freshwater lake on Washington Island, Door Peninsula, Wisconsin. Wurtz (1941, Naut. 54, p. 142-143) listed this as one of the species in a winter agglomeration of snails in the soil of a northward sloping hillside in Allegheny County, Pennsylvania. Ingram (1944, Naut. 58, p. 25-27) has described its winter habits at Ithaca, New York, in beech—yellow-birch and sycamore woodlands. Burch (1955, Naut. 69, p. 66) has shown its relationships to soil factors in eastern Virginia. Teskey (1955, Naut. 69, p. 70-71) has collected it in the Warm Springs area of Georgia from detritus in crannies of old stone walls and rotting timbers of an old mill at Parkman Pond. Rehder (1949, Naut. 62, p. 125-126) has recorded it around fallen logs and leaves, under boards and around planks near the boardwalk, Myrtle Beach, South Carolina. In North Carolina, he (1949, Naut. 62, p. 123) found it among stones, bricks, etc., along the sea wall bordering Albemarle Sound; rather common.

Foster (1936) described the biology of this snail; Van Cleave and Foster (1937, p. 50-54) gave details on its seasonal life history. According to Foster (1936) there is little doubt that the long extended breeding season is a characteristic which enables this species to maintain itself as an abundantly represented species on a flood plain. Additional data on copulation and egg laying are given by Ingram (1941, Naut. 54, p. 143).

Additional habitat notes are plentiful in the literature; only a few are given here. Wurtz (1948, Naut. 61, p. 83) found the species in West Virginia on a flood-
plain which had been flooded four years earlier. Lutz (1950, Naut. 63, p. 103) listed it from woody slopes of hardwood forests and bluffs of the Clinch River in Tennessee. Hubricht (1950, Naut. 64, p. 7) stated that it is generally distributed over Pittsylvania County, Virginia, but is commonest in the floodplains of the Dan and Roanoke Rivers. In Virginia, Burch (1954, Naut. 68, p. 32) found it most generally associated with woodlands having a predominance of oaks. In Maryland, Grimm (1959, Naut. 72, p. 123) found it around foundations of old burned houses, in a quarry, in woods, and along railroad tracks.

This species is preyed upon by shrews (Blarina), as recorded by Ingram (1944, Naut. 57, p. 135) for Ithaca, New York.

Associations.—Living: MICHIGAN - 1; OHIO - 5, 7,

FIGURE 425.—Distribution of Mesodon thyroidus in North America; inset, distribution in Ohio.
575 POLYGYRIDAE

General distribution (fig. 425).—Massachusetts and Ontario west to Minnesota, eastern Nebraska, Kansas, and Oklahoma; south to the Gulf of Mexico and eastern Texas.

Distribution in Ohio (inset, fig. 425).—In all parts of the State: Fulton, Paulding, Mercer, and Hamilton Counties (University of Michigan records; Eggleston, ms. records); Ashtabula, Tuscarawas, Belmont, Monroe, Washington, Athens, Lawrence, Scioto, Adams, Brown, Clermont, and Hamilton Counties (Eggleston, ms. records; Wurtz, 1949). The map shows no records for some counties but this is probably due merely to lack of collecting.

Geologic range.—F. C. Baker (1920a, p. 390) gave Yarmouth, Sangamon, Peorian, and "Wabash." "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); Middletown and Defiance deposits (Sterki, 1907a, p. 401, 402); Castalia marl (Sterki, 1920, p. 179).

Type locality.—Illinois.

Diagnosis.—Shell narrowly umbilicate, the umbilicus half or almost entirely covered; depressed-globose, with conoidal spire; glossy, finely, closely striate, with microscopic spiral lines; last whorl descending very little in front, and with a furrow behind the lip; peristome typically rather narrow, white, reflected and thickened within; parietal callus very thin and transparent (modified from Pilsbry, 1940, p. 712).

Ecology.—In Tennessee, this species occurs in the foothills of the Cumberland Mountains, in red and black oak forests (Lutz, 1950, Naut. 63, p. 102).

Associations.—Living: OHIO - 24; WISCONSIN - 140.

Fossil: W - 26, 35.

General distribution (fig. 427).—Ohio, Michigan, Wisconsin, Iowa, and Kansas, southward to Georgia, Alabama, Arkansas, and Oklahoma.

Distribution in Ohio (inset, fig. 427).—Records for the State are surprisingly few. Sterki (1907a, p. 376) gave Lorain, Franklin, and Hamilton Counties; Eggleston (ms. records) added Clark County. See also distribution of the species in the Scace as a fossil.

Geologic range.—F. C. Baker (1920a, p. 389) gave Yarmouth, Sangamon, Peorian, and "Wabash." Sangamon? of Indiana (Baker, 1920b, p. 456); "Defiance sandy deposit (loess?)," Defiance County, Ohio (Sterki, 1907a, p. 402); late Wisconsin, Orleton deposit, Madison County (La Rocque, 1952, p. 12 ff.).

Mesodon mitchellianus (Lea) 1839

Fig. 428

Helix mitchelliana Lea 1839, Am. Philos. Soc. Trans., v. 6, p. 87; pl. 23, fig. 71.

Mesodon mitchellianus Call 1900, Moll. Ind., p. 391, pl. 6, fig. 2.

--- --- Oughton 1948, Zoogeogr. study, Ontario, p. 6.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 15, pl. 1, figs. 29, 30.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 305.

Type locality.—Ohio.

Diagnosis.—Shell imperforate, depressed-globose, rather thin, translucent, buff; surface glossy, regularly
thread striate, with microscopic spiral lines; the apical whorl smooth; last whorl descending in front, guttered behind the lip; peristome white, reflected, thickened within, dilated and appressed over the umbilical region; columellar margin concave; parietal callus thin and transparent (modified from Pilsbry, 1948, p. 716).

Ecology.—Cahn and Kemp (1929, p. 66-67) found only four specimens of this species in Turkey Run State Park, Indiana. They did not specify the particular habitat from which the specimens came but in general it may be described as hardwood forest (white oak, sugar maple, tulip, and elm) with occasional deep ravines through sandstone bluffs. The "bottoms" support gigantic sycamores, walnuts, and elms. The ground is well covered with rich humus and a wealth of moss holds the moisture and makes the area particularly

FIGURE 427.—Distribution of Mesodon clausus in North America; inset, distribution in Ohio.
ideal for terrestrial mollusks. Other species of *Mesodon* are abundant in the area as are also species of *Triodopsis*. On the other hand, Blakeslee (1947, Naut. Michigan; south to Illinois, Kentucky, and Pennsylvania) found it abundant in Illion Gorge, Herkimer County, New York. Here the species was found under thick vegetation, on the undersides of large leaves on which the animals were feeding, and in grass by the side of the road near a stream.

General distribution (fig. 429).—New York west to Michigan; south to Illinois, Kentucky, and Pennsylvania.

FIGURE 428.—*Mesodon mitchellianus*, magnified; after Call (1900, pl. 6, fig. 2).

FIGURE 429.—Distribution of *Mesodon mitchellianus* in North America; inset, distribution in Ohio.
Distribution in Ohio (inset, fig. 429).—Defiance, Portage, Tuscarawas, Harrison, Franklin, and Hamilton Counties (Sterki, 1907a, p. 376); Clermont and Brown Counties (Eggleston, ms. records; Wurz, 1949).

Geological range.—F. C. Baker (1920a, p. 389) gave Sangamon and "Wabash." "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); "Defiance sandy deposit (loess?)" (Sterki, 1907a, p. 402). The species may be expected in Pleistocene deposits in Ohio and elsewhere, at least in the present southern extent of its range, but it is likely to be rare, as it is now.

Mesodon zaletus (Binney) 1837
Fig. 430

Mesodon exoletus Call 1900, Moll. Ind., p. 393, pl. 6, fig. 4.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 18, pl. 1, figs. 13, 14.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 306.

--- --- --- F. C. Baker (1939a, p. 50).

FIGURE 430.—Mesodon zaletus, magnified; after F. C. Baker (1939a, p. 50).

Type locality.—Cincinnati, Ohio (Pilsbry, 1940, p. 723).

Diagnosis.—Shell imperforate, depressed-globose, rather solid; cream colored to deep buff, rather glossy; apex smooth; embryonic whorls with striae radiating from the suture, at first short, gradually becoming longer; later whorls with sculpture of fine oblique striae and microscopic spiral lines which are typically rather weak or subobsolete but in some specimens distinct; spire moderately elevated, with somewhat convex outlines; aperture shaped much as in Triodopsis albolabris; lip white, flatly reflected, and nearly 3 mm. wide, its basoicular margin straightened or weakly toothed; parietal wall bearing a white oblique tooth (rarely wanting) (modified from Pillsbry, 1940, p. 723).

Ecology.—Found "on leaves along the trail" in Pisgah Forest, North Carolina (Winslow, 1921, Naut. 35, p. 42). The species is eaten by shrews (Blarina brevicauda talpoides) in the Ann Arbor, Michigan, area, according to Clench (1925, Naut. 39, p. 28). Near Vinton, Iowa, Jones (1930, Naut. 43, p. 118) recorded it from the City Park. Richards (1934, Naut. 47, p. 147) recorded it on a limestone outcrop at a "Disappearing Falls" near the Tennessee River, in Tennessee. Pinney and Coker (1934, Naut. 48, p. 57) found it common on mountain slopes along the entire course of Quaker Run in Alleghany State Park, New York. Here it occurs in the same localities as P. albolabris but is more widely distributed.

Associations.—Living: OHIO-1, 2, 5, 7; ONTARIO-11, 12, 13, 14. Fossil: W-24, 26.

General distribution (fig. 431).—New York west to Minnesota and Iowa; south to North Carolina, Tennessee, Alabama, and Arkansas.

Distribution in Ohio (inset, fig. 431).—Entire State. Records are not available for all counties but they are numerous enough to show general distribution and to cover the four corners of the State (Williams, Ashby, Worthington, and Hamilton Counties).

Geologic range.—F. C. Baker (1920a, p. 390) gave Yarmouth, Sangamon, and "Wabash." "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); "Defiance sandy deposit (loess?)" (Sterki, 1907a, p. 402); Sangamon of Indiana (Baker, 1920b, p. 456).

Mesodon pennsylvanicus (Green) 1827
Fig. 432

Mesodon pennsylvanicus Call 1900, Moll. Ind., p. 391, pl. 6, fig. 1.

--- --- --- Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.

Mesodon pennsylvanicus La Rocque 1953, Cat. Recent Moll. Canada, p. 305.

Type locality.—Near Chartier’s Creek, Washington County, Pennsylvania.

Diagnosis.—Shell imperforate, subglobose with convexly conic spire; thin but moderately strong; buff to yellow in color; last whorl rounded at the periphery, descending in front, contracted behind the lip; first half whorl smooth, next half whorl closely striate below the suture, the striae extending about one-third across the whorl; surface of later whorls slightly glossy, closely, regularly striate, the striae nearly smooth except for rather close, strongly engraved spiral

FIGURE 431.—Distribution of *Mesodon zaletus* in North America; *inset.* distribution in Ohio.
FIGURE 432.—Mesodon pennsylvanicus, magnified; after F. C. Baker (1939a, p. 55, lower fig.).

lines; aperture somewhat triangular; peristome white, rather narrowly reflected, thickened within, the outer margin strongly arched above, basocolumellar margin oblique, straightened, with a low prominence on the inner rim (modified from Pilsbry, 1940, p. 726).

Ecology.—Cahn and Kemp (1929, p. 67) listed the species as very rare, only three specimens, in Turkey Run State Park, Indiana, which would seem to be an

FIGURE 433.—Distribution of Mesodon pennsylvanicus in North America; inset, distribution in Ohio.
ideal habitat for it. F. C. Baker (1935, Naut. 48, p. 106) thought these specimens were so small that they almost deserved varietal recognition. Archer (1937, Naut. 50, p. 119) found it living among rocks in a wet pasture in Adams County, Ohio. The most detailed account of the habitat is that of Webb (1943, Naut. 57, p. 42-45) who called attention to two previously known areas where this snail was abundant, one the Cincinnati area of Ohio and the other the Monroe, Michigan, region. He noted two other similar areas near Indianapolis, Indiana, both along railroad tracks, one disbursed, the other still in use. He pointed out four factors that may influence the abundance of *M. pennsylvanicus* in these two areas: (1) the repeated occurrence of a gravel road bed at the localities; (2) the presence of a stream nearby; (3) the repeated occurrence of relatively undisturbed wooded areas adjacent to the abundance areas; and (4) the relative absence of other species of *Mesodon* in the populated areas. Wurtz (1945, Naut. 58, p. 128) recorded it along a road one mile east of Owingsville, Bath County, Kentucky, but without ecologic notes.

General distribution (fig. 433).—Michigan, Pennsylvania, Ohio, Indiana, Illinois, and Missouri.

Distribution in Ohio (inset, fig. 433).—Cuyahoga, Tuscarawas, Franklin, and Hamilton Counties (Sterki, 1907a, p. 376); Pilsbry gave only Franklin, Hamilton, and Adams Counties; Eggleston (ms. records) has specimens from Delaware, Clinton, Brown, Adams, Scioto, and Lawrence Counties; Wurtz (1949) collected it in Brown County. If Pilsbry rejected the northeastern county records, he has not explained his reason for doing so. These records need confirmation, nevertheless.

Geologic range.—Baker (1920a, p. 390) gave Sangamon, Peorian, and "Wabash." "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); Castalia marl (Sterki, 1920, p. 179), only one specimen. This last record is far to the north of the known distribution of the species at present in Ohio, but it is not anomalous since the species is known for Michigan, which is even farther to the north.

Mesodon elevatus (Say) 1821

Fig. 434

- **Mesodon elevatus** Call 1900, Moll. Ind., p. 392, pl. 6, fig. 3.
- **Polygyra elevata** Billups 1902, Nautilus, v. 16, p. 51.
- F. C. Baker 1920, Life of Pleistocene,
extension is undetermined but its occurrence in New
York and Michigan makes it probable that it could exist
in the entire State.

Geologic range.—F. C. Baker (1920a, p. 390) gave
Yarmouth, Sangamon, Peorian, and "Wabash." Sang-
mon? of Indiana (Baker, 1920b, p. 456); "Old Forest
bed of the Ohio River" (Billups, 1920b, p. 51); "Mid-
dletown 'preglacial deposits'" (Sterki, 1907a, p. 401);
"Defiance sandy deposit (loess?)" (ibid., p. 402).

Mesodon appressus (Say) 1821
Fig. 436

Jour., v. 2, p. 151.
Helix linguifera Ferussac 1821, Tabl. Syst. Fam. Lima-
cons, p. 33, no. 95.
Triodopsis appressa Call 1900, Moll. Ind., p. 386,
pl. 5, figs. 11, 11a, b.

FIGURE 435.—Distribution of Mesodon elevatus in North America; inset, distribution in Ohio.
Polygyridae

FIGURE 436.—*Mesodon appressus*, magnified; after F. C. Baker (1939a, p. 54).

Type locality.—Gallipolis, Gallia County, Ohio.

Diagnosis.—Shell depressed, brownish horn; whorls five, weakly convex above, the last decidedly angular in front, less so behind, contracted close behind the lip; embryonic whorl striate, the striae becoming coarser and papillose, the papillae spirally aligned on the upper part of the last whorl, scattered on the base; aperture lunate, strongly oblique; peristome broad, flattened, white with tinted edge, strongly thickened within, with a bladelike rim within the basal margin, which is truncate at the junction of the basal and outer margins; no trace of a tooth within the outer arc of the lip; dilated columellar end of the lip concave and appressed over the umbilicus; parietal wall with a rather long, curved, obliquely entering tooth, high at its outer third, sloping down toward, but usually not connected with, the axial callus (condensed from Pilsbry, 1940).

Ecology.—In Alabama, very abundant in urban stone walls and on weedy lots, chiefly confined to calcareous soils (Archer, quoted by Pilsbry, 1940). Webb (1942, Naut. 56, p. 61-62) has found it in Indiana on and about weed-covered manmade gravel hills; least plentiful on the more nearly level areas adjacent to the hills. In West Virginia, Wurtz (1948, Naut. 61, p. 84) found it on the ceilings of disused coal mines, and along the Kanawha River, on a railroad embankment opposite Montgomery. Lutz (1950, Naut. 63, p. 103) recorded it in Tennessee for foothills of hardwood forests, rocky rubble, and under logs. It was found under debris in a lumber yard in Maryland (Grimm, 1959, Naut. 73, p. 21).

The form *laevior* Pilsbry is recorded for Virginia by Hubricht (1950, Naut. 64, p. 8), who states that, judging by the samplings he has made, it must occur abundantly in every backyard in Danville. It does not occur outside the city, and is probably introduced.

Burch (1954, Naut. 68, p. 32) stated that the form *sculptior* Chadwick is common along cliffs on the Chesterfield County side of the James River, but in only one locality in Henrico County, on the other side of the same river. He (1955, Naut. 69, p. 66) has shown the relationships of this form to soil factors in eastern Virginia.

Hubricht (1950, Naut. 64, p. 7) has an interesting observation on this form in Virginia. He found it common on the cliffs along the Roanoke and Dan Rivers, Pittsylvania County. He stated that the absence of *M. appressus* in the Blue Ridge suggests that this species came down the Roanoke River, from the Great Valley, to the mouth of the Dan, thence up the Dan into Pittsylvania County.

General distribution (fig. 437).—Virginia westward to southern Ohio and Indiana, southward through Kentucky and Tennessee to Alabama.

Distribution in Ohio (inset, fig. 437).—Southwestern counties (Hamilton, Brown, Adams, Gallia) and Auglaize County (University of Michigan records). Pilsbry (1940, p. 751) gave only Hamilton and Gallia Counties; Wurtz (1949) added Brown County; the Auglaize County record indicates that the species probably has a much larger range in the State.

Geologic range.—F. C. Baker (1920a, p. 390) gave Yarmouth, Sangamon, and Peorian. "Old Forest bed of the Ohio River" (Billups, 1920b); the locality is in Indiana, just next to the Ohio line and it is probable that the species will eventually be found in similar deposits within Ohio.

[Mesodon sayanus (Pilsbry) 1906]

--- --- Robertson and Blakeslee 1948, *Moll. Niagara Frontier*, p. 18, pl. 1, figs. 15, 16.

Type locality.—"Inhabits the state of New York" (Say, 1824).
Diagnosis.—Shell umbilicate, umbilicus one-seventh the diameter; depressed, thin, pale yellow, glossy; embryonic 1 1/2 whors smooth, the rest finely striate, with microscopic spiral lines; spire low, convex-conoid; whorls 4 1/2 to 5 3/4, convex, rather narrow, the last descending slightly in front, rounded at the periphery, very slightly contracted behind the lip; aperture rounded lunate, the lip white, narrow, reflexed throughout, bearing a small, acute tooth on the basocolumellar margin, another small tooth obliquely on the parietal wall.

Ecology.—Oughton (1948, p. 94 ff.) found the species in damp woodlands, especially those of deciduous trees, in Ontario. It occurs in such habitats in the Ottawa region, but is never as plentiful as other polygyrids of the region. Dimelow (1962, Naut. 76, p. 49) found it in Nova Scotia, in climax deciduous forest on a gentle well-drained slope. Muchmore (1959, Naut. 72, p. 88) noted this as one of the few species not occur-

FIGURE 437.—Distribution of *Mesodon appressus* in North America; inset, distribution in Ohio.
ring under stones in the Huyck Preserve in New York State.

General distribution (fig. 438).—Maine west to Ontario and Michigan; south to New York, Pennsylvania, Tennessee, and North Carolina. Erroneously recorded for Ohio (Cincinnati).

Distribution in Ohio.—So far, the only Ohio record has been shown to be erroneous. The general distribution would, at first sight, indicate that Ohio should be included in the range of the species but it should be noted that all the Michigan records are far north of the Ohio line, in the vicinity of Saginaw Bay and northward; that all the Pennsylvania records are east of Pittsburgh; and that the Tennessee records are for the mountainous eastern part of the State. The species may be found in Ohio, the most likely places being the northeastern counties, near the Pennsylvania line.

Geologic range.—F. C. Baker (1920a, p. 390) gave
only "Wabash." "Deposit of sand and gravel, in bank of Pretty River, near Collingwood, Ontario" (Bell, 1861, p. 50); McKay Lake marl, Ottawa, Ontario, Canada. These deposits are probably late Wisconsin in age, but Bell's record needs confirmation.

Mesodon inflectus (Say) 1821
Fig. 439

Triodopsis inflecta Call 1900, Moll. Ind., p. 387, pl. 5, fig. 12.

Polygyra inflecta Billups 1902, Nautilus, v. 16, p. 51.

--- --- Ahlstrom 1930, Nautilus, v. 44, p. 44.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 18, pl. 1, fig. 10.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 305.

FIGURE 439.—*Mesodon inflectus*, magnified; after F. C. Baker (1939a, p. 47).

Type locality.—“Lower Missouri.”

Diagnosis.—Shell depressed, imperforate, with a convex or low conoidal spire of rather slowly increasing whorls, the last rounded peripherally, abruptly descending in front, and deeply guttered behind the outer and basal margins of the lip; apical half whorl with few radial wrinkles, the next whorl closely covered with fine, retractively radial striate which are interrupted into long granules; last whorl faintly striate, and set with short curved periostracal processes, partly with short projecting points, between them a network of microscopic wrinkles, mainly in the direction of lines of growth; obsolete in the middle of the base; aperture three-lobed; outer lip reflected, thickened within, bearing a blunt, slightly receding tooth in the outer arc, a narrow, tubercular tooth in the basal lip; parietal tooth long, somewhat curved (modified from Pilbsry, 1940, p. 771).

Ecology.—Archer (1935, p. 82) found this species under logs and in leaf mold in the Asheville, North Carolina, region; often present under charred logs and in dead leaves among rocks. Conkin (1957, Naut. 71, p. 11) recorded it in Kentucky from bushy and forested slopes and creek bottoms with highly calcareous soil. Teskey (1955, Naut. 69, p. 70-71) collected it in the Warm Springs area of Georgia, from forest on slope at the base of Pine Mountain fire tower and from detritus in crannies of stone walls and rotting timbers of an old mill, Parkman Pond. In Tennessee, Lutz (1950, Naut. 63, p. 102) found it in hardwood forests.

Associations.—Living: OHIO—1, 2, 3, 5, 7, 27, 28, 43; ONTARIO—11, 12, 13, 14. Fossil: W-24, 26.

General distribution (fig. 440).—Michigan, Illinois, Oklahoma, southeastern to Louisiana, Mississippi, Alabama, Georgia, North and South Carolina.

Distribution in Ohio (insert, fig. 440).—“Over the state” (Sterki, 1907a, p. 376), substantiated by a long list of counties given by Pilbsry (1940, p. 772) and records in the Eggleston and University of Michigan collections, which nevertheless do not cover the north-eastern part of the State in an area bounded by Ashtabula, Erie, Ashland, and Columbiana Counties. This may be due to lack of collecting or to nature of the soil.

Geologic range.—F. C. Baker (1920a, p. 390) gave Yarmouth, Sangamon, Peorians, and “Wabash.” Sangamon? of Indiana (Baker, 1920b, p. 456); “Old Forest bed of the Ohio River” (Billups, 1902b, p. 51); “Defiance sandy deposit (loess?)” (Sterki, 1907a, p. 402).

Remarks.—Taft (1961, p. 18-19) also listed the two forms *M. inflectus edentatus* (Sampson) and *M. inflectus medius* Pilbsry from Ohio, living.

Genus Triodopsis Rafinesque 1819

Triodopsis Rafinesque 1819, Jour. Physique, v. 88, p. 425; 1851, Enum. and acct., p. 3 ([fide Neave]).

Menomphis Rafinesque 1831, Enum. and acct., p. 3.

Triodontopsis Agassiz 1846, Nomenclator Zool., Index Univ., p. 378.

Type.—*Triodopsis lunula* Rafinesque, =*Helix tridentata* Say.

Diagnosis.—Shell of moderate or large size, either umbilicate or imperforate, varying in form from depressed and carinate to subglobose-conic; surface striate, with or without spiral lines, or hirsute; aperture trilobed or lunate; peristome reflected, thickened within, with three teeth or none; parietal tooth, when present, not V-shaped.
General distribution.—Humid eastern United States and Canada, east of the 100th meridian; the subgenus Cryptomastix from Montana west of the continental divide to British Columbia and Oregon; the range of the eastern herd of Triodopsis is nearly coincident with that of Stenotrema and Mesodon but, unlike the former, the species are not more numerous in mountainous districts (Pilsbry, 1940, p. 790).

Geologic range.—Late Pleistocene of North America.
Polygyra tridentata Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.

Triodopsis tridentata Pilsbry 1940, Land Moll. N. America, v. 1, p. 792, figs. 474a-i; 476a.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 16.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 19, pl. 1, figs. 21, 22.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 308.

FIGURE 441.—Triodopsis tridentata, magnified; after F. C. Baker (1939a, p. 45).

Type locality.—Philadelphia, Pennsylvania (Pilsbry, 1948, p. 796).

Diagnosis.—Shell umbilicate, umbilicus one-seventh the diameter, depressed, buff, slightly glossy; embryonic 1½ whorls with fine curved radial striae extending across the whorl in some specimens, in others striae short, partly obsolete, leaving a smooth outer band; last whorl with close threadlike rounded striae, equal to their intervals, the latter nearly smooth except around the umbilicus where they are minutely papillose (some specimens with papillae on the upper surface also); last whorl rounded at apex, scarcely descending in front, and contracted behind the lip; aperture trilobed with a rather flatly reflected lip, thickened within, divided into three subequal parts by two small teeth on the outer and the basal margins; parietal callus with an oblique tooth, the distal end of which is directed towards a part of the peristome below the upper tooth (modified from Pilsbry, 1940, p. 792).

Ecology.—More abundant on limestone soils but lives wherever there is some shade, with moderate moisture and vegetation, dead leaves or wood shelter.

In Ontario, this species is found in both damp and drier, more open woodlands, especially those of deciduous trees, where it is confined to Paleozoic terranes, mainly limestones (Oughton, 1948, p. 89 ff.). Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. In the Asheville region of North Carolina, Archer (1935, p. 82) found it under slabs of gneiss, on mountain slopes. Ingram (1940, Naut. 54, p. 87) has described its daylight activities, and listed shrews as one of its enemies (Ingram, 1944, Naut. 57, p. 135-137). It has been found under stones on a creek floodplain by Ingram (1941, Naut. 55, p. 14-15) and its winter habits have been studied by the same author (1944, Naut. 58, p. 25-27) in beechn—yellow-birch and sycamore woodlands in New York State. Wurtz has described a winter agglomeration of snails, which included this species, in the soil of a northward sloping hillside in Allegheny County, Pennsylvania. The eggs have been studied by Ingram (1944, p. 94-95) and mating habits observed by Webb (1948, Naut. 61, p. 97). In Tennessee, it occurs on hilly terrain of red and black oak forests (Lutz, 1950, Naut. 63, p. 104).

Ingram (1946, Naut. 59, p. 88-89) gave the following details from observations in the Huyck Preserve in New York State: "This species was the third most common of the five species of Polygyridae. It was the only one of the family at all common in pure hemlock stands; here it was always taken from beneath the sprung bark of fallen logs. It was the most abundant in the beech-hemlock and maple stands. Here it was commonly found at rest on top of humus on the open forest floor; when found in such a situation individuals were usually taken from depressions in the humus. Its local distribution is apparently affected by man's cultivation efforts, for it never was found in grass or berry-covered fields or in old apple orchards. Individuals were rare in hedgerows and on flood plains. Open 'fresh' shells of this species in the feeding chambers of the short-tailed shrew were commonly found."

General distribution (fig. 442).—New Hampshire and Massachusetts west to Michigan and Illinois, south to Mississippi, Alabama, and Georgia.

Distribution in Ohio (inset, fig. 442).—Sterki (1907a, p. 376) recorded the species "over the state." Pilsbry (1940, p. 794) gave a list of counties from northeastern to southeastern and southwestern Ohio; these are confirmed by Eggleston's manuscript records; specimens in the University of Michigan collection fill in the distribution for northwestern Ohio (Fulton, Paulding, Allen, and Auglaize Counties).

Variation.—Pilsbry (1940, p. 792 ff.) has recog-
nized 5 trinomials for this species, in addition to the typical form. Three of these appear to be local races or subspecies of restricted distribution; the other two, *T. tridentata juxtidens* (Pilsbry) and *T. tridentata discoidea* Pilsbry, are more widespread and both occur in Ohio.

Triodopsis tridentata juxtidens (Pilsbry) 1894

--- --- Archer 1934, *Nautilus*, v. 48, p. 24, pl. 1, fig. 2.

Type locality.—Cavetown, Washington County, Maryland.

FIGURE 442.—Distribution of *Triodopsis tridentata* in North America; inset, distribution in Ohio.
Diagnosis.—Shell as the typical form except that the upper tooth is situated lower, bringing the two lip teeth closer together, the distance on the lip between them being shorter than the distance from either tooth to the end of the lip; the peripheral end of the parietal tooth slants toward or above the upper lip tooth, the chief recognition mark of the subspecies (modified from Pilsbry, 1940, p. 798).

Ecology.—In Virginia, according to Rehder (1949, Naut. 62, p. 122), this form is fairly common under old boards, bricks, and debris, not far from a beach. Hubricht (1950, Naut. 64, p. 8) recorded the following from Pittsylvania County, Virginia: There are two distinct forms of this species in Pittsylvania County; the small form, running between 11 and 13 mm. in diameter, is common in upland oak woods in the Outer Piedmont. It is the common waste ground snail in Gettys, Chatam, and Dry Fork, but is not found in Danville. The large form, running between 14 and 18 mm. in diameter, is of Blue Ridge stock which has come down the Dan and Roanoke Rivers and is abundant on the bluffs along these rivers. Burch (1954, Naut. 68, p. 33) found it abundant over all of Henrico County, Virginia, and noted that, unlike T. fallax, it is generally restricted to the woodlands. In Maryland, Grimm (1959, Naut. 72, p. 123) found it in the foundations of an old burned house; along railroad tracks, and in woods near a river. Burch (1955, Naut. 69, p. 66) showed the relationships of this form to soil factors in eastern Virginia.

General distribution.—New York, Pennsylvania, New Jersey, Maryland, West Virginia, Ohio, North and South Carolina.

Distribution in Ohio.—A single record, Gallipolis, Gallia County, collected by Goodrich and cited by Pilsbry (1940, p. 798).

Geologic range.—Late Wisconsin, Castalia deposit, Ohio (Clark, 1961, p. 25).

Triodopsis tridentata discoidea Pilsbry 1904

Helix tridentata polita Wetherby 1894, Nautilus, v. 8, p. 44 (non Helix polita Pulteney 1797 nec Müller 1774).

Polygyra tridentata discoidea Pilsbry 1904, Nautilus, v. 17, p. 142.

--- --- --- Daniels 1904, Nautilus, v. 18, p. 92.

Type locality.—Cincinnati, Hamilton County, Ohio.

Diagnosis.—Shell larger and more widely umbilicate than T. tridentata juxtidens, the umbilicus one-sixth the diameter; in apical view last whorl wider than in that subspecies and the surface more glossy, the striations weaker and finer; aperture as in T. t. juxtidens; parietal tooth short to rather long, nearly reaching the columellar insertion, its peripheral end pointing towards the upper lip tooth, or a little above it; lip teeth quite small to rather strong (modified from Pilsbry, 1940, p. 799).

Ecology.—Similar to that of the type subspecies.

Associations.—Fossil: W. 24?

General distribution.—Ohio west to Missouri (Pilsbry, 1940).

Distribution in Ohio.—Pilsbry (1940, p. 799) gave only Hamilton and Franklin Counties. Sterki (1907a, p. 376) gave only Hamilton County. Wurtz (1949) added Brown County; Eggleston (ms. records) confirmed the Hamilton County record. I have no other records.

Geologic range.—Pleistocene(?), if the variety mentioned by Billups (1902b, p. 51) belongs here.

![FIGURE 443.—Triodopsis fraudulenta vulgata, magnified; after F. C. Baker (1939a, p. 46).](image-url)

Triodopsis fraudulenta vulgata Pilsbry 1940

Fig. 443

Helix tridentata Say, in part, A. Binney 1851, Terr. Moll., v. 3, p. 183, pl. 28, upper, middle, and lower figs.

Helix fallax Say, W. G. Binney, 1869, Land and fresh water shells N. America, v. 1, p. 131, fig. 222; and of many other authors, not of Say.

Triodopsis fallax Call 1900, Moll. Ind., p. 388, pl. 5, fig. 14.

--- --- --- Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.

Type locality.—Columbus, Franklin County, Ohio.

Diagnosis.—Shell buff to yellow; differs from T. tridentata and its variety juxtidentis by having the upper lip tooth wider than its fellow, and distinctly bent inward, and the peristome more or less dished; teeth not so large as in typical T. fraudulenta and the aperture more open; parietal tooth straight or nearly so and not as long as in the typical form, leaving much more space between it and the two lip teeth; basal lip well thickened within, but without the prominent straight callus of the typical form; bay between the lip teeth more symmetrical than in the typical form; umbilicus somewhat well-like beyond the enlargement at the last whorl, and wider than in T. tridentata juxtidentis, showing the first whorl plainly at the bottom (modified from Pilbsry, 1940, p. 805).

Ecology.—Conkin (1957, Naut. 71, p. 11) found T. fraudulenta (probably T. fraudulenta vulgata) in Kentucky on bushy and forested slopes and creek bottoms with highly calcareous soils. T. j. vulgata is recorded by Lutz (1950, Naut. 63, p. 103) from Tennessee, on hills of red and black oak forests.

General distribution (fig. 444).—New York west to Michigan, Illinois, and Missouri; south to Alabama and North Carolina.

Distribution in Ohio (inset, fig. 444).—Over the state; Fulton, Mercer, and Auglaize Counties (University of Michigan records); Hamilton, Brown, Adams, Gallia, Washington, Coshocton, and Portage Counties (Eggleston, ms. records). We have as yet no records for the extreme northeastern part of the State (Lake, Ashtabula, Geauga, Trumbull Counties) but the presence of the subspecies in Pennsylvania indicates that this is due more to lack of collecting than to actual absence.

Geologic range.—The following records are included under the subspecies although they were published before the latter was described. This action leaves a small element of doubt in the vicarious identification, but there is every likelihood that it is correct. "Defiance sandy deposit (loess)" (Sterki, 1907a, p. 402); Castalia marl (Sterki, 1920, p. 179); Sangamon? of Indiana (F. C. Baker, 1920b, p. 456). Baker's (1920a, p. 390) record for Polgygra fraudulenta is for "Wabash" only; it may include representatives of the subspecies.

Subgenus Xolotrema Rafinesque 1819

Xolotrema Rafinesque 1819, Jour. Physique, v. 88, p. 425; not Xolotrema Rafinesque 1831.

Type.—T. notata (Deshayes) (=T. denotata Fér.) by designation of Pilbsry (1940).

Diagnosis.—"Triodopsis in which the inner margin of the basal lip has a long bladelike lamella, terminating at a notch where it joins the outer arc of the lip; the embryonic whorls are covered with close retractive radial striae (subobsolete in T. fosteri)" (Pilbsry, 1940, p. 823).

Triodopsis denotata (Férussac) 1823

Fig. 445

Helix denotata Férussac 1821, Tabl. Syst. Fam. Linaçons, p. 34, no. 102 (nude name); 1823, Hist. Nat. Moll. Terr., cover, no. 19, pl. 49A, fig. 5.

Triodopsis paliata Call 1900, Moll. Ind., p. 385, text fig. 6.

--- --- Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 15.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 20, pl. 1, figs. 25, 26.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 308.

Type locality.—None given for H. notata; Say gave "Illinois and Ohio" for H. paliata.

Diagnosis.—Shell imperforate (locally slightly perforate), depressed, with convex or low conoidal spire; olive to brown; last whorl obusely angular in front, rounded behind, scarcely contracted behind the lip; embryonic shell closely sculptured with radial, slightly curved fine striae; later whorls rather weakly,
coarsely striate, and covered with fine wrinkles, the last whorl with close-set papillae bearing flattened triangular periostracal asperities, arranged in irregular retractive trends; the surface between them more or less covered with fine wrinkles, oblique or radiating from the papillae; aperture trilobed; peristome white, broadly reflected in the outer and basal margins, its face flattened or concave; outer lip bearing a strong conic or obtuse tooth at the inner edge, the basal margin of the lip thickened bladelike within, truncate at its junction with outer margin; parietal wall bearing a very strong, long and curved tooth, which extends to the umbilical callus (modified from Pilsbry, 1940, p. 824).

Ecology.—Near the northern limit of its range in Ontario, Oughton (1948, p. 94 ff.) found this species in damp woodlands, especially those of deciduous trees. Here, it is confined to Paleozoic terranes,

FIGURE 444.—Distribution of Triodopsis fraudulenta vulgata in North America; inset, distribution in Ohio.
mainly limestones. Muchmore (1959, Naut. 72, p. 88) listed this as one of the few species not occurring under stones in the Huyck Preserve in New York State. Ingram (1944, Naut. 57, p. 135-137) listed this species among those hoarded by shrews and he (1944, Naut. 58, p. 25-27) has studied its winter habits at Ithaca, New York, in beech-yellow-birch and sycamore woodlands. Mating observations have been recorded by Webb (1948, Naut. 61, p. 98).

Figure 445. — *Triodopsis denotata*, magnified; after F. C. Baker (1939a, p. 52).

Ingram (1946, Naut. 59, p. 89) gave the following data: "Only one individual was collected during the summer from beneath the sprung bark of a yellow birch log. Although other yellow birch logs were examined none revealed the presence of this species. At Ithaca, New York, this mollusk is abundant beneath the sprung bark of yellow birches in the Sapsucker woods; here too it has often been taken from beneath yellow birch and beech logs."

General distribution (fig. 446). — Massachusetts and Vermont west to Michigan, Illinois, and Arkansas; south to Mississippi, Alabama, and South Carolina.

Distribution in Ohio (inset, fig. 446). — "Over the state" (Pilsbry, 1940, quoting Sterki). Records are not abundant enough to accept the statement; they are most numerous for the southern part of the State and there are none north of Auglaize County in the western part of the State or north of Stark and Mahoning Counties in the eastern part. In view of the presence of the species in the surrounding states, especially Michigan and Ontario to the north, this is rather surprising and worth further investigation. Perhaps its absence in the northern counties may have had something to do with post-Wisconsin events.

Geologic range. — F. C. Baker (1920a, p. 390) gave Sangamon and "Wabash" for this species. "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); Castalia marl (Sterki, 1920, p. 179); postglacial deposits, Angus, Simcoe County, Ontario (Oughton, 1948, p. 15).

Triodopsis obstricta (Say) 1821

Triodopsis obstricta Call 1900, Moll. Ind., p. 386, pl. 5, fig. 10.

Polygyra obstricta Sterki 1907, Ohio Acad. Sci. Proc., v. 4, p. 376.

Triodopsis obstricta Pilsbry 1940, Land Moll. N. America, v. 1, pt. 2, p. 827, figs. 485f, g.

Type locality. — Ohio.

Diagnosis. — Shell depressed, with a peripheral carina or angulation, spire very low to moderately high and dome-shaped; embryonic 1½ whorls finely striate, later whorls with low rather widely spaced rib striae, and minutely, closely wrinkled in the direction of growth lines, the wrinkles more or less broken into granules; commonly with ill-defined spiral lines on the upper surface of the last whorl; penostracal laminae or erect scales few, in some specimens scattered over the whole last whorl, more commonly absent except just above and below the carina; carina beginning on the second whorl and continuing strong to the end.

Ecology. — No precise data available.

General distribution (fig. 448). — Ohio, Indiana, and Illinois, south to Louisiana, Alabama, and South Carolina.

Distribution in Ohio (inset, fig. 448). — Until recently, the Ohio record for the species appeared doubtful as all records were rather old. Taft (1961, p. 32) has confirmed its presence in the State with specimens from Pickaway County, collected in 1959.

Geologic range. — Unknown.

Remarks. — Pilsbry (1940, p. 828) noted that this species is "typically very distinct" but that some forms suggest intergradation with *T. denotata* and *T. carolinensis*. He is "tempted to return to the view of A. Binney, that they are extremes of one polymorphic species."

As far as the Pleistocene of Ohio is concerned, this is a species to be looked for in the deposits of the southern counties of the State, but identifications should be made only after careful comparison with *T. denotata*.

Subgenus Neohelix von Ihering 1892

Neohelix H. von Ihering 1892, Zeitschr. fûr Wiss. Zool., v. 54, p. 482.

Type. — *Triodopsis* (Neohelix) *albolabris* (Say).

Diagnosis. — "Capacious, depressed or depressed-globose, imperforate shells with rather large, lunate aperture, toothless or with a parietal tooth and sometimes a low, blunt prominence of the basal lip near the
columella. Embryonic whorls are radially striate below the suture or practically smooth throughout. Later whorls striate, with minute spiral lines" (Pilsbry, 1940, p. 834).

Remarks.—Externally, the shell characteristics of the species of this subgenus are identical with those of Mesodon but anatomically they belong to the genus Triodopsis. Some of the species of Neohelix are the most widespread and hardy forms of the family Polygyridae.

Triodopsis albolabris (Say) 1816
Fig. 449; pl. 15, figs. 16, 18

Mesodon albolabris Call 1900, Moll. Ind., p. 389, pl. 5, figs. 15, 15a.

Polygyra albolabris Dall 1905, Harriman-Alaska Exped., v. 13, p. 26, figs. 4-6.

FIGURE 446.—Distribution of *Triodopsis denotata* in North America; inset, distribution in Ohio.
--- Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.
--- Ahlstrom 1930, Nautilus, v. 44, p. 44.

Triodopsis albolabris Pilsbry 1940, Land Moll. N. America, v. 1, pt. 2, p. 835, fig. 489, 2-6, 8.

FIGURE 447.—Triodopsis obstricta, magnified; after F. C. Baker (1939a, p. 53).

FIGURE 448.—Distribution of Triodopsis obstricta in North America; inset, distribution in Ohio.
--- Oughton 1948, Zoögeogr. study, Ontario, p. 12.
--- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 20, pl. 1, figs. 23, 24.
Triodopsis albolarbis albolarbis La Roque 1953, Cat. Recent Moll. Canada, p. 306.

FIGURE 449.—Triodopsis albolarbis, magnified; after F. C. Baker (1939a, p. 49).

Type locality.—Philadelphia, Pennsylvania.

Diagnosis.—Shell depressed-globose, imperforate, rather solid, typically some shade of buff; surface nearly matte; embryonic shell with a band of fine striae radiating below the suture, elsewhere smooth; later whorls with sculpture of fine oblique striae and minute, crowded, incised spiral lines; peristome wide, white, flatly reflected, the columellar margin straightened or slightly convex within, with a shallow notch near the insertion (Pilsbry, 1940, p. 835).

Ecology.—In Ontario, Oughton (1948, p. 94 ff.) recorded this species for damp woodlands, and from forest litter, dried but still alive after more than one week. H. B. Baker (1922b) found it in the drier habitats in Dickinson County, Michigan, on outcrops of Quinnesec schist and Sturgeon quartzite, on sandy outwash plains with pine and second growth, and in hardwoods on higher moraines, especially in maple logs. Muchmore (1959, Naut. 72, p. 85-88) collected it under stones in various woodland areas in New York State. Burch (1955, Naut. 69, p. 66) has recorded the relationships of this species to soil factors in eastern Virginia. Solem (1952, Naut. 65, p. 129) found it in Wisconsin, in a large tract of virgin pine timber with some deciduous growth and undergrowth of thimbleberry; in an exceedingly damp spot along the shoreline, in piles of reeds tossed up during storms. Ingram (1944, Naut. 57, p. 135-137) listed shrews as one of its enemies. He found it under stones on a creek floodplain in the Ithaca, New York, area (1941, Naut. 55, p. 14-15) and studied its habits (1944, Naut. 58, p. 25-27) in beech-yellow birch and sycamore woodlands in the same area. He has also described its daylight activity (Ingram, 1940, Naut. 54, p. 87); the process of shell cleaning and epiphagm removal (1944, Naut. 57, p. 138-141); and the fact that carabid beetles of the genus Calosoma are known to feed on this species (1950, Naut. 63, p. 142). In Kentucky, Conkin (1957, Naut. 71, p. 11) found it on bushy and forested slopes and creek bottoms with highly calcareous soil. Archer (1934c, p. 139) recorded it as rather common in hardwoods on Mackinac Island, Michigan, where numbers of dead shells gnawed by rodents were noted. In North Carolina, Rehder (1949, Naut. 62, p. 124) found it under logs and boards at a settlement on the north shore of Lake Waccamaw. Lutz (1950, Naut. 63, p. 103-104) collected it in Tennessee from hills of hardwood forests, among leaf mold. Hubricht (1950, Naut. 64, p. 8) listed it as common over Pittsylvania County, Virginia, and noted that Blue Ridge stock in the valleys of the Dan and Roanoke Rivers averaged somewhat larger than Piedmont stock. Burch (1954, Naut. 68, p. 33) listed it as generally distributed over Henrico County, Virginia, but not very common. Archer (1935, p. 79) found only one dead specimen in honeysuckles, Asheville region of North Carolina (form major). Teskey (1955, Naut. 69, p. 70-71) also gave details on form major in the Warm Springs area of Georgia. H. B. Baker (1922b) noted that the form maritima is abundant throughout sandy outwash plains in Dickinson County, Michigan.

Ingram (1946, Naut. 59, p. 88) found this to be the most abundant large snail of the natural forest areas of the Huyck Preserve in New York State. "It preferred beech-hemlock, beech-maple and maple areas where the humus and wet-rot logs were abundant. It was almost absent from the pure hemlock forest and from deciduous forest overgrown with wild black and rasp-berry bushes. It was occasionally found in deserted apple orchards. Individuals were often taken in maple and oak hedgerows which ran between cultivated fields from wooded areas. Individuals were found to be active throughout the daylight hours. When at rest they were collected from beneath the spruce bough of logs, from beneath logs, and from beneath the upper humus layer of the forest floor. Occasionally they were found during the day inactive on the surface of the forest floor. This snail was typically terrestrial except during summer rainy periods when they were found to ascend trees. Individuals generally avoid flood-plain forest areas where a rich humus covering was absent." Ingram also, as a result of trapping and stomach analysis, found it to be used as food by the short-tailed shrew and two species of deer mice.

Associations.—Living: MICHIGAN-1, 2, 4, 7, 8, 9, 21, 22, 25, 26, 27, 28, 29, 32, 33, 34, 36, 40; OHIO-1, 3, 4, 5, 22, 25, 26, 43; ONTARIO-7, 8, 10. Fossil: W-24, 26, 28.

General distribution (fig. 450).—New Brunswick, Maine, Quebec, Ontario, Michigan, Minnesota, and Manitoba, southward to eastern Iowa, Illinois, Tennessee, and Louisiana, eastward to Alabama and Georgia.

Distribution in Ohio (inset, fig. 450).—Sterki (1907a, p. 376) recorded the species for the entire State and this may turn out to be correct. At present, records
available to me are scattered over every part of the State but there are large blocks of counties from which no specimens are available.

Geologic range.—Pleistocene; late Wisconsin and perhaps older. "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); "Defiance sandy deposit (loess?)," exact age unknown (Sterki, 1907a, p. 402); Castalia marl (Sterki, 1920, p. 179). It is also known as a Pleistocene fossil elsewhere, notably in the McKay Lake marl, Ottawa, Ontario, Canada. F. C. Baker (1920a, p. 390) recorded the typical form for the Yarmouth, Sangamon, Peorian, and "Wabash," and form alleni for the Peorian and form dentata for "Wabash."

Remarks.—This species is extremely variable and a number of forms and subspecies have been described (see Pilsbry, 1940, p. 838 ff.). It has been confused with Mesodon thyroidus and M. zaletus as well as

FIGURE 450.—Distribution of Triodopsis albolabris in North America; inset, distribution in Ohio.
T. dentifera. Taft (1961, p. 27) recognizes the forms allenii ("Wetherby" Sampson) and goodrichi (Clapp).

[Triodopsis dentifera (Binney) 1837]

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 20, pl. 1, figs. 27, 28.

Type locality.—Eastern slope of Green Mountains, Vermont.

Diagnosis.—Shell imperforate, depressed, thin, light olive; embryonic 1 1/3 whorls with radial striation below the suture, short at first, but later extending half across the whorl; later whorls not glossy, finely striate, with very minute wrinkles parallel to the striae, cut by spiral lines; last whorl rounded at the periphery, descending slightly in front, contracted behind the lip; peristome white, rather broadly, flatly reflected, thickened at the inner edge; parietal callus transparent, bearing a short, obliquely set tooth (modified from Pilsbry, 1940, p. 844).

Ecology.—The most extensive account of the ecology of this species is that of Ingram (1946, Naut. 59, p. 89), who has also described its day-light activity (1940, Naut. 54, p. 87) and the process of egg laying, the eggs, and the young (1944, p. 93-94).

Muchmore (1959, Naut. 72, p. 88) listed this as one of the few species not occurring under stones in the Huyck Preserve in New York State. This proved to be the second most common polygyrid on the Huyck Preserve. "It reached its greatest abundance in the beech-hemlock forest, but was not generally taken with T. albolabris. Gathered data indicate that this species is possibly a marginal snail; it was commonly found along the edges of the various forest strips and in hedgerows bordering pasture land and abandoned fields. The species was apparently well established in maple and oak hedgerows, for egg masses and young were generally encountered here" (Ingram, 1946, Naut. 59, p. 89).

General distribution (fig. 451).—Ontario, Quebec, Maine, New Hampshire, and Vermont, south to West Virginia, Virginia, and South Carolina.

Distribution in Ohio.—The only record known to me is cited by Sterki (1907a, p. 376) as follows: "Cincinnati (Bynes); 'Ohio,' t. W. G. Binney." Pilsbry (1940, p. 845) did not list it for the State and explained in a footnote that the old record for Cincinnati was later discredited. Eggleston (ms. records) had no specimens; there are none in the University of Michigan collections; it has not turned up in later collecting.

Geologic range.—Unknown.

Triodopsis multilineata (Say) 1821
Fig. 452

Mesodon multilineatus Call 1900, Moll. Ind., p. 390, pl. 5, figs. 16, 16a.
--- --- Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.
Polygyra multilineata Ahlstrom 1930, Nautilus, v. 44, p. 44.
--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 15.
--- --- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 21, pl. 1, fig. 19.

Type locality.—"Illinois and Missouri" (Say).

Diagnosis.—Shell imperforate, depressed-globe, rather thin, yellow to olive, with many (commonly only a few, or none) reddish-brown spiral bands of variable width, unevenly spaced; surface rather glossy, the first 1/4 whorls smooth, the rest with fine sculpture of oblique striae, with rather weak spiral engraved lines in their intervals; spire moderately elevated, H/D index commonly 60 to 70; peristome white or pink tinted, rather narrow, with rounded face; parietal calxus typically plain, but commonly with a low, oblique tooth.

Ecology.—Found on wet ground, in marshes, on river floodplains. Members of this species migrate to drier ground in the late fall and gather together in large
POLYGYRIDAE

groups in shallow excavations hidden under dead grass, where they form an epiphram and lie dormant until the following spring. They can survive in areas regularly flooded by a stream. The species has been recorded by J. A. Allen (1915) for two islands in Lake Erie, South Bass and Kelleys, where it occurs in hardwoods over highly calcareous soil. The mating habits of the species have been observed by Webb (1948, Naut. 61, p. 99).

This species was observed to feed on Succinea in captivity (Crabb, 1928, p. 35-36) at Ann Arbor, Michigan. Whether it has the same habit in nature has not been verified. Shimek (1936, Naut. 49, p. 119-120) described its habitat as follows: "The usual larger form (approaching or embracing the type) is usually found in rather low alluvial woods, even where subject to annual inundation, favoring particularly the places occupied by the soft maple (Acer saccharinum L.).

FIGURE 451.—Distribution of Triodopsis dentifera in North America.
and its associates. It may, however, also extend to higher ground where it grades into a form approaching the smaller form known as var. algonquinensis of Nason. The latter ... usually inhabits the thickets or groves which border the margins of prairie swamps - less frequently entering similar emerging places within the swamp itself.

FIGURE 452.—*Triodopsis multilineata*, magnified; after F. C. Baker (1939a, p. 51).

FIGURE 453.—Distribution of *Triodopsis multilineata* in North America; inset. distribution in Ohio.
General distribution (fig. 453) — Western New York, Ontario, and Minnesota, south to Nebraska, Kansas, Arkansas, Mississippi, Indiana, and Ohio. Pilsbry gave no records for Kentucky, West Virginia, or Tennessee.

Distribution in Ohio (inset, fig. 453).—Sterki (1907a, p. 375) gave "over the state" and Pilsbry repeated the information. Eggleston (ms. records) gave records for Defiance, Ottawa, Erie, Tuscarawas, Franklin, Fairfield, Pickaway, Athens, and Hamilton Counties; the University of Michigan collections contain specimens from Fulton and Auglaize Counties. This leaves large blocks of counties in the northeastern and southeastern parts of the State unaccounted for, but this is probably due to lack of collecting.

Geologic range. — F. C. Baker (1920a, p. 390) gives Aftonian, Yarmouth, Sangamon, Peorian, and "Wabash" for this species. Pleistocene: "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); "Defiance sandy deposit (loess?)" (Sterki, 1907a, p. 402); Castalia marl, late Wisconsin (Sterki, 1920, p. 179); Bignell Loess of northeastern Kansas (A. B. Leonard, 1952, p. 24).

Remarks. — A number of trinomials have been given to ecologic forms of this species by various authors. Pilsbry (1940, p. 848 ff.) noted color mutations (rubra Witter, alba Walker) and ecologic forms (altonensis F. C. Baker, algonquinensis Nason, and chadwicki Ferriss), with a few synonyms), all of which are scarcely entitled to recognition.

Genus Allogona Pilsbry 1939

Allogona La Rocque 1953, Cat. Recent Moll. Canada, p. 308.

Type. — Helix profunda Say.

Diagnosis. — Shell rather large, umbilicate, depressed-globose or strongly depressed, with rounded periphery, smooth embryonic whorls and striate to malleate later sculpture, commonly with minute, impressed spiral lines; rounded aperture with a reflected white perisome, its inner edge generally having a blunt tooth or a low callus in the basocolumellar curve; no other teeth (modified from Pilsbry, 1940, p. 875).

General distribution. — Upper and middle Mississippi, Ohio, and lower Missouri valleys, for the typical subgenus, and Oregon to British Columbia and to western Montana for the subgenus Dysmedoma (Pilsbry, 1940, p. 875).

Geologic range. — Pleistocene to present.

Remarks. — This genus provides another illustration of the complex geologic history of the land snails of North America. Two groups of species, undeniably closely allied because of the nature of their soft parts, are now separated geographically by hundreds of miles.
Type locality.—"Near Cincinnati and at Engineer Cantonment on the Missouri" (Say, quoted by Pilsbry, 1940, p. 877).

Diagnosis.—Shell openly umbilicate, umbilicus about one-fifth the diameter of the shell, depressed, the diameter about twice the height; spire low, rather solid, buff, with a cinnamon band above the periphery, and spiral lines on the base, both of which may be wanting; embryonic shell with a few wrinkles following the smooth tip, after which the whorl is smooth except for quite short striae radiating from the suture; last whorl finely and regularly sculptured with thread-like striae, and rather close spiral impressed lines, which are commonly punctate in places; last whorl rounded, descending but little in front, and somewhat contracted behind the basal lip; aperture lunate, the peristome wide, reflected and thickened within, with a short callus or low tooth projecting within the basal lip.

FIGURE 455.—Distribution of Allogona profunda in North America; inset. distribution in Ohio.
margin; parietal callus thin, plain (modified from Pilsbry, 1940, p. 878).

Ecology. — Lives in deep, chiefly upland, woods, especially on bluffs, but also in prairie groves which suffer the summer drought, where it is usually smaller than the type (condensed from Shimek, quoted by Pilsbry, 1940, p. 879). Its optimum environment may be that of deep woods but the species can accommodate itself to quite different conditions on the islands in Lake Erie. For example, on Kelleys Island, Ohio, it lives on limestone exposures with only sparse cover of second-growth woods. It thrives there, possibly because its moisture requirements are met by the nearness of the lake, its lime requirements are met by the limestone outcrop, and its safety from disturbance by domestic animals, such as pigs and chickens, is pretty well assured.

H. B. Baker (1922b) has collected this species on sandy outwash plains, in pine and second growth; and in hardwoods on moraines with fine hardwood cover, in northern Michigan. The shells from hardwoods were of greater diameter and more flattened than those of sandy outwash plains, where they were more diffusely colored so that in some specimens the stripes were practically obscured.

Solem (1952, Naut. 65, p. 129) has taken the species in the following Wisconsin habitats: a large tract of virgin pine timber with some deciduous growth and undergrowth of thimbleberry; an exceedingly damp area along shore, covered with piles of reeds tossed up during storms; shores of a small freshwater lake on Washington Island, northern end of the Door Peninsula.

Webb (1948, Naut. 61, p. 100) has observed the mating of this species and described the anatomy at copulation.

Associations. — Living: MICHIGAN — 40; OHIO — 2, 3, 5, 7, 12, 23, 43; ONTARIO — 11, 14; WISCONSIN — 140, 141, 142. Fossil: W — 24, 25, 26, 27, 28.

General distribution (fig. 453). — New York (introduced), extreme tip of southwestern Ontario, Michigan, Wisconsin, and Minnesota, south to Iowa, Nebraska, Kansas, Missouri, Mississippi, Alabama, and North Carolina.

Distribution in Ohio. — Scattered over the State, from the islands of Lake Erie to Hamilton, Washington, and Monroe Counties in the south. It has not been recorded from every county but the only blank area on the map is for the north-central part of the State.

Geologic range. — Pleistocene: F. C. Baker (1920a, p. 390) gives Aftonian, Yarmouth, Peorian, and "Wabash." "Old Forest bed of the Ohio River" (Billups, 1920b, p. 51); Middletown "pre-glacial deposits" (Sterki, 1907a, p. 401); "Defiance sandy deposit (loess?)" (Sterki, 1907a, p. 402); Tinkers Creek marl (Sterki, 1920, p. 174); Castalia marl (Sterki, 1920, p. 179); Sangamon? of Indiana (F. C. Baker, 1920b, p. 456).

This snail has been recorded by Sterki (1914, p. 272) as an introduced species in greenhouses at Painesville and Akron. It is most improbable that it will be found as a Pleistocene fossil in Ohio but it...
may turn up from time to time in greenhouses and in their immediate vicinity. For details on the family, subfamily, genus, and species, see Pilsbry (1946, p. 169, 170, 172, and 173). The species is small, about 17 mm. long, with a very slender spire of numerous whorls; in this respect it is proportionately higher and narrower than any Ohio land species and has more whorls (9 to 11) than any of them. See figure 457 for distribution.

Family HAPLOTREMATIDAE
H. B. Baker 1930

Circinariidae Pilsbry 1898, Nautilus, v. 11, p. 127.

FIGURE 457.—Distribution of Subulina octona in North America; inset, distribution in Ohio.
Shell characters for this family are as in the genus *Haplotrema*, below.

Genus *Haplotrema* Aney 1881

Macrocyclus Binney and Bland 1869, Land and fresh water shells N. America, v. 1, p. 53 (non Beck 1837).

Selenites Fischer 1878, in Shuttleworth's Notitiaae Malac., v. 2, p. 8 (non Hope 1840).

Circinaria Beck, Pilsbry 1898, Nautilus, v. 11, p. 127, and of other American authors up to about 1920; not *Circinaria* Beck 1837 as restricted by Hermannsen, 1847.

Haplotrema La Rocque 1953, Cat. Recent Moll. Canada, p. 310.

Type—*Selenites durantii* (Newcomb).

General distribution.—Alaska and southern Canada southward to Lower California.

Geologic range.—Late Pleistocene; Sangamon? of Indiana; Wisconsin of Ohio and Indiana.

Speciation.—The species of the United States and Canada are divided into two subgenera of which one, *Ancotrema*, occurs only in the Pacific Coast area. The typical subgenus, *Haplotrema s.s.*, has two sections, *Haplotrema s.s.*, also western, and *Geomene*, of the eastern United States and Canada, including Ohio. The western species are rather numerous but in the east there is only one species, with two poorly differentiated forms.

Haplotrema concavum (Say) 1821

Fig. 458

Macrocyclus concava Call 1900, Moll. Ind., p. 371, pl. 4, figs. 4, 7.

Circinaria concava Billups 1902, Nautilus, v. 16, p. 51.

Haplotrema concavum Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 269.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 47.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 21, pl. 2, figs. 12, 13.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 310.

FIGURE 458.—*Haplotrema concavum* magnified; after F. C. Baker (1939a, p. 92).

Type locality.—Illinois and Missouri (to "Council bluff").

* Diagnosis.*—Shell depressed, umbilicus broadly open, glossy, some shade of yellow, rather smooth, irregularly striate, some specimens with fine spiral lines; whorls convex, the last well rounded, slightly or not descending in front; aperture rotund-lunate; peristome narrowly expanded in the outer and basal margins, generally brownish or rust tinted; upper margin somewhat straightened or slightly depressed; parietal callus slightly thickened, yellowish (modified from Pilsbry, 1946, p. 208).

Ecology.—This species has long been known to be a carnivore, feeding on other snails. This fact restricts its distribution to areas where snails are abundant, specifically lime-rich areas; it may therefore be described as an indirect calciphile. Oughton (1948, 94 ff.) has recorded it as confined to the Paleozoic terranes in Ontario, in damp woodlands, especially those of deciduous trees. Archer (1935, p. 80) noted its presence in hardwoods, under leaf mold, in the Asheville, North Carolina, region. In Ohio, it is present in all but a few northeastern counties and a few others where the bedrock is mainly shale or sandstone; this may be pure coincidence but it is more likely that it is related to the food requirements of this snail.

Muchmore (1959, Naut. 72, p. 85-88) found the species living under stones in various woodland areas in New York State. Burch (1955, Naut. 69, p. 66) has shown its relationships to soil factors in eastern Virginia. Ingram (1940, Naut. 54, p. 87) has described its daytime activity. He (1941, Naut. 55, p. 14-15) recorded it for a creek floodplain, under stones, near Ithaca. Ingram (1944, Naut. 58, p. 25-27) described its winter habits at Ithaca, in beech-yellow-birch and
sycamore woodlands. Conkin (1957, Naut. 71, p. 11) has collected it in Kentucky from bushy and forested slopes and creek bottoms with highly calcareous soil. In South Carolina, Rehder (1949, Naut. 62, p. 125-126) found it around fallen logs, near a creek; under fallen leaves, and on the bank of a small stream. In North Carolina he (1949, Naur. 62, p. 123) noted that it resists attack by its own kind. He described how living specimens of Stenotrema hurstorum and of Mesodon inflectus were eaten by attack through the aperture of the victims, so that the apertural armature of these two species is occasionally ineffective against the predator. The eggs have been studied by Ingram (1944, p. 94).

In Tennessee, Lutz (1950, Naut. 63, p. 104-105) has found it on rolling hills of hardwood forests. In Virginia (Burch, 1954, Naut. 68, p. 32) it is extremely common wherever the habitat is favorable for other snails. In Maryland (Grimm, 1959, Naut. 72, p. 124) it occurs in quarries, especially marble quarries, and in woods near towns.

This predator is in turn preyed upon by shrews (Blarina) as recorded in New York State by Ingram (1944, Naut. 57, p. 135). The same author (1946, Naut. 59, p. 91) gave the following data from the Huyck Preserve, New York State: "This mollusk was found in all plant associations except in grassy fields and bogs. Individuals were rather sparsely distributed in all areas but the flood plains; here individuals were commonly found concealed beneath water-carried debris piles with Anguispira alternata and Venridens intertextus. Throughout its distributional range on the preserve individuals preferred to seek shelter beneath stick debris piles and logs to humus." Based on field observations, Ingram (1942, Naut. 55, p. 98-102) reported Haplotrema using the following snails as food: Triodopsis albolabris (Say), Triodopsis dentifera (Binney), Mesomphix cupreus (Rafinesque), Zonitoides arbores (Say), and Anguispira alternata (Say).

Associations.—Living: MICHIGAN—1, 2; OHIO—22, 23, 24, 25, 26, 43; ONTARIO—7, 8, 11, 12, 13; QUEBEC—6. Fossil: W—24, 25, 26, 28.

General distribution (fig. 459).—Maine, Quebec, Ontario, and Michigan, west and south to Iowa, Missouri, Arkansas, Mississippi, and Florida.

Distribution in Ohio (inset, fig. 459).—Probably over the State, but records at hand are clustered in the southern two-thirds of the State; the northermost counties recorded are Paulding, Allen, Holmes, and Harrison. This is probably due to lack of collecting, as the species occurs in Michigan and Ontario to the north and the fossil distribution (see below) in the State is much more extensive.

Geologic range.—"Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); Middletown "pre-glacial deposits" (Sterki, 1907a, p. 401); "Defiance sandy deposit (loess?)" (ibid., p. 402); Castalia marl (Sterki, 1920, p. 178, and Clark, 1961, p. 25). Sangamon? of Indiana (F. C. Baker 1920b, p. 456). Sangamon, Peoria, and "Wabash" (Baker, 1920a, p. 389).

Family ZONITIDAE

Diagnosis.—Shell spiral, partly or wholly external, generally helicoid but varying from discoidal to conic, umbilicate or rarely imperforate, the aperture with thin, unexpanded lip; foot with conspicuous pedal furrows, commonly with a mucous pit at their caudal meeting; sole either tripartite or uniform (condensed from Pilsbry, 1946, p. 233).

Subdivisions.—Pilsbry (1946, p. 233) accepts four subfamilies, Euconulinae, Zonitinae, Gastrodonrinae, and Vitrininae, of which the first three are represented in the Ohio fauna and the last may eventually be added to our catalogue.

Remarks.—The shell form in this family is extremely variable and it is easier to identify species and genera than suprageneric categories. In specimens with the soft parts preserved, the characteristics of the family are easily ascertained but valid identifications can nevertheless be made without them. In general, the zonitid shell is remarkable for its thinness, its shining surface, and its relatively wide umbilicus. There are exceptions to all three of these statements in the genera and species of the Ohio fauna and it is therefore simpler for the worker on Pleistocene land snails to identify his material to species and accept the suprageneric classification on the basis of previous malacological work, which is well established thanks to the work of Pilsbry (1946, p. 233 ff.) and H. B. Baker (several papers, mentioned under individual genera and species).

Subfamily EUCONULINAE H. B. Baker 1928

Diagnosis.—Small or minute zonitid snails with conic or biconvex narrowly perforate shells of slowly
increasing whorls. Diagnostic characters of the subfamily are those of the radula and genital system.

Subdivision.—Two genera occur in North America north of Mexico and both of them are represented in the Ohio fauna. They are Euconulus and Guppya, whose animals are distinguishable by the rather unusual feature of Guppya, a little horn on the tail over the meeting of the pedal furrows, a feature which is not present in Euconulus. The shells are also distinguishable; that of Euconulus has close microscopic axial striation whereas that of Guppya has no axial striation.

Genus Euconulus Reinhardt 1883

Arnouldia Bourguignat 1890, Bull. Soc. Malac. France,
TERRESTRIAL GASTROPODA

Euconulus La Rocque 1953, Cat. Recent Moll. Canada, p. 311.

Type.—*Euconulus fulvus* (Müller).

Diagnosis.—Shell very small, minutely or scarcely perforate, conic, or convexly conic, thin, fragile, of 5½ to 7 convex, closely coiled whorls, the last angular. In the neanic stage, subangular or rounded in the adult; apparently smooth, but having a microscopic sculpture of close, regular vertical striae; aperture crescentic or lunate; lip thin, its insertions widely separated (Pilsbry, 1946, p. 234).

General distribution.—Holarctic realm generally; common in high latitudes (Pilsbry, 1946).

Geologic range.—Widespread in the Pleistocene. Recorded for the Tertiary but the species have been referred to other genera.

Euconulus fulvus (Müller) 1774

FIG. 460.—*Euconulus fulvus* magnified; after Walker (1928, p. 93, fig. 128).

Zonites (Conulus) fulvus Call 1900, Moll. Ind., p. 376, pl. 4, fig. 2.

Euconulus trochiformis Dall 1905, Harriman-Alaska Exped., v. 13, p. 40, fig. 28.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 18.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 22, pl. 3, fig. 17.

Euconulus fulvus fulvus La Rocque 1953, Cat. Recent Moll. Canada, p. 311.

?*Euconulus* sp. La Rocque and Forsyth 1957, Sidney Cut, p. 85 ff.

Type locality.—Fridrichsdal, Denmark.

Diagnosis.—Shell thin, minutely perforate or closed, conic, cinnamon or dilute tawny, the summit paler; spire conic with slightly convex outlines and obtuse apex, the periphery rounded or weakly angular, base convex; surface glossy, with close microscopic striae along lines of growth, and faint spiral striae; aperture lunate; peristome thin, dilated near the colurum; insertion modified from Pilsbry, 1946, p. 236.

Ecology.—Found among damp leaves in well-shaded places, especially under hardwood trees; in damp wood and bark chips; under damp started bark and logs. The small size of the species makes it inconspicuous but its true abundance is revealed when leaf mold is sifted. It is also common in stream drift derived from suitable habitats.

Taylor summarized the habitat as: wooded area, in leaf litter or under logs and bark in wooded spots; woodland habitat, in moist, protected spots among plant debris in wooded area, or associated with dead wood on the floodplain. Oughton (1948, p. 94 ff.) found it in both damp and drier, more open woods or fields, especially woodlands of deciduous trees, but he also found it occasionally in *Sphagnum* bogs in Ontario. H. B. Baker (1922b) listed it for Dickinson County, Michigan, in the following habitats: (36) outcrop of Quinnesec schist, in dead leaves and humus, collected in hollows of the rocks, thickly overgrown with bearberries and scattered hardwoods and conifers; (40) virgin hardwoods of the Menominee Trough; (41) hardwood covered moraine ridges; snails particularly in maple logs; (46) clearing near Foster City, in and around old stumps and logs; one of the drier alluvial habitats; (47) floodplain of Hancock Creek, about 2 feet above July water level; (48) floodplain of Menominee River, with brush of tag alders, dogwoods, hazels, and small ashes.

Muchmore (1959, Naut. 72, p. 85-88) found it under
stones in various woodland areas in New York State. Wayne (1959b, p. 92) recorded it beneath trunks of fallen spruce trees, pieces of paper, and cardboard from water level at the margins of tundra pools to about 3 meters above the water on a dry slope at Churchill, Manitoba. In Ontario, Lindeborg (1949, Naut. 62, p. 129) collected it mostly under logs but also from moss on trees after a rain. In Virginia, Hubricht (1953, Naut. 67, p. 23) found it only on bluffs along the Roanoke River.

Ingram (1946, Naut. 59, p. 90) gathered the following data in the Huyck Preserve, in New York State: "This small mollusk was occasionally found beneath maple humus, and beneath old boards on the banks of Myosotis lake."

Associations.—Living: MANITOBA-39; MICHIGAN-1, 9; MINNESOTA-1, 2, 4, 5, 7; OHIO-43; ONTARIO-7, 8, 10; WISCONSIN-140, 141, 143. Fossil: K-2, 6, 8, 12, 13, 14, 15, 17, 19, 20, 21, 24; Y-1; 1-5; S-1, 2, 3, 4, 7; W-2, 4, 5, 6, 9, 10, 12, 15, 16,

FIGURE 461.—Distribution of Euconulus fulvus in North America; inset, distribution in Ohio.
TERRESTRIAL GASTROPODA

17, 19, 20, 21, 22, 28, 56, 57, 58, 60, 61, 62, 64, 65, 66, 67, 69, 73.

General distribution (fig. 461).—"Almost throughout the Holarctic realm, but wanting in the Gulf and South Atlantic States from Texas to North Carolina" (Pilsbry, 1946, p. 236).

Distribution in Ohio (inset, fig. 461).—"Over the state" (Sterki, 1907a, p. 374). Records from several sources substantiate Sterki’s statement except for the northeastern part of the State but this may be due more to lack of collecting than to actual absence.

Geologic range.—"Middle Pliocene, Montpellier, France" (Pilsbry, 1946, p. 236). In North America, Yarmouth to Recent (A. B. Leonard, 1950, p. 37); Sappa silts, Peoria loess to Recent (Leonard, 1952, p. 19); Illinoian and Wisconsin of Kansas (Leonard and Frye, 1943, p. 457); pro-Kansan loess of Indiana (Wayne, 1954, p. 1320); Hibbard and Taylor restrict the geologic range to "middle Pleistocene (Kansan)"; Sangamon, Farmdale? loess, lower and upper pro-Tazewell loess of the Cleveland region, Ohio (Leonard, 1953, p. 372); late Wisconsin Castalia marl (Sterki, 1920, p. 178). Mowery (1961, p. 11) has recorded it for the Jewell Hill deposit and Clark (1961, p. 25) for the Castalia deposit, both in Ohio.

Euconulus chersinus (Say) 1821
Fig. 462

--- Pilsbry 1946, Land Moll. N. America, v. 2, pt. 1, p. 239, fig. 119a, b.

--- Oughton 1948, Zoögeogr. study, Ontario, p. 16.

--- La Rocque 1953, Cat. Recent Moll. Canada, p. 311.

Type locality.—Sea Islands of Georgia.

Diagnosis.—Shell subglobose-conic, pale yellowish-white, pellucid, convex beneath; volutions about six, wrinkles not distinct; spire convex-elevated; suture moderate; body whorl slightly carinate on the periphery; aperture nearly transverse; lip simple, sharp, um-}

blicitus closed.

Ecology.—In Ontario, Oughton (1948, p. 94 ff.) found this species in damp woodlands, especially those of deciduous trees, but also in drier, more open woods and fields. In North Carolina, Archer (1935, p. 80) listed it from hardwoods, under logs, and in leaf mold in the oak-hickory woods near the top of Sunset Mountain.

[Figure 462.—Euconulus chersinus, magnified; after F. C. Baker (1939a, p. 76, upper figs.).]

Burch (1955, Naut. 69, p. 66) has shown the relationships of this species to soil factors in eastern Virginia. Teskey (1955, Naut. 69, p. 70-71) has collected it in the Warm Springs, Georgia, area, in the following habitats: Cascade Falls, leaf mold on loose shale, and Dowdell’s Knob, scenic lookout, outcrop of granite boulders on mountain top, with an occasional rotting log. In Virginia, Hubricht (1953, Naut. 67, p. 23) found it generally distributed over Pittsylvania County, in upland oak woods. The variety dentata is also generally distributed over the county, but prefers drier situations than the typical form.

General distribution (fig. 463).—"Florida to littoral New Jersey, west to Illinois and Louisiana" (Pilsbry, 1946, p. 240); reported from Ontario, Quebec, New York, but possibly not the typical form.

Distribution in Ohio (inset, fig. 463).—Sterki (1907a, p. 379) gave "over the state" but the records appear to be for the eastern and southwestern part only, although this may be due to lack of collecting.

Geologic range.—F. C. Baker (1920a, p. 389) gave only "Wabash" (late Wisconsin). Doubtfully from pro-Kansan loess in Indiana (Wayne, 1954, p. 1320); late Wisconsin Castalia marl, Ohio (Sterki, 1920, p. 178).

Remarks.—There is some intergradation between typical E. chersinus and E. chersinus polygynus, a factor which led Pilsbry at one time to consider the subspecies invalid, but in his latest revision (1946, p. 241) he recognized it and gave it for a much wider range than for the typical form.
Euconulus chersinus polygyratus (Pilsbry) 1899
Fig. 464

(anatomy).

--- --- --- Oughton 1948, Zoögeogr. study, Ontario, p. 17.

FIGURE 463.—Distribution of Euconulus chersinus in North America; inset, distribution in Ohio.

FIGURE 464.—Euconulus chersinus polygyratus, magnified; after F. C. Baker (1939a, p. 76, lower fig.).

Type locality.—Grand Rapids, Michigan.

Diagnosis.—Shell with more strongly convex whorls than the typical form, the last with sharply angular periphery in immature shells, but becoming rounded in full-grown specimens; aperture narrowly lunate, the basal margin well curved (condensed from Pilsbry, 1946, p. 240).

Ecology.—H. B. Baker (1922b) listed this species as numerous locally in Dickinson County, Michigan, in hardwoods, specifically from the following three habitats: (39) young hardwoods, in small hollow between two granitic ridges; partially burned, some low-growing plants; (41) hardwood covered moraine ridges, snails particularly in maple logs; (43) arbor vitae swamp, in a swampy thicket near the mouth of a small creek, with arbor vitae and deciduous trees. On Mackinac Island, Archer (1934c, p. 138) found it rather common in hardwood tracts in the interior of the island.

Associations.—Living: MICHIGAN - 40.

General distribution (fig. 465).—Ontario and Maine, west in the northern tier of states to Wisconsin and to northern Ontario and Saskatchewan.

Distribution in Ohio.—No record, but implied by the general range.

Geologic range.—F. C. Baker (1920a, p. 389) recorded the species for beds of "Wabash" (late Wisconsin) age.

Genus Guppya Mörch 1867

Type.—Guppya gundlachi (Pfeiffer).

Diagnosis.—Shell similar to that of Euconulus with a somewhat lower spire; the initial whorl or all the whorls either spirally striate or smooth, but without the crowded microscopic threadlike axial striae of Euconulus.

General distribution.—Tropical and subtropical America, a single species north to New York and Ohio.

Geologic range.—Unknown.

Guppya stercki (Dall) 1888

Euconulus stercki Oughton 1948, Zoögeogr. study, Ontario, p. 20.

Guppya stercki La Rocque 1953, Cat. Recent Moll. Canada, p. 312.

Type locality.—New Philadelphia, Ohio.

Diagnosis.—"Shell minute, thin, yellowish translucent, brilliant, lines of growth hardly noticeable, spire depressed, four-whorled, whorls rounded, base flattened, somewhat excavated about the center, which is imperfect; aperture wide, hardly oblique, not very high, semilunate, sharp-edged, the upper part of the columella slightly reflected; upper surface of the whorls roundish, though the spire as a whole is depressed. Alt. 0.52 mm., diameter maj. 1.1 mm." (Dall). Pilsbry (1946, p. 245) noted that the original figure shows only 3½ whorls and that this is the number of whorls in other specimens.

Ecology.—Found on grassy slopes with moss and small bushes; most collections are from sifted leaves or stream drift, which gives little indication of the habitat of the species. In Ontario, Oughton (1948, p. 94 ff.) recorded this as a species of damp woodlands, especially those of deciduous trees. He also noted that it is confined to Paleozoic terranes there, which marks it as a calciphile, since the Paleozoic rocks of Ontario are mainly limestones.

Distribution in Ohio (inset, fig. 467).—Two records only (Sterki, 1907a, p. 375, repeated by Pilsbry, 1946) for Hudson, Summit County, and the type locality,
Tuscarawas County.

Geologic range.—F. C. Baker (1920a, p. 389) gave only "Wabash" (late Wisconsin). It is very probable that this species does not occur in the Pleistocene of Ohio. Sterki collected and identified material from a number of Pleistocene deposits in Ohio and in one case, that of the Castalia marl, he found a large and varied assemblage of land snails, including minute species. He, of all people, would have found and recognized, even in the fossil state, a snail which he had been the first to collect and which had been named after him. These facts suggest that Guppya sterki originated in the southeastern United States and that it migrated northward during Pleistocene time, very possibly not reaching the glaciated areas until after the retreat of the Wisconsin ice. On the other hand, its advance must have been fairly rapid as it has been found in "postglacial deposits at Leaside, York County," Ontario, Canada, by Oughton (1948, p. 29).

FIGURE 465.—Distribution of Euconulus chersinus polygyratus in North America.
Subfamily ZONITINAE

Diagnosis. — Shell depressed, heliciform, in some genera toothed; caudal pit when present not overhung by a prominence or "horn"; mantle without lobes reflexed over the shell; marginal teeth of radula unicuspid; no dart apparatus, and spermathecal duct not forked anteriorly (Pilsbry, 1946).

FIGURE 466.—Guppya sterki, magnified; after Walker (1928, p. 94, fig. 129).

FIGURE 467.—Distribution of Guppya sterki, in North America; inset, distribution in Ohio.
Subdivisions.—The North American fauna includes eight genera of which one, *Oxychilus*, is introduced from Europe. Four of these, including *Oxychilus*, are represented in the living molluscan fauna of Ohio but only the three native genera are to be expected in the Pleistocene fauna of the State.

Genus *Oxychilus* Fitzinger 1833

Polita Held 1837, Isis, v. 30, p. 916.

Eubyalina Albers 1857, Malak. Bl., v. 4, p. 91.

Type.—*Helix cellaria* Müller.

Diagnosis.—Shell of medium or small size (diameter 5 to 16 mm. in our species), depressed, biconvex, umbilicate, the umbilicus contained 5 or 6 times in the diameter (in our species); thin, translucent, glossy, of 4 to 6 whorls increasing moderately to the last, which is much wider.

General distribution.—Europe, Asia Minor, and North Africa. In America, from seaports and from greenhouses and their vicinity.

Geologic range.—None in North America.

Remarks.—The only reason for mentioning the three species of this genus recorded for Ohio in a report on Pleistocene Mollusca is that their shells can accidentally become incorporated into a Pleistocene deposit in two different ways. Where these snails live on the surface above a marl or peat deposit, they are likely to burrow into the soil, in the summer to avoid desiccation, in the winter to hibernate at depths sufficient to protect them from excessive variations of temperature. Many of the individuals that burrow thus into the ground die there and their shells are incorporated into a deposit accumulated centuries or even millennia earlier. They may be incorporated into a Pleistocene deposit in another way. Where such a deposit is cut into by a stream, slumping occurs frequently and on a scale sufficient to disturb the sequence of beds. Snails living on the surface of the slumped area may fall into the numerous cracks produced by the slumping and as the material sifts into the cracks the snails are buried at a level totally out of sequence. So far, species of *Oxychilus* have not been reported in Pleistocene deposits in Ohio or elsewhere in North America but if they should be found, as they may well be, their presence should cause neither surprise nor the construction of elaborate hypotheses based on previous migration of these species into North America.

For the reasons just given, the treatment of these species is not as extensive as that of native species, but enough information is given to enable the reader to refer to complete discussions elsewhere.

Oxychilus cellarius (Müller) 1774

Fig. 468

Oxychilus cellaria Oughton 1948, Zoögeogr. study, Ontario, p. 23.

Oxychilus cellaria La Rocque 1953, Cat. Recent Moll. Canada, p. 312.

FIGURE 468.—*Oxychilus cellaria*, magnified; after F. C. Baker (1939a, p. 140, top fig.).

Type locality.—Wine cellars of Copenhagen, Denmark.

Diagnosis.—Shell strongly depressed, narrowly umbilicate, umbilicus about one-sixth of the diameter; imperfectly transparent, clear cremeous with a faint amber or yellowish tint above, more or less distinctly whitish around the umbilicus; smooth, very glossy, with some weak striation, and under the microscope showing faintly to distinctly traced close spiral lines; spire slightly convex; suture conspicuous, with a narrow transparent margin; aperture rather deeply lunate; diameter about 10 mm. (modified from Pilsbry, 1946, p. 249).

Ecology.—In Nova Scotia, Dimelow (1962, Naut. 76, p. 49) found this species in a climax deciduous forest on a gentle, well-drained slope. A more typical habitat is recorded by Hubricht (1953, Naut. 67, p. 23) on a cellar wall in Danville, Virginia.

General distribution (fig. 469).—Europe, Asia Minor, and North Africa. Introduced at many places in North...
America, in and around greenhouses, always in populated areas.

Oxychilus drapamaldi (Beck) 1837
Fig. 470

Helicella drapamaldi Beck 1837, Index Moll., p. 6, substitute for H. nitida Drap.

Oxychilus lucidum of authors.

FIGURE 469.—Distribution of Oxychilus cellarus in North America; inset, distribution in Ohio.
Oxychilus draparnaldi La Rocque 1953, Cat. Recent Moll. Canada, p. 312.

FIGURE 470.—Oxychilus draparnaldi, magnified; after Burch (1960, pl. II, fig. H).

Type locality.—Not specified.

Diagnosis.—Shell strongly depressed, convex above, umbilicate, the umbilicus one-sixth of the diameter; somewhat transparent, glossy, pale brown above, much paler beneath; of 5½ moderately convex whorls, the last very much wider; aperture strongly oblique, deeply lunate; lip thin; diameter 12 to 16 mm. (modified from Pilsbry, 1946, p. 250).

Ecology.—Grimm (1959, Naut. 72, p. 124) has found this species under debris near railroad tracks at a bridge in Maryland.

General distribution (fig. 471).—Europe and adjacent parts of Asia; North Africa. Introduced in North America, in greenhouses and in populated areas.

Oxychilus alliarius (Miller) 1822

— La Rocque 1953, Cat. Recent Moll. Canada, p. 312.

Type locality.—Environns of Bristol, England.

Diagnosis.—Shell depressed-convex above, whorls 4 to 4½, semitransparent, glossy, smooth, with faint but regular axial striations, most pronounced at the sutures; umbilicus small; aperture crescentic and somewhat oblique with a thin and sharp peristome; diameter about 6 mm., about half that of the other two species.

General distribution (fig. 472).—Central and western Europe. Introduced at many places in the United States and southern Canada, including Ohio. The introductions are in and around greenhouses, in vegetable gardens, and in populated areas.

Genus Retinella "Shuttleworth" Fischer 1877

Retinella (Shuttleworth MS.) Fischer 1877, Notit. Malac., v. 2, p. 5.
Aegopina Kobelt 1878, Rossmannsler's Iconogr., v. 6, p. 15.
Glyphognomon H. B. Baker 1930, ibid.

Type.—Hyalina olivetorum (Gmelin).

Diagnosis.—Shell (in our species) small (diameter about 3.5 to 13 mm.), depressed, thin, subtransparent, clear to amber tinted, umbilicate or imperforate; with very low spire and smooth apical whorl; aperture lunate, the lip thin.

General distribution.—Arctic to southern Mexico, but chiefly in and around the Appalachian region. Also numerous Palearctic species.

Geologic range.—Pleistocene; Aftonian to present.

Retinella indentata (Say) 1823

Fig. 473

Retinella indentata Oughton 1948, Zoogeogr. study, Ontario, p. 27.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 23, pl. 2, figs. 18, 19.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 313.

Type locality. — "Harrigate and New Jersey."

Diagnosis. — Shell depressed, pellucid, highly polished; whorls four, with regular, distant, subequidistant, impressed axial striae continuous to the umbilicus; aperture rather large; lip simple; umbilicus very small, one twenty-fifth to one thirtieth the diameter (modified from Say, quoted by Pilsbry, 1946, p. 289).

Ecology. — In Ontario, Oughton (1948, p. 94 ff.)

FIGURE 471.—Distribution of Oxychilus drapamaldi in North America; inset, distribution in Ohio.
found this species in damp woodlands, especially those of deciduous trees. H. B. Baker (1922b) gave the following details for localities in Dickinson County, Michigan: (37) outcrop of Sturgeon quartzite, cliffs along a creek, among scattered hardwoods and plants; (39) on sandy outwash plains, in pine and second growth; (48) in a damp hollow on the floodplain of the Menominee River, with brush of tag alders, dogwoods, hazels, and small ashes. Solem (1952, Naut. 65, p. 129) found it in virgin pine timber with some deciduous growth and undergrowth of thimbleberry in Wisconsin. Burch (1955, Naut. 69, p. 66) gave details on the relationships of this species to soil factors in eastern Virginia. Teskey (1955, Naut. 69, p. 70-71) found it in leaf mold on loose shale in the Warm Springs area of Georgia. Grimm (1959, Naut. 72, p. 124) recorded it for quarries, railroad tracks, foundations of old buildings, and under pieces of wood and wet sandstone in fields.

FIGURE 472.—Distribution of *Oxychilus alliarius* in North America; inset, distribution in Ohio.
in Maryland.

Associations.—Living: MICHIGAN- 1, 3, 4, 9, 21, 25, 26, 27, 28, 29, 32, 33; OHIO -1, 4, 43; ONTARIO- 10; WISCONSIN -140. Fossil: W -26, 27, 28, 56, 57, 58, 59, 73. R. indentata paucilirata, living: OHIO -22.

General distribution (fig. 474).—Maine, Ontario, and Michigan, west to Kansas; south to Alabama, Tennessee, West Virginia, Virginia, and New Jersey.

Distribution in Ohio (inset, fig. 474).—“Over the state” (Sterki, 1907a, p. 374). This is probably correct,
but records (University of Michigan, Eggleston) are concentrated in the western and southern parts of the State. The northeasternmost records are for Stark and Tuscarawas Counties.

Geologic range.—F. C. Baker (1920a, p. 389) gave Yarmouth, Sangamon, Peorian, and "Wabash." "Defiance sandy deposit (loess?)" (Sterki, 1907a, p. 402); Tinkers Creek marl (Sterki, 1920, p. 174); Castalia marl (ibid., p. 178); Sangamon? of Indiana (F. C. Baker, 1920b, p. 455).

Retinella wheatleyi (Bland) 1883

Fig. 475

Hyalina wheatleyi Sterki 1907, Ohio Acad. Sci. Proc., v. 4, p. 374.

Vitreus wheatleyi Sterki 1920, Ohio Jour. Sci., v. 20, p. 178.

Retinella (Glyphybalus) wheatleyi Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 271.

--- --- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 313.

--- --- --- --- Figures 475.—*Retinella wheatleyi*, magnified; after F. C. Baker (1939a, p. 70, fig. B).

Type locality.—The Cliffs, Knoxville, Tennessee.

Diagnosis.—Shell umbilicate, depressed, thin, shining, pellucid, brownish, horn-colored, finely striated; spire depressed, suture slightly impressed; aperture obliquely lunate; peristome thin, acute, the margins joined by a thin callus (modified from Bland, quoted by Pillsby, 1946, p. 272).

Ecology.—"Even in the spring, it was rare except in a shallow valley on the west-facing (more humid) slope of the ridge, where one or two individuals per square meter were obtained under the decaying leaves in the oak-chestnut woods" (H. B. Baker, quoted in Pillsby, 1946, p. 273).

General distribution (fig. 476).—Rhode Island west to Michigan and Missouri, south to Arkansas, Alabama, and North Carolina.

Distribution in Ohio (inset, fig. 476).—Probably over the State. Sterki (1907a, p. 374) gave only Tuscarawas, Cuyahoga, and Portage Counties; Pillsby (1946, p. 272) added several counties in the southern part of the State; and Eggleston (ms. records) had the species from Wood, Logan, and Washington Counties.

Retinella rhoadsi (Pillsby) 1899

Fig. 477

Retinella (Glyphybalops) rhoadsi Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 271.

--- --- --- Oughton 1948, Zoögeogr. study, Ontario, p. 28.

--- --- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 313.

Type locality.—White Pond, Warren County, New Jersey.

Diagnosis.—Shell similar to that of *R. indentata* but differing in having a wider umbilicus, about one-half mm. wide, showing the penultimate whorl within; axial grooves more numerous, therefore closer (modified from Pillsby, 1946, p. 286).

Ecology.—"Uncertain; presumably similar to that of *R. wheatleyi*" (D. W. Taylor, 1960, p. 81). In Ontario, this species lives in damp woodlands, especially those of deciduous trees, but is occasionally found in *Sphagnum* bogs, according to Oughton (1948, p. 94 ff.). In Dickinson County, Michigan, H. B. Baker (1922b) found it in the following habitats: (22) near the edge
of a patch of hardwoods north of Norway, a small, swampy spring forms the head of a small brook flowing into Pine Creek; swampy banks with sedges and a few blue flags; (37) outcrop of Sturgeon quartzite: cliffs along Fern Creek, scattered hardwoods and plants; (41) higher moraines with fine hardwood cover, snails particularly in maple logs. Burch (1955, Naut. 69, p. 66) gave details of the relationships of this species to soil factors in eastern Virginia. Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. In Maryland, Grimm (1959, Naut. 72, p. 124) collected it in leaf litter along railroad tracks and in a marble quarry.

FIGURE 476.—Distribution of *Retinella wheatleyi* in North America; inset, distribution in Ohio.
Distribution in Ohio (inset, fig. 478).—The presence of this species in Ohio is implied by the range given by Pilsbry but so far I have no records for the State except as a fossil.

FIGURE 477.—Retinella rhoadsi, magnified; after F. C. Baker (1939a, p. 70, fig. C).

FIGURE 478.—Distribution of Retinella rhoadsi in North America; inset, distribution in Ohio.
Genus Nesovitrea C. M. Cooke 1921

Type.—Helix pauxilla Gould 1852.

Diagnosis.—Generic characters distinguishing this from Retinella are in the soft parts of the animal. Fossil shells are almost identical, except for specific characteristics.

General distribution.—Holarctic and Hawaiian Islands.

Geologic range.—Late Pliocene to present.

Remarks.—As understood by Forcart (1957, p. 108-110) this genus is divided into two subgenera, Nesovitrea s.s. and Perpolita. We are concerned here only with the latter.

Subgenus Perpolita H. B. Baker 1928

Type.—Helix hammonis Ström.

Diagnosis.—“Shell sculpture of growth-wrinkles is nearly uniform, without more widely spaced deeper grooves” (Pilsbry, 1946, p. 256).

General distribution.—Holarctic.

Geologic range.—Late Pliocene to present.

Nesovitrea electrina (Gould) 1841

Pl. 16, figs. 13, 15, 18

Retinella electrina Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 23, pl. 3, figs. 8, 9.

— — La Rocque 1953, Cat. Recent Moll. Canada, p. 313.

Type locality.—Borders of Fresh Pond, Cambridge, Massachusetts.

Diagnosis.—Shell deeply umbilicate, umbilicus about one-sixth the total diameter of the shell; transparent, with a faint yellow or green tint; glossy; sculpture of crowded radial grooves, wanting on the first whorl, and not reaching the base, which is smooth except for some faint growth wrinkles; microscopic spiral striation wanting or very weak; whorls 3/4 to 4/5 the last convex below; aperture rotund-lunate (modified from Pilsbry, 1946, p. 257).

Ecology.—Taylor (1960) summarized as follows: wooded area, in leaf litter or under logs and bark in wooded spots; woodland habitat, in moist, protected spots among plant debris in wooded area, or associated with dead wood on the floodplain. Oughton (1948, p. 94 ff.) gave: wet locations, abundant in stream drift; margins of ponds, streams, marshes, seeping hillsides, and sandy flats that receive water by percolation. H. B. Baker (1922b) noted that it is most abundant in wet places and lists the following: (22) hardwood spring; near the edge of a patch of hardwoods north of Norway a small swampy spring forms the head of a small brook flowing into Pine Creek; swampy banks with sedge and a few blue flags; (40) virgin hardwoods of Menominee trough; (41) hardwoods on high moraines with fine hardwood cover, particularly in maple logs; (45) alder swamp: tag alder, dogwoods, and a few maples and ash with scanty undergrowth; (46) in and around old stumps and logs in one of the drier alluvial habitats, a clearing near Foster City; (47) stream flats, Hancock Creek, about 2 feet above July water level; (48) Menominee River floodplain, with brush of tag alders, dogwoods,
"Retinella electrina is an inhabitant of woodlands where it lives in decaying leaves, beneath loosened bark on dead trees and under sticks and fallen logs. It is frequently associated with another woodland snail (Zonitoides arboreus) of similar size and superficial appearance. *R. electrina* is common in the woodlands of eastern Kansas, where the annual rainfall is generally more than 35 inches but it declines in frequency of occurrence toward the more arid Plains Border province, and is unknown in the Plains province, even where timber is locally available" (Leonard, 1950, p. 37). Taylor (1960, p. 80) quotes the above and adds: "In northern Nebraska it was found only under dead wood or among leaves on damp ground close to running water."

Associations.—Living: MICHIGAN-20, 25, 26, 27, 33, 34; OHIO-4, 26, 43; ONTARIO-7, 8, 10, 14; WIS-
CONSIDER - 139, 141, 143. Fossil: P - 3; N - 2; K - 2, 6, 9, 13, 14, 15, 18, 19, 20, 21, 23, 24, 26, 27; Y - 1; I - 3, 5; S - 1, 2, 3, 4; W - 2, 4, 5, 6, 12, 63, 64, 65, 67, 73.

General distribution (fig. 479).—Labrador and Newfoundland west to Alaska; south to Washington, Arizona, New Mexico, Kansas, Missouri, Illinois, Indiana, Ohio, Virginia, and New Jersey.

Distribution in Ohio (inset, fig. 479).—Sterki (1907a, p. 374) gives "over the state," which is probably correct. Available records (University of Michigan collections, Eggleston, ms. records) are concentrated in the northwestern two-thirds of the State. So far, except for Ashtabula County, I have no records northeast of Lorain, Medina, Summit, Stark, Carroll, Harrison, Belmont, and Monroe Counties.

Nesovitrea binneyana (Morse) 1864

Fig. 480

Hyalina binneyana Morse 1864, Portland Soc. Nat. History Jour., v. 1, p. 13, 61, figs. 25, 26; pl. 2, fig. 9, pl. 6, fig. 27.

Vitrea binneyana Dall 1905, Harriman-Alaska Exped., v. 13, p. 39, fig. 27.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 25.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 23, pl. 3, figs. 12, 13.

--- --- La Rocque 1953a, Cat. Recent Moll. Canada, p. 312.

Type locality.—Southern Maine.

Diagnosis.—Shell thin, pellucid, nearly colorless, composed of nearly four whorls gradually enlarging; spire slightly elevated; aperture well rounded; umbilicus showing all the volutions; periostracum slightly wrinkled by axial striae, some of them stronger than the others (modified from Morse, 1864).

Ecology.—Found in damp woodlands, especially those of deciduous trees, but also occasionally in Sphagnetum bogs, according to Oughton (1948, p. 94 ff.). H. B. Baker (1922b) found it in and around old stumps and logs in one of the drier alluvial habitats studied by him in Dickinson County, Michigan. Lindegard (1949, Naut. 62, p. 130) found it mainly under logs and stumps and once from moss on a tree trunk and on ferns after rain, in Ontario.

Associations.—Living: MICHIGAN-1, 40; MINNESOTA-1, 2, 3, 4, 5, 7; ONTARIO-7. Fossil: W-56, 57, 58, 59. N. binneyana occidentalis, fossil: W-24? General distribution (fig. 481).—Quebec (Magdalen Islands) west to western Ontario, south to Michigan, Ohio, Pennsylvania, New York, and Maine. The distribution is peculiar in that there are no records for Vermont and New Hampshire on the east or for Wisconsin in the western part of its range. Perhaps this is due to lack of collecting but, if not, some geologic factor may be involved.

Distribution in Ohio (inset, fig. 481).—Tuscarawas County is the only locality accepted by Pillsby (1946, p. 261); Sterki (1907a) also gave Hamilton County.

Geologic range.—Clark (1961, p. 25) has identified this species for the Castalia deposit, Ohio. Mowery (1961, p. 12) has recorded it for the Jewell Hill deposit, also in Ohio.

Genus Mesombphix Rafinesque 1819

Mesombphix Rafinesque 1818, Am. Monthly Mag., v. 4, p. 107, no description.

Micromphix Pillsby 1911, ibid.

Mesombphix La Rocque 1953, Cat. Recent Moll. Canada, p. 313.
Type.—Helix laevigata Rafinesque non Linnaeus
=Mesomphix vulgatus H. B. Baker 1933.

Diagnosis.—Shell of medium to large size, perforate or umbilicate, heliciform, with flat to low-conoidal spire, of 4½ to 5 whorls, the last ample; opaque, of green, yellow, or brown color; 1½ embryonic whorls either smooth or radially striate; aperture lunate, peristome thin and simple.

General distribution.—Eastern North America from Ontario to Guatemala, in regions of moderate or high humidity, with deciduous forest.

Geologic range.—Doubtfully recorded from the Miocene and Oligocene (Henderson, 1935, p. 156).

Mesomphix inornatus (Say) 1821
Fig. 482

Zonites inornatus Call 1900, Moll. Ind., p. 375, pl. 4.

FIGURE 481.—Distribution of Nesovitrea binneyana in North America; inset, distribution in Ohio.
Mesophris inornata Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 270.
Mesophris inornatus Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 26, pl. 2, figs. 8, 9.
--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 314.

FIGURE 482.—Mesophris inornatus, magnified; after Call (1900, pl. 4, fig. 14).

Type locality.—Pennsylvania.

Diagnosis.—Shell perforate, depressed, with low, convex spire; olive to buff, glossy; weakly sculptured with low, inconspicuous axial striae and very minute papillae in close spiral series or along faint spiral striae; whorls about 5, the last double the width of the preceding, convex below, excavated around the umbilicus; aperture round-lunate, lined with a white callus; lip thin, the columellar termination abruptly dilated close to the umbilicus (modified from Pilsbry, 1946, p. 307).

Ecology.—This is a species of damp woodlands, especially those of deciduous trees, according to Oughton (1948, p. 94 ff.), but it is confined to Paleozoic terranes, mainly limestones, in Ontario (Oughton, 1948, p. 89). Muchmore (1959, Naut. 72, p. 85-88) has found it under stones in various woodland areas in New York State.

Ingram (1946, Naut. 59, p. 90) gives the following data: "Individuals were obvious because of their rarity. They were found on the forest floor in maple and beech-hemlock areas. Only half a dozen were collected." These observations apply to the Huyck Preserve, in New York State.

Associations.—Living: OHIO-22; ONTARIO-8.

General distribution (fig. 483).—Vermont, Quebec, and Ontario, south to Indiana, Kentucky, Virginia, Maryland, New Jersey, and Massachusetts. Not certainly known for Michigan, all records considered erroneous by Winslow (1926, p. 2).

Distribution in Ohio (inset, fig. 483).—"Cincinnati; Columbus; Portage Co. (Streator); Cuyahoga Co. (Allen); Akron (Walker); probably most parts of the state, but e.g. not found in Tuscarawas Co." (Sterki, 1907a, p. 374). Further records available (Wurtz, 1949, Eggleston, ms. records) are concentrated in the southeastern two-thirds of the State, the limital counties Hamilton, Franklin, Cuyahoga, and Ashtabula, but the species is not recorded for many counties southeast of a line joining these counties. Its absence (subject to correction if further collecting reveals it there) in the northwestern half of the State is noteworthy and would lend support to Winslow's doubt concerning its occurrence in Michigan.

Geologic range.—Unknown.

[Mesophris subplanus (Binney) 1842]

Type locality.—Mountainous region of eastern Tennessee.

Diagnosis.—See Pilsbry (1946, p. 312).

General distribution.—Tennessee and North Carolina.

Distribution in Ohio.—Sterki (1907a, p. 374) is the only writer who has listed this species for Ohio. His record may have been based on an atypical specimen of Mesophris inornatus (Say) with heavier striation than is usual in this species.

Geologic range.—Unknown.

Mesophris vulgat us H. B. Baker 1933

Helix laevigata Rafinesque; Mesophris laevigatus Férussac 1821, Tabl. Syst. Fam. Limacons, p. 41, no. 221, nude name; 1832, Hist. nat. Moll. terr. fluv., pl. 82, fig. 6, expl. pls., p. iv; not Helix laevigata Linnaeus 1766.

Mesophris perlavis vulgaris Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 270.

Type locality.—Kentucky.

Diagnosis.—Shell very narrowly umbilicate, depressed, with low spire; color olive brown or cinnamon brown, the upper surface indistinctly streaked; surface glossy at base and to a varying degree above; finely
and evenly striate, the striae extending over the periphery but fading out on the base, which has low growth wrinkles only; microsculpture of close, minutely papilllose spiral threads over this sculpture on the last whorl, threads which on the base are weak or wanting (condensed from Pilsbry, 1946, p. 324).

Ecology.—Found in dry upland woods, under logs (condensed from Daniels, quoted by Pilsbry). In the Warm Springs area of Georgia, Teskey (1955, Naut. 69, p. 70-71) found this species on the grounds of the Foundation hospital, wooded and clogged with undergrowth, and in detritus in crannies of stone walls and rotting timbers of an old mill, Parkman Pond. In the Asheville region of North Carolina, Archer (1935, p. 80) found this species in hardwoods, usually on high banks above the road. It lives in leaf mold and occasionally under rotten logs.

Associations.—Living: OHIO - 22 (M. perlaevis).

FIGURE 483.—Distribution of Mesomphix inornatus in North America; inset, distribution in Ohio.
General distribution (fig. 485).—Pennsylvania and Maryland west to Illinois, south to Missouri, Mississippi, Alabama, Georgia, and Florida.

Distribution in Ohio (inset, fig. 485).—Pilsbry (1946, p. 324) gave Summit and Hamilton Counties. Eggleston (ms. records) confirmed the Hamilton County record and added Monroe County. The Summit County record is based on an identification by A. G. Wetherby and may be incorrect.

Geologic range.—Unknown.
Subgenus *Omphalina* Rafinesque 1831

Type. — *Mesomphix (Omphalina) cupreus* (Rafinesque).

Diagnosis. — Shell large, umbilicus wider than in *Mesomphix* s.s. The fundamental differences between the two subgenera are those of the soft parts.

Remarks. — This subgenus is represented in the United States by only four species; the Mexican species, in the eastern and southern parts of that country, are more varied in form and color than those occurring farther north.

Mesomphix friabilis (W. G. Binney) 1857

Zonites friabilis Call 1900, Moll. Ind., p. 373, pl. 4, fig. 10.

FIGURE 486. — *Mesomphix friabilis*, magnified; after F. C. Baker (1939a, p. 67).

Type locality. — Banks of the Wabash River, Indiana.

Diagnosis. — Shell very globose, transparent, brittle, thin, rarely thick, shining, reddish; spire very short, conic; whorls 5, convex, lightly wrinkled, the last very large and ventricose; apical whorls smooth, polished, whitish-corneous and unworn; aperture circular, bluish white near the sharp edge of the lip (modified from Pilsbry, 1946, p. 333).

Ecology. — Common on the bluffs along the Roanoke River in Pittsylvania County, Virginia (Hubricht, 1953, Naut. 67, p. 23).

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 313.

Type locality. — Kentucky.

Diagnosis. — Shell large, umbilicate, the umbilicus one-fifth or one-sixth the diameter of the shell, depressed; tawny olive to honey yellow, indistinctly streaked and generally with some brown rest lines; more or less darker, commonly blackish, near the lip; earliest whorls of adult shell worn, showing the gray or whitish calcareous layer. Surface smooth and glossy beneath, less so above; axial growth wrinkles weak, stronger toward the suture; microscopic sculpture irregular, pebbly, occasionally with ill-defined spiral lines; spire convex; whorls 4½ to 5; aperture rounded, bluish white near the sharp edge of the lip (modified from Pilsbry, 1946, p. 333).

Ecology. — *Mesomphix cupreus* lives in densely shaded woodland on hillsides, and is usually found partly buried in the damp humus, under a layer of dead leaves. According to Mr. John Walton it feeds upon snails; fully one-third of the specimens found in July were 'devouring shell and animal, sometimes of its own species, but more frequently the young of *Mesodon albolarbis*, *M. thyroides*, *M. sayii* and *Triodopsis pal-

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 313.

General distribution (fig. 487). — Ohio (Hamilton County) west to Kansas, south to Texas, Louisiana, Mississippi, and Alabama.

Distribution in Ohio (inset, fig. 487). — Only one record (Wurtz, 1949), for Hamilton County.

Geologic range. — Laredo, Webb County, Texas (Pilsbry, 1946, p. 330, 331), a single fossil specimen, age unknown, probably late Pleistocene.

Mesomphix cupreus (Rafinesque) 1831

Omphalina cuprea Rafinesque 1831, Enum. and acct., p. 3.

Zonites fuliginosus Call 1900, Moll. Ind., p. 373, pl. 4, fig. 13.

Mesomphix cuprea Oughton 1948, Zoögeogr. study, Ontario, p. 22.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 313.

Type locality. — Kentucky.

Diagnosis. — Shell large, umbilicate, the umbilicus one-fifth or one-sixth the diameter of the shell, depressed; tawny olive to honey yellow, indistinctly streaked and generally with some brown rest lines; more or less darker, commonly blackish, near the lip; earliest whorls of adult shell worn, showing the gray or whitish calcareous layer. Surface smooth and glossy beneath, less so above; axial growth wrinkles weak, stronger toward the suture; microscopic sculpture irregular, pebbly, occasionally with ill-defined spiral lines; spire convex; whorls 4½ to 5; aperture rounded, bluish white near the sharp edge of the lip (modified from Pilsbry, 1946, p. 333).

Ecology. — *Mesomphix cupreus* lives in densely shaded woodland on hillsides, and is usually found partly buried in the damp humus, under a layer of dead leaves. According to Mr. John Walton it feeds upon snails; fully one-third of the specimens found in July were 'devouring shell and animal, sometimes of its own species, but more frequently the young of *Mesodon albolarbis*, *M. thyroides*, *M. sayii* and *Triodopsis pal-
lata'" (Pilsbry, 1946, p. 336).

Found in Ontario (Oughton, 1948, p. 94 ff.) in damp woodlands, especially those of deciduous trees, confined to Paleozoic terranes (mainly limestones).

Ingram (1940, Naut. 54, p. 87) has described the daylight activity of *M. cupreus*. The enemies of this species certainly include shrews (*Blarina*), as recorded at Ithaca, New York, by Ingram (1944, Naut. 57, p. 135). He (1941, Naut. 55, p. 14-15) has found it under stones, on a creek floodplain at the same locality. Muchmore (1959, Naut. 72, p. 85-88) also found it under stones in various woodland areas in New York State. In Tennessee, it occurs in red oak-black oak communities, according to Lutz (1950, Naut. 63, p. 104).

In New York State, in the Huyck Preserve, Ingram (1946, Naut. 59, p. 89-90) gathered the following data: "Individuals were very abundant in pure maple stands; their distribution in other areas was negligible. Data

![FIGURE 487.-Distribution of *Mesomphix friabilis* in North America: inset, distribution in Ohio.](image-url)
indicates that this species prefers cool areas with a dense overhang. On the preserve the maple area in which they abounded was in a deep gorge; here a stream was present and the maple leaf humus was two to four inches thick. Their typical resting place was beneath such a humus layer in contact with the soil substratum. Specimens were rarely taken from beneath logs. Individuals were almost strictly nocturnal in their

FIGURE 488.—Mesomphix cupreus, magnified; after F. C. Baker (1939a, p. 66).

FIGURE 489.—Distribution of Mesomphix cupreus in North America; inset, distribution in Ohio.
habits, although several were collected moving about during the daylight hours. On the preserve, individuals were found in groups varying from four to six. Their tendency to aggregate was indicated when twenty-six were found in a ten foot square quadrant. In the maple areas this mollusk was the principal snail eaten by the short-tailed shrew and the white-footed deer mouse; here too it fell ready prey to the predatory snail, *Haplocrema concavum* (Say).

Associations. - **Living:** OHIO- 43.

General distribution (fig. 489). - Massachusetts, Vermont, New York, Ontario, Michigan, Illinois, and Missouri, south to Arkansas, Mississippi, Georgia, and North Carolina.

Distribution in Ohio (inset, fig. 489). - "Over the state" (Sterki, 1907a, p. 374); Eggleston (ms. records) has it from Ashtabula and Wood Counties in the northern part of the State and from Monroe, Washington, Adams, and Hamilton Counties in the south, as well as from other counties in the central part of the State; the University of Michigan records are for Williams, Fulton, and Auglaize Counties, confirming Sterki's statement.

Geologic range. - F. C. Baker (1920a, p. 389) gives only "Wabash."

Genus Paravitrea Pilsbry 1898

Paravitrea Pilsbry 1898, *Nautilus*, v. 11, p. 130.

Type. - *Helix capsella* Gould.

Diagnosis. - Shell depressed or discoidal, umbilicate or perforate, thin, polished, with radial grooves or lines of growth; of numerous, closely coiled whorls parted by a superficial suture; internally with basopalatal radial rows of pairs of teeth or radial barriers, commonly recurring at intervals, and developed chiefly in the neanic stage, generally reduced or wanting in adults or wanting at all stages of growth; no parietal or columellar lamellae; lip thin and simple.

General distribution. - Eastern United States and Canada. This is mainly an Appalachian genus but it has spread westward across the Mississippi into the Ozark-Ouachita region.

Geologic range. - Cretaceous (Henderson, 1935, p. 156) to present. Pleistocene records rare.

Subdivisions. - H. B. Baker (1931) recognizes several subgenera and sections, mainly on the basis of anatomical characters. He gives a key, reproduced by Pilsbry (1946, p. 350), and Pilsbry in turn gives a key to the species. According to Baker's system, the Ohio species may be grouped as follows:

Subgenus Paravitrea s.s.

Section Paravitrea s.s.: *P. capsella*

Section Paravitreops H. B. Baker: P. multidentata, P. lamellidens.

Paravitrea multidentata (Binney) 1840

Fig. 490

--- --- Robertson and Blakeslee 1948, *Moll. Niagara Frontier*, p. 27, pl. 2, figs. 34, 35.

--- --- FIGURE 490.--- *Paravitrea multidentata*, magnified; after Walker (1928, p. 89, fig. 121).

Type locality. - Eastern slopes of Green Mountains, Vermont (Pilsbry, 1946, p. 354).

Diagnosis. - "Shell depressed, sub-planulate above, very thin, pellucid; epidermis smooth, shining; whorls six, narrow, slightly convex, increasing but slowly in diameter, lines of growth hardly visible; suture impressed; aperture semi-lunate, narrow; lip acute; umbilicus very small, rounded, not exhibiting any of the volutions; base convex, indented around the umbilicus. Two or more rows of very minute, white teeth, radiating from the umbilicus, are seen through the shell, within the base of the last whorl. Greatest transverse diameter one-eighth of an inch" (A. Binney, quoted by Pilsbry, 1946, p. 354).

Ecology. - Oughton (1948, p. 94 ff.) listed this spe-
cies from damp woodlands, especially those of deciduous trees. Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. Archer (1934c, p. 138) noted that it was found by Goodrich on the guard rails of steps descending from the bluff at Arch Rock on the east side of Mackinac Island, Michigan.

Associations.—Living: OHIO-43.

General distribution (fig. 491).—Maine, Quebec, Ontario, and Michigan, south to Arkansas, Mississippi, and North Carolina.

Distribution in Ohio (inset, fig. 491).—Sterki (1907a, p. 374) gave Summit, Portage, Tuscarawas, and Hamilton Counties. Of these, Pilsbry (1946, p. 354) accepted only Portage County, but added Licking County. Eggleston (ms. records) had it from Adams, Washington, and Monroe Counties.

Geologic range.—Unknown.

FIGURE 491.—Distribution of *Paravitrea multidentata* in North America; inset, distribution in Ohio.
Paravitrea lamellidens (Pilsbry) 1898

Type locality. Thunderhead Mountain, Blount County, Tennessee.

Diagnosis. Shell depressed, with low conoid spire of many closely coiled whorls, and rounded periphery; umbilicate, the umbilicus about one-eighth to one-tenth the diameter of the shell; cinnamon-buff, darker when fresh; surface glossy; the first whorl smooth; later whorls closely, regularly, and strongly striate above, weakly on the periphery and below; aperture narrowly lunate, the lip thin, dilated close to the columellar insertion; interior of last whorl with one to three white, curved, obliquely protractive radial teeth on the outer and adjacent basal walls (modified from Pilsbry, 1946, p. 358).

Ecology. Winslow (1921, *Naut. 35*, p. 43) has collected this snail in the Pisgah Forest of North Carolina, under moss on a beech stump in the Pink Beds, a wide valley covered with a dense growth of rhododendron and laurel (hence the name) in Transylvania County, in the drainage basin of the French Broad River.

General distribution (fig. 492). Tennessee and North Carolina.

Distribution in Ohio. Recorded by Sterki (1907a, p. 374) for Portage County, probably in error. His specimens should probably be identified as *Paravitrea multidentata* lamellata H. B. Baker, which Pilsbry (1946, p. 357) regards as "a sporadic variant, not a real race or subspecies."

Geologic range. Unknown.

Type locality. Tennessee.

Ecology. In Virginia, found on the bluffs along the Roanoke River, Pittsylvania County (Hubricht, 1953, *Naut.*, 67, p. 23).

General distribution (fig. 494). Virginia, West Virginia, Ohio, Indiana, and Illinois, south to Alabama and North Carolina.

Distribution in Ohio (inset, fig. 494). Adams, Fairfield, and Warren Counties.

Geologic range. Unknown.

--- --- *Hawaiia* Gude 1911

Genus *Hawaiia* Gude 1911

Pseudohyalina Morse, in part, and of some later authors.

Type. *Helix Kawaiensis* Pfr. (= Helix minuscula Binney).

Diagnosis. Shell thin, light colored, openly umbilicate, depressed, with low convex spire of 4 to 5 whorls, the last tubular; sutures well impressed; aperture broadly round-lunate, the peristome thin.

General distribution. Alaska and Maine, southward to Costa Rica and the West Indies, westward to Mexico, Arizona, and southern California. Widely introduced in the Pacific Islands, Japan, and Europe.

Geologic range. Lower Pliocene to Recent (A. B. Leonard, 1950, p. 36).

--- --- *Hawaii minuscula* (Binney) 1840

Pl. 16, figs. 4, 7, 10

Zonitoides minusculus Dall 1905, Harriman-Alaska Exped., v. 13, p. 43.

--- --- Pilsbry 1946, Land Moll. N. America, v. 2, pt. 1, p. 420, fig. 228a, b; 229, nos. 1-3.
--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 22.
--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 27, pl. 3, figs. 10, 11.

FIGURE 492.—Distribution of Paravitrea lamellidens in North America.

FIGURE 493.—*Paravitrea capsella*, magnified; after F. C. Baker (1939a, p. 74, upper two figs.).

FIGURE 494.—Distribution of *Paravitrea capsella* in North America; inset, distribution in Ohio.

Type locality.—Ohio (Pilsbry, 1946, p. 423, footnote).

Diagnosis.—Shell minute, umbilicate, the umbilicus about one-third the diameter of the shell; depressed, the spire low, convex; thin; pale gray, commonly flesh colored above, from the contained soft parts; whorls 4, strongly convex, slowly widening, the last tubular; embryonic whorl smooth, the rest distinctly, unevenly striate above, nearly smooth beneath; spiral lines wanting or quite indistinct; aperture rounded, the height and width about equal (modified from Pilsbry, 1946, p. 421).

Ecology.—Oughton (1948, p. 94 ff.) has recorded this species in Ontario from wet locations such as floodplains of creeks and rivers, a preference which may influence its widespread occurrence. He has also pointed out that in Ontario it is confined to Paleozoic terranes (mainly limestones). In the Asheville region of North Carolina, Archer (1935, p. 79) noted that it "occurs rarely in grass and under stones... also found in honeysuckles."

Burch (1955, Naut. 69, p. 66) has shown its relationships to soil factors in eastern Virginia. Muchmore (1959, Naut. 72, p. 85-88) collected it under stones in various woodland areas in New York State. Rehder (1949, Naut. 62, p. 125) found it common under boards and around planks near the boardwalk, Myrtle Beach, South Carolina. In Virginia, Hubricht (1953, Naut. 67, p. 24) found it on waste ground in Danville, probably introduced. In Virginia (Burch, 1954, Naut. 68, p. 32) it occurs along the James River lowlands in the eastern part of Henrico County and around the masonry of a church. Grimm (1959, Naut. 72, p. 124) found it in leaf litter along railroad tracks, around foundations of an old burned house, and under wet sandstone, in a field.

Associations.—Living: MICHIGAN-22, 25, 28, 32, 33, 34, 39; MINNESOTA-3; OHIO-1, 4, 29, 43; ONTARIO-11. Fossil: P-1, 2, 3, 4; N-1, 2; A-1; K-1, 4; Y-2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20; I-3; S-1, 2, 3, 4, 5, 6; W-2, 3, 4, 5, 8, 9, 15, 17, 20, 21, 22, 23, 28, 35, 44, 47, 56, 57, 58, 59, 60, 63.

General distribution (fig. 493).—Alaska, Northwest Territories of Canada, and Newfoundland, south to Mexico, Central America, and the West Indies. Sparserly distributed in the Rocky Mountain states. Pilsbry (1946, p. 423) thinks that the California record may be due to introduction with plants.

Distribution in Ohio (inset, fig. 493).—Tuscarawas County (Sterki, 1907a, p. 373). Other records (Eggleston, ms. records; University of Michigan collections) indicate general distribution over the State.

Geologic range.—F. C. Baker (1920a, p. 389) gave Aftonian, Yarmouth, Peorian, and "Wabash." Lower Pliocene to Recent (A. B. Leonard, 1950, p. 36); widely distributed as a Pleistocene fossil in Iowa, Nebraska, Kansas, Oklahoma, and Texas. Hibbard and Taylor (1960, p. 148) gave late Miocene to Recent. In Ohio, it is abundant in the Castalia marl (late Wisconsin) according to Sterki (1920, p. 178), confirmed by later collecting; in the Orleton deposit (late Wisconsin) (La Rocque, 1952, p. 12 ff.); in Farmdale loess of the Cleveland region (Leonard, 1953, p. 372 ff.); and in the Sidney Cut deposits (early Wisconsin) (La Rocque and Forsyth, 1957, p. 85 ff.). Zimmerman (1960, p. 20) recorded it for the Newell Lake deposit, and Mowery 1961, p. 12) for the Jewell Hill deposit, both in Ohio.

Subfamily GASTRODONTINAE Tryon 1866

Diagnosis.—Shell as in Zonitinae, toothed in many species; a dart apparatus developed on the male side (absent in some minute forms); a duct from penial sheath to oviduct, or the spermathecal duct; outer marginal teeth of radula unicuspid.

Remarks.—The subfamilial characteristics reside in the soft parts of the animal but Pleistocene species can be identified by comparison with living forms and therefore placed in their correct position in classification.

Subdivisions.—The subfamily includes six genera of relatively small size, three of them with an armature of teeth within the body whorl, the other three without teeth. Some of these (Clappiella, some species of Ventridens) are restricted in distribution but others, e.g., Striatura and Zonitoides, are among the most widespread snails in North America.

Genus Gastrodonta Albers 1850

Gastrodonta Albers 1850, Die Heliceen, p. 88.

Type.—Helix interna Say.

Diagnosis.—Shell perforate, conic, with convex base, of about 8 whorls, very closely coiled, the first two microscopically granulose, the rest with regular, close retractive riblets above, the base smooth; aperture narrowly lunar, obstructed by two teeth on a ciliolus ridge of two teeth each, at intervals of a fourth of a whorl, the innermost series absorbed when a new
one is formed.

General distribution.—Southern Indiana and Ohio to Alabama.

Geologic range.—One early Tertiary and one Miocene species are referred to the genus (Henderson, 1935, p. 156, 157). Pilsbry (1946, p. 427 ff.) mentioned no Pleistocene record although *Gastrodonta interna*, a species with considerable northward extension, should be found in deposits of this age.

Gastrodonta interna (Say) 1822

Zonites (Gastrodonta) internus Call 1900, Moll. Ind., p. 377, pl. 4, fig. 17.

Gastrodonta interna Sterki 1907, Ohio Acad. Sci. Proc., v. 4, p. 373.

FIGURE 495.—Distribution of *Hawaiiia minuscula* in North America; inset, distribution in Ohio.

FIGURE 496.—Gastrodonta interna, magnified; after Call (1900, pl. 4, fig. 17).

Type locality.—Cincinnati, Ohio, selected by Pilsbry (1946, p. 430).

Diagnosis.—Shell minutely perforate, depressed, with convexly conic or dome-shaped spire of about 8 to 9 closely coiled whorls; central part of the base strongly impressed around the perforation; color cinnamon brown or a paler tint and with little gloss above; the base polished and some tint of buff or pale brown; first 1½ whorls smoothish, the rest with regular retractive curved riblets separated by spaces of about twice their width, extending to the periphery, the base with faint, fine growth striae only; aperture lunate, the lip simple, acute; last whorl with a white calcous deposit or one or more lamellar teeth near the aperture within the basal wall; the callus or laminae when present are found in the young shell, and are continuous in development; they are absorbed behind and grow in front as the shell increases in size.

General distribution.—Eastern United States and Canada (Ontario). The species is especially characteristic of the Appalachian mountain system; but a few forms occur west to the Ozark-Ouachita region, and in northeastern Texas.

Geologic range.—Several Cretaceous and Tertiary species have been referred to Ventridens but none of them has been shown to possess teeth or laminae. Pilsbry (1948, p. 436) lists them but does not accept them as members of the genus Ventridens.

Ventridens suppressus (Say) 1829

--- --- Goodrich 1932, Moll. Mich., p. 34.
Ventridens suppressus La Rocque 1953, Cat. Recent Moll. Canada, p. 316.

Type locality.—Germantown, Pennsylvania.

Diagnosis.—Shell subglobose, depressed, umbilicate, the umbilicus about one-eighth the diameter of the shell; pale horn color, polished, somewhat pellucid; retractive striation rather coarse below the suture, or like quite low folds, elsewhere fine and indistinct; on the base, near the umbilicus, more or less distinct but superficial spiral striae; body whorl opaque whitish near the aperture; whorls 6, spire convex; aperture sublunate, narrower beneath; within, a prominent tooth near the base, distant from the margin; in earlier stages, as many as four other, smaller teeth; lip simple (modified from Say and from Pilsbry, 1946, p. 438).
Ecology.—In Maryland, Grimm (1959, Naut. 72, p. 124) found this species in leaf litter along railroad tracks, in woods, in a marble quarry, and in ruins of a building. In Virginia, Hubricht (1953, Naut. 67, p. 24) found it in the hills in the northwestern part of Pittsylvania County. Archer (1935, p. 80-81) recorded it for hardwoods, almost entirely confined to the grassy area around sumacs, in the Asheville, North Carolina, region; it lives deep down in the grass, completely hidden from view. Its mating habits are described by Webb (1948, p. 453-461). Burch (1954, Naut. 68, p. 32) has found the form magnidens generally distributed over Henrico County, Virginia, but not altogether common. It has been found in a variety of habitats from under hardwood logs to around stone masonry in urbanized areas. The same author (1955, Naut. 69, p. 66) has shown the relationships of this form to soil factors in eastern Virginia.

FIGURE 497.—Distribution of Gastrodonta interna in North America; inset, distribution in Ohio.
Associations.—Living: MICHIGAN - 25, 27, 28, 32, 33; OHIO - 43.

General distribution (fig. 499).—New York, Ontario, and Michigan, south to Kentucky, West Virginia, and Virginia. Named forms or races (see Pilsbry, 1946, p. 440 ff.) range as far south as Alabama and North Carolina.

Distribution in Ohio (inset, fig. 499).—Portage, Tuscarawas, and Hamilton Counties, probably over most of the State, according to Sterki (1907a, p. 373). Pilsbry (1946, p. 439) adds Columbiana County. Eggleston (ms. records) has specimens from Athens and Washington Counties. These records give the impression that the species lived just to the south of the

FIGURE 498.—Ventricidens suppressus, magnified; after Walker (1928, p. 106, fig. 153).

FIGURE 499.—Distribution of Ventridens suppressus in North America; inset, distribution in Ohio.
glacial boundary in Ohio and that it has extended its range just a little beyond that boundary since the retreat of the Wisconsin ice.

Geologic range.—Unknown.

[Ventridens suppressus virginicus (Vanatta) 1936]

Type locality.—Near Endless Caverns, New Market, Shenandoah County, Virginia.

Diagnosis.—The adult stage with a long nodule within the columellar lip and a rather short, obtuse horizontal lamella within the outer lip, more remote from the columellar nodule than is the case with the outer tooth of the typical form; the neanic state with the columellar tooth conspicuously bifid (rarely trifid), and the summit of the outer-basal lamella, peripheral in position, curving toward the columella (modified from Pilsbry, 1946, p. 440).

Ecology.—In his original description, Vanatta (1936, Nautilus 49, p. 99-100) noted that this snail was collected in the hills near Endless Caverns, New Market, Shenandoah County, Virginia, and that it appears to be a form belonging to a northward extension of the "Cumberland subregion" of Binney, a form that will turn out to be generally distributed in the Shenandoah Valley. Vanatta listed eleven species associated with it at the type locality. His prediction that it would be widespread was borne out by later collecting, e.g., by Wurtz (1940, Naut. 53, p. 24) found it generally distributed in Pittsylvania County, Virginia, in meadows, clearings, and along roadsides. Teskey (1955, Naut. 69, p. 70-71) has recorded the habitat of the form theloides in the Warm Springs, Georgia, area, as follows: forest on slope at base of Pine Mountain fire tower, and Dowdell's Knob, scenic lookout, outcrop of granite boulders on mountain top, occasional rotted log.

General distribution (fig. 501).—Indiana, Ohio, and Pennsylvania, south to Alabama, Georgia, and South Carolina.

Distribution in Ohio (inset, fig. 501).—Sterki (1907a, p. 373) had seen no specimens from Ohio but he subsequently collected the species from Tuscarawas County (Pilsbry, 1946, p. 446).

Geologic range.—Unknown.

[Ventridens gularis (Say) 1822]

Fig. 500

Gastrodonta gularis Dall 1905, Harriman-Alaska Exped., v. 13, p. 43.

Ventridens gularis Pilsbry 1946, Land Moll. N. America, v. 2, pt. 1, p. 443, fig. 238a-g.

Type locality.—Allegheny County, Pennsylvania, locality of the neotype, selected by Pilsbry (1946, p. 446).

Diagnosis.—Shell subglobose, minutely umbilicate, pale yellowish-horn, polished, pellucid; whorls 6 or 7, with prominent somewhat regular axial striae; spire convex, a little elevated, suture moderate; lip not reflected; two lamelliform teeth just inside the aperture, one tooth oblique and placed near the middle, the other less elongate and near the base (modified from Say, quoted by Pilsbry, 1946, p. 444).

Ecology.—In the Asheville region of North Carolina, Archer (1935, p. 81) found the species in hardwoods and noted that this is another species favored by fires; it is most common in leaf mold, often in acid areas, but avoids the neighborhood of pines; it is occasionally found under logs. Hubricht (1953, Naut. 67, p. 24) found it generally distributed in Pittsylvania County, Virginia, in meadows, clearings, and along roadsides. Teskey (1955, Naut. 69, p. 70-71) has recorded the habitat of the form theloides in the Warm Springs, Georgia, area, as follows: forest on slope at base of Pine Mountain fire tower, and Dowdell's Knob, scenic lookout, outcrop of granite boulders on mountain top, occasional rotted log.

General distribution (fig. 501).—Indiana, Ohio, and Pennsylvania, south to Alabama, Georgia, and South Carolina.

Distribution in Ohio (inset, fig. 501).—Sterki (1907a, p. 373) had seen no specimens from Ohio but he subsequently collected the species from Tuscarawas County (Pilsbry, 1946, p. 446).

Geologic range.—Unknown.

[Ventridens collisella (Pilsbry) 1896]

Fig. 502

Gastrodonta collisella Pilsbry 1896, Nautilus, v. 9, p. 123.

Type locality.—Knoxville, Tennessee.

Diagnosis.—Shell rather solid, minutely perforate,
above elevated and somewhat dome-shaped, below rather flattened, the periphery rounded; surface glossy, especially beneath, the base radially finely wrinkled, and with faint traces of spiral striaion in the slightly excavated umbilical region; upper surface sharply sculptured with irregular, arcuate wrinkle-riblets in the direction of growth lines, and stronger toward the suture; whorls 7½, slightly convex, separated by very shallow sutures which, under the lens, seem margined below by the partial transparence of the shell in some specimens; aperture mainly basal, lunate, with a lining of white callus a short distance within, heavier and bearing a small tooth (commonly wanting) on the columellar slope, and a rather short white entering lamina toward the outer part of the base; lip edge thin and acute, suddenly expanded at the columellar insertion, half covering the umbilical perforation (modified from Pilsbry, 1946, p. 450).

FIGURE 501.—Distribution of *Ventrilus gularis* in North America; inset, distribution in Ohio.

General distribution (fig. 503).-Virginia, Tennessee, and Alabama (Pilsbry, 1946, p. 451). Pilsbry does not include any state adjacent to Ohio in the range of this species, in spite of the record noted below.

Distribution in Ohio (inset, fig. 503).-One record, possibly erroneous, for New Philadelphia, Tuscarawas County, by Sterki (1907a, p. 373). Sterki is positive in his identification and had seen specimens of undoubted V. collisella from eastern Tennessee when he wrote...
his paper. Pilsbry does not mention this record nor does he mention the species for any of the neighboring states. For this reason, the species is listed as doubtful for Ohio but the record is not an impossible one.

Geologic range.—Unknown.

[Ventridens lasmodon (Phillips) 1841]

Gastrodonta lasmodon Sterki 1907, Ohio Acad. Sci. Proc., v. 4, p. 373; later corrected to V. suppres.

--- Sterki 1914, Ohio Naturalist, v. 14, p. 270; previous record (Sterki, 1907, above) is erroneous, based on specimens of Ventridens suppres.

Type locality.—St. Clair County, Alabama, locality of a neotype selected by Pilsbry (1946, p. 458).

Remarks.—The only record of this species for Ohio is that of Sterki, mentioned above, which he promptly corrected. The species is restricted, according to Pilsbry (1946, p. 458) to Tennessee and Alabama. The Ohio record was therefore far out of range and this species is to be eliminated from the State list. There are no records of its occurrence as a fossil, in Ohio or anywhere else.

FIGURE 504.—Ventridens demissus, magnified; after F. C. Baker (1939a, p. 82).

Ventridens demissus (Binney) 1843

Fig. 504

--- Goodrich 1932, Moll. Mich., p. 34.

--- La Rocque 1953, Cat. Recent Moll. Canada, p. 315.

Type locality.—Western Pennsylvania.

Diagnosis.—"Shell depressed-convex; epidermis yellowish horn-color, shining; whorls six, with minute lines of growth; spire obtuse; suture impressed; body-whorl expanding very little towards the aperture; aperture transverse, not large, a white, testaceous deposit within; lip thin, acute; base rather flat, smooth; umbilicus very small; umbilical region a little impressed. Greatest transverse diameter rather more than three-eights of an inch" (A. Binney, quoted by Pilsbry, 1946, p. 459).

Ecology.—Archer (1934, Naut. 47, p. 149) recorded a reversed specimen from Alabama. He noted (1937, Naut. 50, p. 120) that it is found in cultivated areas, where it lives in grass in fields. In a later paper (1937, p. 59) he described two closely related habitats in Belmont County, Ohio, as follows: "This locality is an area of pastured hills. One of the hills contains a patch of oak-hickory woods near the summit, some of the trees being white oak, yellow oak, shellbark hickory, rock maple, and beech. The soil is a yellowish clay, and the outcropping rocks are sandstone and shale. The snails are concentrated in leaf pockets, around stumps, and under logs.... In contrast with the seven species in the woods, fourteen species were found in the open fields, and some of them are abundant. They live in grass and weeds as well as among stones, and are especially common on the lower slopes." V. demissus is included in both lists. Archer (1939, Naut. 52, p. 97) noted that in the south this species, among others, occurs commonly in gardens within its appropriate range.

Associations.—Living: OHIO-25, 26.

General distribution (fig. 505).—Illinois, Indiana, Michigan, Ohio, and Pennsylvania, south to Mississippi, Alabama, Georgia, and Florida.

Distribution in Ohio (inset, fig. 505).—Licking, Tuscarawas, and Belmont Counties (Pilsbry, 1946, p. 460); Eggleston (ms. records) has specimens from Highland and Adams in southwestern Ohio, Holmes County, northwest of Tuscarawas County, and Athens, Washington, Morgan, Noble, Monroe, and Belmont Counties in southeastern Ohio.

Geologic range.—Pleistocene: late Wisconsin. It should be noted that, in Ohio at least, this species is recorded most abundantly south and east of the glacial boundary which it transgresses only in Highland, Licking, and Holmes Counties. Its presence in Michigan is interesting in this respect as there is only one record. Clark (1961, p. 26) has identified it from the Castalia deposit, late Wisconsin, of Ohio.

Ventridens ligera (Say) 1821

Fig. 506

Helix wardiana Lea 1836, Am. Philos. Soc. Trans.,
v. 6, p. 67, pl. 23, fig. 82.
Zonites ligerus Call 1900, Moll. Ind., p. 374, pl. 4, fig. 11.
Gastrodonta ligeru Oughton 1948, Zoögeogr. study.

FIGURE 505.—Distribution of Ventridens dominus in North America; inset, distribution in Ohio.
Ventridens ligera Robertson and Blakeslee 1948, Moll.
Niagara Frontier, p. 28, pl. 3, figs. 1, 2.
--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 316.

FIGURE 506.—Ventridens ligera, magnified; after F. C. Baker (1939a, p. 81).

Type locality.—Missouri.

Diagnosis.—Shell convexly conic, pale yellow horn color, polished; body whorl pellucid, yellowish-white, opaque beneath near the aperture; the whorls 6 to 7, irregularly but strongly wrinkle-striate and somewhat glossy above; base much more glossy, with weaker striation and microscopic spiral striae; umbilicus very small, about one-twelfth the diameter of the shell; lip simple, lined within with a white callous thickening which is commonly very thin or almost wanting.

Ecology.—Burch (1955, Naut. 69, p. 66) has shown the relationships of this species to soil factors in eastern Virginia. Muchmore (1959, Naut. 72, p. 85-88) has collected it under stones in various woodland areas in New York State. Wurtz (1941, Naut. 54, p. 142-143) has described a winter agglomeration of snails, including this species, in the soil of a northward sloping hill-side in Allegheny County, Pennsylvania. In South Carolina, Rehder (1949, Naut. 62, p. 125-126) found it around fallen logs, near a creek; in Virginia, he (ibid., p. 122) recorded it as common, under boards, bricks, and debris, not far from a beach. In Virginia also, Hubricht (1953, Naut. 67, p. 24) found it common in the floodplains of the Dan and Roanoke Rivers, Pittsylvania County. In Maryland, Grimm (1959, Naut. 72, p. 124) listed it from a quarry; under wet sandstone, in a field; around foundations of an old burned house; and near railroad tracks. In Tennessee, it occurs in hardwood forests on sloping terrain (Lutz, 1950, Naut. 63, p. 104). Its mating habits have been described by Webb (1948, p. 453-461).

General distribution (fig. 507).—Michigan, Ontario, and New York, southwest to Illinois, Missouri, and Oklahoma, south to Arkansas, Alabama, and Florida, east to New Jersey and Delaware.

Distribution in Ohio (inset, fig. 507).—Practically over the State. Pilsbry recorded it from Hamilton and Brown Counties north to Huron, and east to Tuscarawas and Jefferson Counties. Eggleston (ms. records) has specimens from many of the southern and central counties, and the University of Michigan collections from Fulton, Erie, Hancock, Allen, and Hamilton Counties.

Geologic range.—F. C. Baker (1920a, p. 389) gave Yarmouth, Sangamon, Peorian, and "Wabash." Pleistocene of Ohio and Indiana: "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); Sangamon? of Indiana (Baker, 1920b, p. 455); "Defiance sandy deposit (Joess?)" of Ohio (Sterki, 1907a, p. 402); Castalia marl (late Wisconsin) of Ohio (Sterki, 1920, p. 178).

Ventridens intertextus (Binney) 1841

Zonites intertextus Call 1900, Moll. Ind., p. 374, pl. 4, fig. 12.

Gastrodonta intertexta Oughton 1948, Zoögeogr. study, Ontario, p. 21.

Zonitoides intertextus Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 28, pl. 2, figs. 22, 23.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 316.

Type locality.—Cabarrus County, North Carolina.

Diagnosis.—Shell globose-pyramidal, yellowish-horn color; whorls 6 to 7, with numerous fine axial striae and very minute spiral striae, intersecting each other; last whorl with a narrow light-colored band, and an ill-defined brownish band below it; aperture rounded, a little transverse; lip thin, lightly thickened, slightly reflected at its junction with the base of the shell; umbilicus small, in some specimens nearly obsolete; base whiter than upper surface (modified from A. Binney).

Ecology.—At the northern limit of its range in Ontario, Oughton (1948, p. 94 ff.) found this species in damp woodlands, especially those of deciduous trees. Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. Ingram (1940, Naut. 54, p. 87) has described its day-light activities; he (1944, Naut. 57, p. 135-137) has listed shrews among its enemies and noted (1950, Naut. 63, p. 142) that it is attacked and eaten by carabid beetles of the genus Calosoma. He (1941, Naut. 55,
p. 14-15) has collected it under stones on the floodplain of a creek in the Ithaca region of New York. Teskey (1955, Naut. 69, p. 70-71) has found it in a forest on the slope at the base of Pine Mountain fire tower, in Georgia. In Pittsylvania County, Virginia, it is generally distributed, but not common, in clearings and along roadsides (Hubricht, 1953, Naut. 67, p. 24). Its mating habits have been described by Webb (1948, p. 453-461) and the eggs have been studied by Ingram (1944, p. 95).

Ingram (1946, Naut. 59, p. 90) reported the following from the Huyck Preserve in New York State: "Individuals were erratic in their distribution, being found in all areas but fields and orchards. Specimens were most abundantly taken from flood-plain forests. On floodplains individuals sought shelter beneath water carried debris piles; less commonly it was collected from beneath water carried logs. On the flood plain its com-

FIGURE 507.—Distribution of Ventridens ligera in North America; inset, distribution in Ohio.
FIGURE 508.—Ventridens intertextus, magnified; after Call (1900, pl. 4, fig. 12).

The companion was Auguispira alternata (Say); these two species were the dominant snails of the flood-plain area. Both were preyed upon by H. concavum and the short-tailed shrew. V. intertextus seemed generally to avoid wooded areas where thick humus abounded.

Associations.—Living: OHIO-22, 23, 24, 43.

General distribution (fig. 509).—Illinois, Michigan, Ontario, and New York, south to Texas, Louisiana, Mississippi, Florida, and South Carolina.

Distribution in Ohio (inset, fig. 509).—Pilsbry gave Adams, Licking, and Jefferson Counties; Eggleston (ms. records) added Wayne, Washington, and Perry Counties; Wurtz (1949) gave Vinton and Highland

FIGURE 509.—Distribution of Ventridens intertextus in North America; inset, distribution in Ohio.
Zonitoides arboreus possibly South America. Helix arboreus first with that of above, rarely ribbed, of Zonitoides arboreus characteristics. Zonites (Hyalina) arboreus pentate, umbilicate, lightly or distinctly striate increasing whorls, the last rounded; aperture rounded, lunate, lip thin; no internal callus or teeth.

Genus Zonitoides Lehmann 1862

Type. *Helix nitida* Müller. **Diagnosis.** Shell small (diameter 4 to 8 mm.), thin, depressed, umbilicate, lightly or distinctly striate above, rarely ribbed, of 3½ to 4½ convex, regularly increasing whorls, the last rounded; aperture rounded, lunate, lip thin; no internal callus or teeth. **General distribution.** Practically Holarctic, occurring over most temperate parts of the northern continents. Introduced on parts of all continents except possibly South America. **Geologic range.** Tertiary of Europe; Pleistocene of North America. **Remarks.** The diagnostic generic characters are those of the soft parts; the shell may be confused at first with that of *Retinella* or *Oxychilus* but the species of all three genera can be recognized from shell characteristics.

Zonitoides arboreus (Say) 1816 Pl. 16, figs. 12, 14, 17

Type locality. Probably Philadelphia, Pennsylvania. **Diagnosis.** Shell nearly twice as wide as high, thin, shining, yellow to dark brown; whorls 5, finely striate and with faint revolving lines barely showing under low-power magnification; convex, with a sharp-edged outer lip; umbilicus open; aperture nearly circular. **Ecology.** This species is able to occupy almost any kind of environment; it is equally at home in dense woods and open plains, in cultivated fields and gardens and in city yards, even where there is a minimum of cover and moisture. Ingram (1940, Naut. 54, p. 87) has described the daylight activities of this species. He (1944, Naut. 58, p. 25-27) has collected it in beech-yellow-birch and sycamore woodlands at Ithaca, New York, and described its winter habits there. Oughton (1948, p. 94 ff.) found it in both damp and drier, more open deciduous woodlands in Ontario, occasionally in *Sphagnum* bogs. Lindeborg (1949, Naut. 62, p. 130) found it to be probably the most abundant snail in the Quetico area of Ontario, under decaying logs and stumps, but also on damp moss, including *Sphagnum*, in a bog at the south end of a lake. Ants and these snails were seldom found under the same logs. H. B. Baker (1922b) noted it in nine habitats, by far the most abundant mollusk in the hardwoods and other upland habitats of Dickinson County, Michigan. Muchmore (1959, Naut. 72, p. 85-88) collected it under stones in various woodland areas in New York State. Solem (1952, Naut. 65, p. 129) listed it for a large tract of virgin pine with some deciduous growth and undergrowth of thimbleberry, and from beach drift of Lake Michigan in the Door Peninsula of Wisconsin. Dimelow (1962, Naut. 76, p. 49) collected it in Nova Scotia, in a climax deciduous forest on a gentle, well-drained slope. Burch (1955, Naut. 69, p. 66) noted its relationships to soil factors in eastern Virginia. It may be quite numerous in a small area; Goodrich (1931, p. 5) collected about 200 specimens from a decaying log in Keweenaw County, Michigan, and Archer (1934c, p. 139) found it common in the limestone talus near Fort Mackinac on the island of the same name in Michigan. Archer (1935, p. 81) took it in leaf mold and under logs in both pine and hardwood forests in the Asheville,
North Carolina, region. Grimm (1959, Naut. 72, p. 124-125) found it in Maryland in leaf litter along railroad tracks, in the ruins of a building, in quarries, and in woods. Burch (1954, Naut. 68, p. 32) stated that it is probably the most common land snail in Henrico County, Virginia, both in number of specimens and in distribution; it is not restricted to woodlands and it apparently has no preference for any particular hardwood. Rehder (1949, Naut. 62, p. 125) found it under fallen leaves and near fallen logs in South Carolina, under boards in a backyard in North Carolina, and in Virginia (ibid., p. 123) under bark of fallen logs in a small clearing. Teskey (1955, Naut. 69, p. 70-71) collected it from detritus in crannies of stone walls and from rotting timbers of an old mill in the Warm Springs, Georgia, area. The eggs have been described by Ingram (1944, p. 95). Its ecology in greenhouses has been described by Karlin (1956, p. 121-125).

Ingram (1946, Naut. 59, p. 90) gives the following data from the Huyck Preserve in New York State: "This

\[\text{FIGURE 510.—Distribution of Zonitoides arboreus in North America; inset, distribution in Ohio.} \]
was the most common small snail of the preserve. It was found in all of the available areas with the exception of grass covered fields. It was one species that did not noticeably avoid hemlock areas. The only area that it avoided was the flood plain forest where humus and logs were not abundant."

Associations.—Living: MICHIGAN—1, 3, 4, 7, 8, 9, 17, 20, 25, 26, 27, 28, 31, 32, 33, 34, 36, 38, 39, 40; MINNESOTA—1, 2, 3, 4, 5, 6, 7, 8, 22b; OHIO—1, 3, 4, 7, 26, 43; ONTARIO—7, 8, 10, 11, 14. WISCONSIN—138, 144. Fossil: N-2; K-2; Y-7, 8, 10, 11, 14. WISCONSIN—140, 142.

Type locality.—"Ohio," according to A. Binney, but no more exact locality can be ascertained. The specimens came from Dr. Ward, who lived at Chili-cothe and later at Roscoe, Coshocton County. Chili-cothe appears to be a more likely locality as there are no records of the species for eastern Ohio north of Morgan and Washington Counties.

Diagnosis.—Shell small, convex-depressed; epidermis white; suture distinctly impressed; whorls more than four, convex, with very fine, oblique, parallel striae, which become obsolete on the base; aperture subcircular; lip thin, acute; umbilicus large and deep, one-third or one-fourth the diameter of the shell.

Ecology.—This species has been recorded from two Wisconsin localities by Morrison (1929, p. 43-44): Station III. That portion of the floodplain of Trout Creek that is above the reach of ordinary high waters. This station includes the very mesophytic slopes of the sides of the creek valley that are rather heavily overgrown with brush and small trees. The snails were found under small logs (not drift logs) and in the leaf mold. Station V. Slopes of northern exposure in the valley of the Kickapoo. These were studied on Asper Heims Hill, which is an outlier, just to the west of the town. The slope here is very steep, and heavily wooded, with a good many fallen logs. Snails were collected from the leaf mold and from under the logs, which were mostly in stage three of decay, with the heartwood still solid. Both localities are in Crawford County and in each case the associated snails, including Hendersonia occulta, are listed. Cahn and Kemp (1929, p. 67) found only one specimen of *Z. limatulus* from rotten wood in Turkey Run State Park, Indiana. In Lincoln County, Maine, Archer (1931, Naut. 45, p. 34) listed it as present in a bush-covered stretch of land between two lakes.

Associations.—Living: WISCONSIN—140, 142.

General distribution (fig. 512).—Missouri, Indiana, Ohio, New York, and, doubtfully, Michigan.

Distribution in Ohio (inset, fig. 512).—In the State, the records are concentrated in the southern half; northernmost records are for Clark, Franklin, and Morgan Counties, but not all the counties to the south of these have produced records.

Geologic range.—Unknown.

Zonitoides nitidus (Müller) 1774

Fig. 513

Zonitoides nitidus Dall 1905, Harriman-Alaska Exped., v. 13, p. 42 (no illus.).

Zonitoides nitidus Ahlstrom 1930, Nautilus, v. 44, p. 45.
Zonitoides nitida Oughton 1948, Zoogeogr. study, Ontario, p. 32.
Zonitoides nitidus Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 28, pl. 3, figs. 3, 4.
--- La Rocque 1953, Cat. Recent Moll. Canada, p. 316.

Type locality.—Fridrichsberg, Denmark.

Diagnosis.—Shell umbilicate, the umbilicus one-fifth the diameter of the shell; olivaceous yellow, very glossy, somewhat transparent, composed of about $\frac{4}{5}$
convex, gradually widening whorls joined by a well impressed suture; embryonic 1 1/2 whorls smooth, the rest finely, weakly marked by growth lines, the base smoother and more transparent; aperture lunate, the peristome thin; the columellar margin narrowly dilated.

Ecology.-Generally found near water or in marshy places, never in upland woods where Z. arboreus lives. In the late autumn the species often congregates in large numbers under dead wood in wet places and hibernates thus in groups. Oughton (1948, p. 94 ff.) found this species in wet locations, such as stream flood plains, margins of ponds and streams, and marshes; he noted (1948, p. 89) that in Ontario it is confined to Paleozoic terranes, mainly limestones. Solem (1952, Naut. 65, p. 129) has recorded it for a large tract of virgin pine timber, with some deciduous growth and undergrowth of thimbleberry in Door County, Wisconsin. It is less common than Z. arboreus, in Minnesota and elsewhere, in wet places (Dawley, 1955, Naut. 69, p. 58).

Associations.-Living: MICHIGAN - 24, 30; OHIO-43; ONTARIO-3, 7.

General distribution (fig. 514).-Alaska south to California, Utah, South Dakota, Arkansas, Tennessee, and Maryland.

Distribution in Ohio (inset, fig. 514).-"Over the state" according to Sterki (1907a, p. 373). Records available are not numerous: Williams, Fulton, and Auglaize Counties (University of Michigan); Miami, Clark, and Washington Counties (Eggleston, ms. records).

Geologic range.-F. C. Baker (1920a, p. 389, quoted by Pilsbry, 1946, p. 477) has recorded the species for the Sangamon in Indiana and Illinois, but A. B. Leonard (1950, 1952) did not mention the species. There are no fossil records for Ohio.

Remarks.-Compared with Z. arboreus, this species is larger, less depressed, and a little more narrowly umbilicate; it also lacks the faint spiral lines of Z. arboreus; the base is more convex, and the aperture rounder.

Genus Striatura Morse 1864

Striatura La Rocque 1953, Cat. Recent Moll. Canada, p. 317.

Type.-Striatura milium (Morse).

Diagnosis.-Shell minute, depressed, umbilicate, thin, of few (3 to 3 1/2) whorls, with sculpture of fine spiral striae and more or less obliquely axial riblets, which may be high and well spaced or fine and close, or in S. ferrea, subobsolete.

General distribution.-Nearctic; one subgenus, Pseudobyalina, also in Hawaii, probably introduced.

Geologic range.-Unknown.

Striatura exigua (Stimpson) 1850

Type locality.-"Near Lake Superior" (Case, H. annulata); vicinity of Boston, Massachusetts (Stimpson, H. exigua).

Diagnosis.-Shell minute, discoidal, pellucid, cornaceous greenish, a little convex above, convex below; whorls 3 1/2, convex, spirally striate and (except at apex) having distant longitudinal ribs which are obliquely crossed by growth striae; last whorl rounded; suture impressed; umbilicus wide; aperture rounded, lip simple (modified from Stimpson, 1850).

Ecology.-Prefers low, wet ground (Morse, 1864). In Ontario, Oughton (1948, p. 94 ff.) found this species in damp woodlands, especially those of deciduous
trees, and occasionally in Sphagnum bogs. In the Ottawa region, I have found it sparingly in moss growing on stumps and logs in shady woods. H. B. Baker (1922b) collected only two specimens in a damp hollow of the Menominee River flood plain, with brush of tag alders, dogwoods, hazels, and small ashes, Dickinson County, Michigan. Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. Dawley (1955, Naut. 69, p. 59) found it in damp woods or bogs in Minnesota.

General distribution (fig. 516).—Newfoundland, Magdalen Islands, Nova Scotia, west to western Ontario, north of Lake Superior; south to Minnesota, Michigan, Ohio, Pennsylvania, and New Jersey. Distribution in Ohio (inset, fig. 516).—Recorded for Portage County but it is probable that it has been overlooked in other northern counties.

Geologic range.—None recorded. The species should be found in glaciated portions of North America, especially in Canada, but, so far as I know, it

![Map of North America showing distribution of Zonitoides nitidus.](attachment:map.jpg)
has not. Can it be that the species is a late arrival to the northeastern United States and Canada?

Striatura ferrea Morse 1864

Fig. 517

Striatura ferrea Morse 1864, Portland Soc. Nat. History Jour., v. 1, p. 17, figs. 36-39, pl. 2, fig. 10, pl. 7, fig. 40.

FIGURE 516.—*Striatura exigua* in North America; inset, distribution in Ohio.

- - - Oughton 1948, Zoögeogr. study, Ontario, p. 29.
- - - Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 30, pl. 3, fig. 16.
- - - La Rocque 1953, Cat. Recent Moll. Canada, p. 317.

Zonitoides milium Dall 1905, Harriman-Alaska Exped., v. 13, p. 43, fig. 30.

- - - Sterki 1907, Ohio Acad. Sci. Proc., v. 4, p. 373.
- - - F. C. Baker 1920, Life of Pleistocene, p. 389.

- - - Oughton 1948, Zoögeogr. study, Ontario, p. 29.
- - - Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 29, pl. 3, figs. 26, 27.
- - - Leonard 1952, Kans. Univ. Paleont. Contr., Moll., art. 4, p. 23, pl. 4, fig. A; fig. 11.
- - - La Rocque 1953, Cat. Recent Moll. Canada, p. 317.
- - - Taft 1961, Ohio Biol. Survey Bull., n.s., v. 1, no. 3, p. 82.

Type locality.—Maine.

Diagnosis.—Shell very minute, broadly umbilicate (umbilicus nearly one-third the diameter of the shell), with low conic-convex spire; yellowish conocone or gray; composed of slightly over 3 convex whorls; embryonic shell of 1½ whorls, the first one smooth, the next half whorl usually more or less distinctly striate spirally; postembryonic whorls regularly, finely costulate, the riblets retractive, more oblique than growth lines, and decussated by closer spirals; this sculpture almost obsolete on the base, and the surface more glossy; last whorl tubular, aperture subcircular (modified from Pilsbry, 1946, p. 495).

Ecology.—The animal lives among dead leaves in woods, and may be collected by sifts. Pilsbry (1946) has found it most frequently on northern slopes with chestnut, beech, or even oak, but Morse (in Pilsbry, 1946, p. 496) stated that in Maine it lives also where the growth is almost exclusively pine, spruce, and hemlock.

Found in damp woodlands, especially those of deciduous trees, in Ontario (Oughton, 1948, p. 94 ff.). H. B. Baker (1922b) recorded a single specimen from higher moraines with fine hardwood cover in Dickinson County, Michigan, where snails were found particularly in maple logs. Burch (1955, Naut. 69, p. 66) recorded the relationships of this species to soil factors in eastern Virginia. Lindeborg (1949, Naut. 62, p. 130) found it under decaying logs in Ontario. The most frequent occurrences in the Ottawa region were in moss from well-shaded stumps and logs in swamps and along the wet margins of woods ponds. The snails are not evident in the field but are collected from siftings of the dry moss.

Associations.—Living: MICHIGAN-17, 18, 23, 25; MINNESOTA-3, 7; OHIO-43; ONTARIO-2, 3; QUEBEC-6. Fossil: W-5, 6, 9, 12, 16, 17, 19.

General distribution (fig. 520).—Manitoba, Ontario, Quebec, Newfoundland, and Prince Edward Island.
south to New Jersey, Pennsylvania, West Virginia, Kentucky, Indiana, and Illinois.

Distribution in Ohio (inset, fig. 520).—Portage County (Pilsbry, 1946). The species does not seem to have been collected in any other county up to the present but it should almost certainly be found in the north-eastern counties adjoining Portage County.

Geologic range.—F. C. Baker (1920a, p. 389) gave only Peorian for this species. Tazewellian zone of the Peoria Loess (A. B. Leonard, 1952, p. 23). These are the only fossil records of the species known to me.

Family LIMACIDAE

FIGURE 518.—Distribution of Striatura ferrea in North America; inset, distribution in Ohio.
FIGURE 519.-Striatura milium, magnified; after F. C. Baker (1939a, p. 77).

Diagnosis.—Aulacopod slugs with an oval mantle on the forward part of the back which extends forward in a free lobe under which the head may be withdrawn; shell small, reduced to a flat plate which is wholly covered in Ohio genera (partially exposed in others); breathing pore in right margin of mantle, behind a short slit to the edge; jaw smooth; marginal teeth of radula simply thorn shaped or bifid, with narrow, oblong basal plates.

FIGURE 520.—Distribution of Striatura milium in North America; inset, distribution in Ohio.
Subdivisions.—Numerous genera which it is unnecessary to enumerate here belong in this large family of slugs. The genera of immediate concern to the Pleistocene of Ohio are Limax and Deroceras, both represented in the living fauna of Ohio by native and introduced species. In the Pleistocene deposits of the State, only Deroceras is represented.

Remarks.—Slug shells are fairly common in Pleistocene nonmarine deposits but are often overlooked because of their unusual shape. They should be looked for in all such deposits and their presence recorded, even though specific identification is commonly impossible.

Genus Limax Linnaeus 1758

Limax La Rocque 1953, Cat. Recent Moll. Canada, p. 318.

Type. — Limax maximus Linnaeus.

Diagnosis. — Large, commonly spotted or striped.

Ecology. — A common slug of gardens, cellars, springhouses, litter in shady places, habitats which afford shelter by day. It is not found in woods or any

FIGURE 521.—Limax maximus, approximately X1; after Burch (1960, pl. III, fig. H).

where far from habitations. It is known to have lived in the United States at least since 1867, when it was collected in Philadelphia. It has become abundant in many places where it has been introduced but, like the following species, it has not spread quickly and has lost ground in some places.

Archer (1934c, p. 139) found this species under oak leaves in the cemetery on Mackinac Island, Michigan. It is, of course, commonly found in the neighborhood of greenhouses, in city gardens, and in vacant lots, as well as around refuse dumps. It is quite resistant to cold; colonies have been known to survive in the Ottawa region for several years in spite of the severe climate of that area. In Tennessee (Lutz, 1950, Nauc. 63, p. 105) it is found in gardens, around damp places, introduced.

General distribution (fig. 522).— Europe, Asia Minor, Algeria; introduced in North and South America, South Africa, Australia, Hawaii, and elsewhere. In North America: Newfoundland, Ontario, Massachusetts, Rhode Island, New York, New Jersey, Pennsylvania, Maryland, Ohio, Michigan, Illinois, Missouri, Texas, Colorado, Utah, California, and Oregon.

Geologic range.—Undetermined. Species have been recorded from the Pleistocene of North America but it seems more suitable to refer these to Deroceras, a genus certainly present on this continent since the late Pleistocene, rather than to Limax, whose living species have been introduced into North America in historic times.

Limax maximus Linnaeus 1758

Fig. 521

Limax flavus Linnaeus 1758
Fig. 523

--- Call 1900, Moll. Ind., p. 372, pl. 7, fig. 5.

--- --- Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 278.
--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 41, pl. 5, fig. 5.
--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 318.

FIGURE 522.—Distribution of Limax maximus in North America; inset, distribution in Ohio.
Type locality.—Europe.

Diagnosis.—Animal large, yellowish gray above, with many irregular spots of clear yellow on the shield, and oval yellow wrinkles on the body; the gray disappearing on the sides, which are entirely pale yellow toward the front; tentacles bluish; shell large, oval, practically indistinguishable from that of other species of the family.

Ecology.—The animal always lives in or near cultivated places, never far from gardens or farms. It feeds on cultivated plants, both green leaves and tubers (carrot, potato, turnip), but is said to prefer fungi to leafy plants. It is well known in Europe as a garden pest; in this country it has caused damage in greenhouses and intensively cultivated gardens. Although it is known to have lived in North America before 1825, when Thomas Say recorded it for Philadelphia, it has not noticeably extended its range in the many places in which it has been introduced; in fact, in several places where no particular effort is known to have been made to eradicate it, it seems to have lost ground instead.

General distribution (fig. 524).—Europe, throughout the temperate part of the continent; imported in many European colonies on other continents. Quebec (doubtfully) and sporadically from Maine to Missouri, south to Texas, Alabama, Georgia, and South Carolina.

Distribution in Ohio.—Not definitely recorded but noted as probable by Sterki (1907a, p. 375).

Geologic range.—Unknown in North America.

Genus Deroceras Rafinesque 1820

Arctolimax Westerlund 1894, ibid.

Type.—Deroceras aenigma Leonard 1950

Pl. 14, figs. 10, 11

Type locality. -SW½ sec. 22, T. 33 S., R. 29 W.; 9 miles south and 7 miles west of Meade, Meade County, Kansas; Rexroad Ranch deposits, Aftonian (jide Leonard).

Diagnosis.—"The species is known only from the internal shell, which is elongate, roundly oblong, heavy, bearing concentric growth striae which emanate from a subterminal nucleus displaced toward the left. ... Shell elongate, roundly oblong, relatively thick and heavy; left border convex, right border slightly concave, anterior and posterior borders convex; dorsal surface arched, nucleus subterminal displaced toward the left; growth striae fine, crowded; growth rests making distinct ridges, parallel with striae, 3 in number; ventral surface of shell slightly concave, marked by irregular shallow grooves and rounded ridges, which are roughly

FIGURE 524.—Distribution of Limax flavus in North America.
parallel to long axis. Total length, 4.0 mm.; greatest width, 2.5 mm.; thickness, 1.1 mm.” (Leonard, original description).

Ecology.—Leonard (1950, p. 38) stated that "It may reasonably be inferred that the ecological requirements of *D. aenigma* were generally like those of *D. laeve*. ... The latter lives in humid situations, on floodplains and low terraces of streams, and in or near marshes, under logs, twigs, leaves, grasses, or among mosses and other vegetation.” D. W. Taylor (1960) listed this species as an inhabitant of moist leaf mold and plant debris: under logs and bark, or among leaves, moss, or grass in moist situations not far from water.

Associations.—Fossil: P-1, 2, 3, 4; N-1, 2; A-1; K-1, 2, 9, 10, 12, 13, 14, 18, 19, 20, 23, 24, 25, 26, 27; S-1(cf.), 2, 3, 4, 5; W-28(?).

General distribution (fig. 525).—Aftonian and Yarmouthian of Iowa, Nebraska, Kansas, Oklahoma, and Texas (Leonard); possibly late Pleistocene of Ohio (La Rocque and Conley).

FIGURE 525.—Distribution of *Deroceras aenigma* in North America; *inset*, distribution in Ohio.
Distribution in Ohio (inset, fig. 525).—Doubtfully, late Pleistocene, Hunter’s Run deposit, Fairfield County; Castalia marl, “one shell plate, 5 mm. long, 3.5 broad and rather thick” (Sterki, 1920, p. 178). If these records are correctly assigned to *D. aenigma*, the species may turn out to be quite common in the Pleistocene of Ohio.

Geologic range.—Leonard (1950, p. 38) gave the geologic range of his species as Aftonian and Yarmouthian. The types are from the Rixford Formation which Hibbard and Taylor (1960, p. 20) have dated as Upper Pliocene on the basis of fossil mammals.

Deroceras laeve (Müller) 1774

Fig. 526

Limax campestris Call 1900, Moll. Ind., p. 371, pl. 4, fig. 18.

Agriolimax campestris Sterki 1907, Ohio Acad. Sci. Proc., v. 4, p. 375.

Deroceras gracile Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 278.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 44.

Deroceras laeve Robertson and Blakselee 1948, Moll. Niagara Frontier, p. 42, pl. 5, fig. 2.

--- --- La Roque 1953, Cat. Recent Moll. Canada, p. 519.

FIGURE 526.—Deroceras laeve, magnified; after F. C. Baker (1939a, p. 129).

Type locality.—Denmark.

Diagnosis.—A small slug, of various shades of amber, without spots or markings, to blackish; head and tentacles smoky; body cylindrical, elongated, terminating in a very short carina at its posterior extremity; mantle ovate, fleshy, not prominent, with fine concentric lines; back covered with prominent elongated tu-

bercles and furrows; foot narrow, whitish; breathing pore on posterior right margin of the mantle; body covered with a thin, watery mucus; shell oblong, left margin more convex than the right, nucleus not quite terminal on the left side of the posterior end; length about 4 mm.

Ecology.—This slug prefers humid areas and is particularly partial to floodplains and low terraces of streams; it is also found in or near marshes, in wet weather crawling quite far up the vegetation; in dry weather, it hides under logs, twigs, leaves, grass roots, and moss. It is much harder than might be inferred from the above data and will live also in apparently dry situations with good cover and protection from desiccation. In rainy weather, it emerges from cracks between sidewalks or buildings and lawns and its slime trails attest to its abundance in apparently unlikely situations that are usually dry but afford sufficient moist cover to suit this species.

Oughton (1948, p. 94 ff.) listed this species for damp woodlands, especially those of deciduous trees. H. B. Baker (1922b) noted the following habitats, all in Dickinson County, Michigan: (16) swamp in floating marsh: a partially flooded area in the floating marsh surrounding Tamarack Lake; (38) sandy outwash plains, pine and second growth; (44) ash-cedar swamp, snails in humus around bases of trees; (46) clearing in hardwoods: snails in and around old stumps and logs; one of the drier alluvial habitats; (47) floodplain of Hancock Creek, about 2 feet above July water level; (48) floodplain of Menominee River, in a damp hollow with brush of tag alders, dogwoods, hazels, and small ashes; (49) floodplain of Sturgeon River, flooded even in slight overflows, rather unfavorable to mollusks. Archer (1934c, p. 139) found it under logs and leaves in the hardwoods on Mackinac Island, Michigan.

Grimm (1959, Naut. 72, p. 125) found it along and near railroad tracks in Maryland. Lutz (1950, Naut. 63, p. 105) recorded it for red-oak–black-oak communities in Tennessee. Lindeborg (1949, Naut. 62, p. 129) found it on damp moss at the base of a cliff and under half-decayed poplar logs in Ontario. Wayne (1959b, p. 92) recorded it for the following habitats in the northern part of its range: undersides of rocks and pieces of wood and cardboard, from water level at the edge of a tundra pond to about 3 meters above pond level on a slope, most numerous near water level, at Churchill, Manitoba; on the lower sides of flat rocks on Southampton Island; and beneath pieces of crating lumber and cardboard just above water level in muskeg at Coral Harbour, Northwest Territories, Canada.

Ingram (1946, Naut. 59, p. 92) gave the following notes for the Huyck Preserve in New York State: “This small, introduced slug was rarely taken. It was most often observed crossing roads before the sun was high. It seemed to prefer forested land to overgrown berry and grass covered fields. Collections were made from beneath logs and humus in maple and beech-hemlock areas.”
Associations. - Living: MANITOBA - 39; MICHIGAN - 1, 22, 28, 31, 32, 33, 34, 35, 36, 40; OHIO - 4, 34, 39, 43; ONTARIO - 7, 14; WISCONSIN - 138, 139, 140, 144. Fossil: K - 7; I - 5; W - 2, 3, 4, 12, 28(?), 62, 64, 65, 67, 69, 71.

General distribution (fig. 527). - Alaska, Baffin Land, Hudson and James Bays, and Newfoundland, southward to Florida and Central America.

Distribution in Ohio (inset, fig. 527). - Sterki (1907a, p. 375) gave "over the state" and mentioned Harrison County specifically. This widely distributed species is probably to be found in every county of the State, as Sterki stated. For the fossil record, see below.

FIGURE 527. - Distribution of Deroceras laeve in North America; inset, distribution in Ohio.
Sterki (1920, p. 178) recorded it for the Castalia marl, late Pleistocene. Hibbard and Taylor (1960, p. 145) gave Illinoian to Recent.

Deroceras reticulatum (Müller) 1774

Agriolimax agrestis Dall 1905, Harriman-Alaska Exped., v. 13, p. 45, fig. 31.

--- --- Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 278.

Deroceras reticulatum Oughton 1948, Zoogeogr. study, Ontario, p. 43.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 42, pl. 5, fig. 4.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 319.

FIGURE 528.—Deroceras reticulatum, magnified; after F. C. Baker (1939a, p. 130).

Type locality.—Gardens of Rosenborg and Fridrichsdal, Denmark.

Diagnosis.—A rather large and stout slug, somewhat keeled near the tail; mantle concentrically striate, the back and sides with long, low tubercles; upper surface whitish, buff, in rare specimens entirely black; some specimens with gray or blackish markings of varying size and abundance; mantle more than one-third the total length of the shell, breathing pore at its posterior fourth, surrounded by a raised, pale border; mucus abundant and sticky, milky white when the slug is irritated; length of animal about 35 mm., up to 50 mm.; shell slightly convex, rather thin, with faint lines of growth; nucleus a little to the left of the middle of the posterior margin.

Ecology.—This slug is one of the hardiest of the North American species, although it is almost certainly introduced on this continent. It seems to prefer gardens and fields, where it has become a pest, seriously injurious to cauliflowers, cabbage, potatoes, and other vegetable crops, but it also causes trouble in gardens where it destroys young plants of almost any kind. It is widespread and has been taken in open woods far from any human dwelling where it feeds on mushrooms, small dead animals of almost any kind, and decaying fruits and leaves.

Archer (1935, p. 78) described its habitat in the Asheville, North Carolina, region as follows: common throughout the city; inhabits the edges of sidewalks, and during wet weather crawls on the lawns. It also lives in large numbers in honesuckles both in exposed and shaded areas. I have found it abundant around gardens under any kind of debris which can afford it some protection against dryness, such as pieces of wood, baskets, barrels, bases of bird-baths, even thick corrugated cardboard and litter of sticks and dead leaves. Grimm (1959, Naut. 72, p. 125) found it on and near railroad tracks in Maryland.

The species can become a pest in gardens if the surroundings provide enough cover for it. It has been known to attack potatoes underground and to eat every green vegetable above ground.

Associations.—Living: MICHIGAN - 30, 31; OHIO - 32, 34, 37, 38, 39, 42.

General distribution (fig. 529).—British Columbia to northern Quebec and Newfoundland, south to California, Utah, Colorado, and Georgia. Probably to be found in all states of the Union and every province of Canada.

Distribution in Ohio (inset, fig. 529).—The species is probably to be found all over the State; actual records (Sterki, 1907a, p. 375) are for Cuyahoga, Defiance, Seneca, Portage, Stark, and Hamilton Counties. To these may be added Franklin County and Ottawa County (Put-in-Bay), where the writer has collected this species.

Geologic range.—Unknown for North America, although some of the slug shells in our Pleistocene deposits could just as easily be referred to this species as to others.

Family ENDODONTIDAE

Diagnosis.—Planispiral or depressed heliciform, commonly carinate, not glossy; periostracum opaque, with axial striations and in some genera spiral ornamentation as well; aperture rounded-lunate, lip sharp and little if at all thickened.

Subdivisions.—The Ohio members of this family are placed in three different subfamilies, Endodontinae (genera Anguispira and Discus), Helicodiscinae (genus Helicodiscus), and Punctinae (genus Punctum).

Remarks.—The family is nearly universal in distribution and a large proportion of the genera and species are insular according to Pilsbry (1948, p. 566). The species include some of the hardest snails in
the North American fauna and the family is represented far to the north on this continent.

Subfamily ENDODONTINAE

Genus Anguispira Morse 1864

FIGURE 529.—Distribution of Deroceras reticulatum in North America; inset, distribution in Ohio.
Anguispira Pilsbry 1948, *ibid.*
Anguispira La Rocque 1953, Cat. Recent Moll. Canada, p. 320.

Type. — *Helix alternata* Say.

Diagnosis. — Shell helicoid or depressed helicoid, of medium to large size, openly umbilicate, of about 4½ to 6 tubular or flattened whorls, the latter angulate or even carinate in youth; the carination persists into maturity in some species; aperture wider than the umbilicus, without internal teeth or lamellae; lip thin and simple, expanded at the columellar margin.

General distribution. — United States and Canada (Ontario to Nova Scotia), mainly east of the plains region, and species in the Columbia River drainage.

Geologic range. — Pleistocene (Aftonian) to present.

Anguispira alternata (Say) 1816

Fig. 530

Helix alternata Say 1816, Nicholson's Encycl., v. 2, art. conchology, species 4, pl. 1, fig. 2.

Patula alternata Call 1900, Moll. Ind., p. 380, pl. 5, figs. 2, 3.

Pyramidula alternata Billups 1902, Nautilus, v. 16, p. 51.

--- --- Dall 1905, Harriman-Alaska Exped., v. 13, p. 49, figs. 33-35.

Pyramidula alternata alba F. C. Baker 1920, *ibid.*

Pyramidula alternata Sterki 1920, Ohio Jour. Sci., v. 20, p. 178.

--- --- Goodrich 1932, Moll. Mich., p. 34.

--- --- Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 274.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 33.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 320.

Type locality. — "Middle States" (Say).

Diagnosis. — Shell depressed helicoid, widely umbilicate, pale yellow or horn color, blotched with reddish brown; the blotches on the upper surface irregularly flamelike, on the lower surface spots and streaks; surface sculpture of curved riblike striae separated by minute axial wrinkles and weakly impressed spiral lines; aperture rounded, lip sharp.

Ecology. — A hardy species, able to live in rocky highlands or humid lowlands from Florida and Texas into Ontario and Quebec. It is capable of existing in areas with a minimum of cover and moisture.

A prolific, ubiquitous, and hardy snail favoring woodlands, especially of deciduous trees, but able to live in drier, more open woods or fields (Oughton, 1948, p. 94 ff.). H. B. Baker (1922b) found it in several habitats in Dickinson County, Michigan: (36) outcrop of Quinnesec schist, in dead leaves and humus, collected in hollows in the rocks, thickly overgrown with bearberries and scattered hardwoods and conifers; (38) sandy outwash plains, in pine and second growth; (39) in young hardwoods, in a small hollow between two granitic ridges; partially burned, some low-growing plants; (40) in virgin hardwoods; (41) in maple logs in hardwoods on higher moraines; (43) in a swampy thicket near the mouth of a small creek, with arborvitae and deciduous trees; (46) around old stumps and logs in a clearing in virgin hardwoods.

Archer (1934c, p. 139) noted that on Mackinac Island, Michigan, it "occurs in all habitats, but is especially common in open fields around burdocks, or at the bases of bluffs where there is little forest cover. However, it is one of the few species noticeable in the arborvitae. Near the fort it was found in a nasturtium garden."

The daylight activity of the species has been noted by Ingram (1940, Naut. 54, p. 87). The same author (1941, Naut. 55, p. 14-15) recorded it for floodplain of a creek, under stones, in beech—yellow-birch and sycamore woodlands (1944, Naut. 58, p. 25-27) in New York State. Muchmore (1959, Naut. 72, p. 85-88) also found it under stones in various woodlands areas in the same state. Wurtz (1941, Naut. 54, p. 142-143) has described a winter agglomeration of various species of land snails, including this one, in the soil of a northward-sloping hillside in Allegheny County, Pennsylvania.

Solem (1952, Naut. 65, p. 129) has found it in a large tract of virgin pine with some deciduous growth.
and undergrowth of thimbleberry; and near a small freshwater lake on Washington Island, northern end of Door Peninsula, Wisconsin. Dimelow (1962, Naut. 76, p. 49) recorded it for a climax deciduous forest on a gentle well-drained slope in Nova Scotia. Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. In Ontario, Lindeborg (1949, Naut. 62, p. 129) found it under a rotten log. At the other end of its range, various forms or subspecies are recorded in much the same kinds of habitats. Its enemies include shrews, as recorded by Ingram (1944, Naut. 57, p. 135).

In the Huyck Preserve, in New York State, Ingram (1946, Naut. 59, p. 90-91) gathered the following data: "Individuals preferred floodplain areas; water-carried debris piles resting over moist soil formed their typical habitat. Collections were also commonly made from beneath debris piles and logs along the waterways of the preserve. Although they were found in all of the forest areas, it was the exception rather than the rule to take them from deep in forest areas. Fields and bogs were avoided. Several apparent strays were found beneath the rocks and in hedge rows. In hedge rows they made their abodes beneath fallen branches. In two instances specimens were found aestivating in hollow beech trees resting upon the ground. In one such instance six specimens were co-inhabitants of a hollowed tree with a raccoon. The latter apparently did not relish this mollusk or was well fed on the customary crayfish diet, for the snails remained in the hollow tree for 60 days before they were removed. Fresh scats of the raccoon indicated that the tree was used continually by this mammal as a daylight retreat throughout the summer. On the flood plains this snail was eaten by the short-tailed shrew."

Associations.—Living: MINNESOTA - 4; MICHIGAN - 1, 2, 3, 4, 6, 7, 8, 23, 25, 26, 27, 28, 29, 31, 32, 33, 36, 39, 40; OHIO - 3, 6, 26, 27, 28, 29, 43; ONTARIO - 7, 8, 11, 14; WISCONSIN - 138, 139, 140, 141, 142, 143. Fossil: W - 24, 25, 26, 28, 62, 73.

General distribution (fig. 531).—Ontario to Nova Scotia, southward to Texas, Louisiana, Mississippi, Alabama, and Florida. Westward, it has spread to Minnesota, South Dakota, Kansas, Oklahoma, and Texas.

Distribution in Ohio (inset, fig. 531).—Probably to be found in all counties of the State; records are abundant from Hamilton to Williams, Ashtabula, and Monroe Counties; its apparent absence in some counties is probably due to lack of collecting.

Geologic range.—F. C. Baker (1920a, p. 389) listed the species for Aftonian, Yardmian, Sargam, Peorian, and "Wabash" beds. According to A. B. Leonard (1952, p. 17) found in Kansas, only in Bignell loess near the Missouri River; occurs in Peoria loess in type section of Loveland loess at Loveland, Portawattamie Co., Iowa." It has been found in postglacial deposits as far north as Simcoe and York Counties in Ontario. In Ohio it is known for the "Old Forest bed" (Billups, 1902b, p. 51); the Middletown "pre-glacial deposits" (Sterki, 1907a, p. 401) and the "Defiance sandy deposit" (Sterki, 1907a, p. 402); the Castalia marl (Sterki, 1920, p. 178); and other deposits of similar character. It does not occur in all Pleistocene deposits in the State that contain land snails but no special significance can be attached, at present, to its pattern of distribution.

Variation.—A number of varieties recorded in the southern and western part of the range of this species have been revised by Pilsbry (1948, p. 571 ff.). Some of these are mere forms of little taxonomic value but others are considered good subspecies. Only one form, described from Middle Sister Island in Lake Erie, in Ontario, need be recognized here.

Anguispira alternata eriensis Clapp 1916
Pl. 15, figs. 10-12

--- --- --- Oughton 1948, Zoögeogr. study, Ontario, p. 34.

Anguispira alternata eriensis La Rocque 1953, Cat. Recent Moll. Canada, p. 320.

Type locality.—Middle Sister Island, Lake Erie, Ontario.

Diagnosis.—Shell very dark, flame markings dark chocolate brown and coalescing into two almost solid bands at the periphery, commonly hardly separated; body whorl subcarinate, upper lip considerably flattened; lip thickened in old shells, parietal callus very heavy, commonly forming a strong ridge.

Ecology.—Similar to that of the typical subspecies.

Associations.—Living: OHIO - 1, 2; ONTARIO - 12, 13.

General distribution.—Islands in Lake Erie; along the Great Lakes and Niagara River and in some localities in Quebec, Maine, and Pennsylvania, west to Wisconsin, Illinois, and Kansas.

Distribution in Ohio.—Green Island, Lake Erie; isolated occurrences of the form may be expected along the shores of Lake Erie also.

Geologic range.—None recorded, but the form occurs in aboriginal deposits on Frontenac Island, Cayuga Lake, New York (Blakeslee, 1945, Naut. 58, p. 110 ff.).

Remarks.—Specimens of this form appear strikingly different from the type form in isolated colonies, such as those on Green Island and at the type locality. Goodrich thought that this form was developed where the snails were not forced to take cover in narrow quarters during the day, particularly in areas where the air
is constantly moist. He cited as examples the marshy sections of Monroe County, Michigan, and Clapp noticed that the specimens living on the islands of Lake Erie were abroad by day, as well as by night.

Anguispira kochi (Pfeiffer) 1845

Patula solitaria Call 1900, Moll. Ind., p. 379, pl. 4, fig. 20; pl. 5, fig. 1.

Pyramidula solitaria Billups 1902, Nautilus, v. 16, p. 51.

-- -- Dall 1905, Harriman-Alaska Exped., v. 13, p. 49.

Helix solitaria Poirer 1800.

FIGURE 531.—Distribution of *Anguispira alternata* in North America; inset, distribution in Ohio.

Pyramidula solitaria var. albina F. C. Baker 1920, ibid.

Anguispira kochi form albina Goodrich 1932, ibid.

Anguispira kochi Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 274.

--- --- Oughton 1948, Zoogeogr. study, Ontario, p. 35.

--- --- La Roque 1953, Cat. Recent Moll. Canada, p. 320.

FIGURE 532.—Anguispira kochi, magnified; after F. C. Baker (1939a, p. 85).

Type locality.—Cincinnati, Ohio (Pilsbry, 1948, p. 592).

Diagnosis.—Shell depressed-globose, with conic spire, widely umbilicate; surface some shade of yellow, with two bands of brown, one on the periphery, the other above it; one or both bands may be absent; aperture rounded, lip simple.

Ecology.—Goodrich (1932, p. 35) states that this is "one of the typical mollusks of the old forests, and seldom found even in thick second-growth timber. It hides during the hours of bright days under rotting leaves or decaying logs. Because of its thick shell, protecting it against fast disintegration, the species is a common one among the subfossil shells of the forest loam and the gravel and sand banks of streams that have changed their courses." The species is neither as adaptable nor as hardy as Anguispira alternata and it is quite evident from the abundance of dead shells in localities where it can no longer be found alive that its range is becoming more and more restricted with time.

This is not as abundant or widespread a species as A. alternata but I have found it in numbers on Kelley's Island, Ohio, in dead leaves over very thin soil on top of glacial grooves in limestone, along the margin of sparse woods. In Michigan, it is plentiful in places in well-drained areas in sparse woods, over limestone. Conkin (1957, Naut. 71, p. 11) recorded it in Kentucky for bushy and forested slopes and creek bottoms with highly calcareous soil.

Distribution in Ohio (inset, fig. 533).—Generally, but sporadically, distributed in the entire State. Two or less distinct forms occur on the islands of Lake Erie in Ohio and still another (A. kochi roseoapicata) on islands in Ontario.

Geologic range.—F. C. Baker (1920a, p. 389) gives Yarmouth, Sangamon, Peorian, and "Wabash." "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); Middletown "pre-glacial deposits" and "Defiance sandy deposit" (Sterki, 1907a, p. 401, 402); Castalia marl (Sterki, 1920, p. 178); Sangamon (?), Bartholomew County, Indiana (Baker, 1920b, p. 456); subfossil (Goodrich, 1932, p. 35).

Anguispira kochi mynesites (Clapp) 1916

Pl. 15, figs. 7, 8

Anguispira kochi mynesites Oughton 1948, Zoogeogr. study, Ontario, p. 35.

Anguispira kochi mynesites La Roque 1953, Cat. Recent Moll. Canada, p. 320.

Type locality.—Mouse Island, Lake Erie, Ohio.

Diagnosis.—"Shell small, solid, straw-colored, with two brown bands, the lower wider and darker than the upper one which is sometimes almost obsolete. Apex pink like var. roseo-apicata. Whorls 5½. Compared with vars. strontiana and roseo-apicata it is constantly much smaller and intermediate in color, but with the banding of the latter" (Clapp, 1916).

Ecology.—An isolated population, favored by more or less constant moist air but for some reason dwarfed in size.

Associations.—Living: OHIO-3.

General distribution.—Mouse Island, Lake Erie, Ohio. Pilsbry (1948, p. 594) has seen wholly similar shells from as far west as Missouri.

Distribution in Ohio.—Mouse Island, Lake Erie.

Geologic range.—None recorded.

Remarks.—Pilsbry (1948, p. 594) noted that wholly
similar shells are found elsewhere, even as far west as Missouri, and added that this is an "ecologic or other form, occurring sporadically rather than a geographic race or subspecies." It seems best to consider the Mouse Island population as representatives of the typical form, isolated geographically by chance from the main population and showing characteristics due solely to the genetic pattern of the original individuals brought to the island. As such, no taxonomic significance is attached to the name.

Anguispira kochi roseoapicata (Clapp) 1916

Pl. 15, figs. 4-6

Pyramidula solitaria roseo-apicata Clapp 1916, Carnegie Mus. Annals, v. 10, p. 534, pl. 32, figs. 4-6.

--- --- --- La Rocque 1953, Cat. Recent Moll.

FIGURE 533.—Distribution of *Anguispira kochi* (eastern subspecies only) in North America; *inset*, distribution in Ohio.
Canada, p. 321.

Type locality.—North Harbour Island, Lake Erie, Ontario, Canada.

Diagnosis.—"Shell small, elevated, very heavy, with apical whorls pink Mature shells are mostly largely denuded, the epidermis which remains being in ragged patches. The pink apex is a very marked character in this variety" (Clapp, 1916). Most shells of this subspecies bandless, only a small proportion retaining one or two bands, which are commonly weak.

Ecology.—An island form, living in an environment with abundant moisture, but one that is unfavorable in its effect on the epidermis.

Associations.—Living: ONTARIO-11, 13, 14.

General distribution.—Islands in Lake Erie, in Ontario only.

Distribution in Ohio.—None recorded.

Geologic range.—None recorded.

Remarks.—Included here because of the close proximity of the known distribution to islands in Ohio.

Anguispira kochi strontiana (Clapp) 1916

Pl. 15, figs. 1-3

Anguispira kochi strontiana Ahlstrom 1930, Nautilus, v. 44, p. 45.

--- --- --- Oughton 1948, Zoögeogr. study, Ontario, p. 35.

Type locality.—Green (formerly Strontian) Island, Lake Erie, Ohio.

Diagnosis.—"Shell very heavy, coarsely striate, uniform straw-color without a trace of bands. Most specimens show traces of impressed spiral lines. This variety is much more elevated, heavier, and smaller than the typical banded form from the mainland" (Clapp, 1916).

Ecology.—A form favored by more or less constantly moist air on islands of Lake Erie where calcium carbonate is plentifully available in many outcrops of Silurian limestones and dolomites.

Associations.—Living: OHIO-2; ONTARIO-12.

General distribution.—Islands in Lake Erie, Ohio and Ontario.

Distribution in Ohio.—Green, Starve, Put-in-Bay (South Bass?) Islands.

Geologic range.—None recorded.

Genus Discus Fitzinger 1833

Gonyodiscus Fitzinger 1833, *ibid.*, v. 3, p. 98.

Patula Held 1837, Isis, p. 918.

Patularia Clessin 1877, Deutsch. Exc.-Moll.-Fauna, p. 86 (non Swainson, 1840).

Cratera "Megerle" Scudder 1882, Nomenclator Zoologicus, p. 81.

Type.—*Helix ruderata* Stud.

Diagnosis.—Shell opaque, of some shade of brown, with flammulate markings or plain; openly umbilicate; rib-striate, at least above the periphery; whorls increasing very gradually; aperture simple or with a columellar tubercle; peristome simple and thin.

General distribution.—Holartic realm, generally spread; in North America, south to Mexico and perhaps beyond.

Geologic range.—Upper Cretaceous to present. Widespread in the entire Pleistocene.

Discus cronkbitiei (Newcomb) 1865

Pl. 14, figs. 1-3

Patula striatella Call 1900, Moll. Ind., p. 381, pl. 4, fig. 3.

Pyramidula striatella Billups 1902, Nautilus, v. 16, p. 51.

Pyramidula cronkbitiei Dall 1905, Harriman-Alaska Exped., v. 13, p. 50.

Pyramidula striatella Dall 1905, *ibid*.

Discus cronkhitei anthonyi MacMillan 1940, ibid., p. 406, pl. 40, figs. 10, 11.

--- --- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 31, pl. 2, figs. 6, 7.

Discus cronkhitei Oughton 1948, Zoogeogr. study, Ont., p. 36.

Discus cronkhitei anthonyi La Rocque 1953, ibid.

--- --- La Rocque and Forsyth 1957, C. Cut, p. 85 ff.

Type locality.—Klamath Valley, Oregon.

Diagnosis.—Shell depressed, buff to brown, with low spire and widely open umbilicus; whorls convex, with widely separated axial ribs; aperture rounded, peristome thin, simple, dilated towards the columellar insertion.

Ecology.—"In the east it lives in humid forest, under dead wood, and among rotting leaves or grass in rather wet situations" (Pilsbry, 1948, p. 604). This is a species of wooded areas that lives in leaf litter or under logs and bark in wooded spots. Oughton (1948, 94 ff.) listed it for damp woodlands, especially those of deciduous trees and noted it occasionally in *Sphagnum* bogs.

Dimelow (1962, Naut. 76, p. 49) found it in Nova Scotia in a climax deciduous forest, on a gentle well-drained slope. Grimm (1959, Naut. 72, p. 125) collected it in Maryland under debris near railroad tracks, in the ruins of buildings, under deadwood near marble quarries, in leaf litter near railroad tracks, and under wet sandstone and pieces of wood in a field. Lindeborg (1949, Naut. 62, p. 129) listed it in Ontario from moss banks, under logs, and from moss on a tree trunk after rain.

Associations.—Living: MICHIGAN-30; MINNESOTA-1, 2, 3, 4, 5, 7, 8; OHIO-1, 6, 43; ONTARIO-7, 8, 10; QUEBEC-6; WISCONSIN-138, 139, 140, 141. Fossil: K-1, 2, 5, 6; I-3, 5; Y-2, 4, 5, 6, 7, 8, 12, 13, 14, 16, 17, 21; S-6; W-2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 17, 18, 22, 24, 26, 27, 28, 44, 64, 65, 66, 69, 73.

General distribution (fig. 534).—Newfoundland and Alaska, south to California, Arizona, New Mexico, and Texas.

Distribution in Ohio (inset, fig. 534).—Over the State; counties from which it is apparently missing are those from which little collecting has been done.

Geologic range.—Hibbard and Taylor (1960, p. 143) gave its range as Middle Pliocene to Recent, and added: "The single known Tertiary occurrence is in the Tee-winit formation, Jackson Hole, Teton County, Wyoming. . . . In the southern High Plains it is known from Kansan, Illinoian, and Wisconsin deposits." Yarmouth to Recent (A. B. Leonard, 1950, p. 35); Sappa, Crete-Loveland, Peoria to Recent. In the Peoria Loess (Tazewellian zone), *D. cronkhitei* is largely replaced by *D. shimeki* (Leonard, 1952, p. 19). Oklahoma, probably Illinoian (D. W. Taylor and Hibbard, 1955, p. 8). In Ohio, Billups (1902b, p. 51) collected it from the "Old Forest bed of the Ohio River"; Sterki (1907a, p. 402) obtained it from the "Defiance sandy deposit (loess?)"; La Rocque and Forsyth (1957, p. 85) from the Sidney Cut faunule (Early Wisconsin). As *D. cronkhitei anthonyi*, it has been recorded from the Illinoian and Wisconsinan of Kansas (Leonard and Frye, 1943, p. 457), and from the following late Wisconsin deposits in Ohio: Tinkers Creek marl (Sterki, 1920, p. 174), Castalia marl (Sterki, 1920, p. 178).

Variation.—For a long time, the eastern and western forms of this species were considered as subspecifically distinct and the eastern form was called *D. cronkhitei anthonyi* (Pilsbry). The distinction was abandoned as impractical by Pilsbry (1948, p. 604), who recognized a single subspecies, *D. cronkhitei castillensis* (Pilsbry), characteristic of eastern North America east of the Mississippi.

Discus cronkhitei castillensis (Pilsbry) 1898

Pyramidula striatella castillensis Pilsbry 1898, Naut., v. 12, p. 86.

Type locality.—Catskill Mountains in Tannersville Valley, Greene County, New York.
Diagnosis. — "The shell is pale brown, obtuse but distinctly angular at the periphery, flattened below the angle; sculpture a little sharper and umbilicus somewhat wider than usual in D. cronkhitei. Height 2.5 mm., diameter 5 mm.; 4 whorls" (Pilsbry, 1948, p. 605).

Ecology. — "Found on rotten logs and among dead leaves in dryer situations than eastern D. cronkhitei generally, often at higher elevations and in hilly or mountainous country" (Pilsbry, 1948, p. 606). H. B. Baker (1922b) listed it from several habitats in Dickinson County, Michigan, as follows: (27) beaver pond damming a creek, with floating vegetation and logs, even forming sedge-covered islands; (38) sandy outwash plains, with pine and second growth; (39) young hardwoods, in small hollow between granitic ridges; partially burned, some low-growing plants; (40) virgin hardwoods of the Menominee trough; (41) hardwoods on morainal ridges of the Calumet Trough, particularly in

FIGURE 534.—Distribution of Discus cronkhitei in North America; inset, distribution in Ohio.
maple logs. Archer (1934c, p. 139) listed it from limestone talus and in the hardwoods of Mackinac Island, Michigan.

Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State.

Ingram (1946, Naut. 59, p. 91) found this species in all of the wooded areas of the Huyck Preserve in New York State, "adhering to the undersurfaces of logs. It was also a common lake margin snail where it was found beneath prostrate decaying fence posts resting on blackberry bushes. Individuals were also taken from beneath maple leaf humus and fallen bark in young maple stands and maple hedge-rows."

Associations.—Living: MICHIGAN - 1, 4, 7, 8, 9, 40.

General distribution (fig. 535).—New England, New York, Ontario, and New Jersey, west to Michigan, Minnesota, and South Dakota.

Distribution in Ohio (inset, fig. 535).—Not as yet

FIGURE 535.—Distribution of Discus cronkritei catskillensis in North America; inset, distribution in Ohio.
definitely recorded for the State but it is likely that angulated specimens of *D. cronkhitei*, formerly placed under *D. cronkhitei anthonyi*, may belong under this subspecies. It may be expected in the northern and eastern portions of the State and even perhaps, as a fossil, in the western counties, as Wayne (1954, p. 1320) collected it from pro-Kansas loess in Indiana.

Geologic range.—The only records appear to be the following: Wayne (1954, p. 1320), pro-Kansas loess in Putnam County, Indiana; Sheatsley (1960, p. 103), Aultman deposit, Stark County, Ohio. On the other hand, its fossil occurrence may be confused by identifications with subspecies *anthonyi* in the past.

Discus macclintocki (F. C. Baker) 1928

--- Fig. 536

--- F. C. Baker 1931, Jour. Paleontology, v. 5, p. 281, pl. 32, figs. 3a, b.

Discus macclintocki Morrison 1940, Nautilus, v. 33, p. 123.

It appears, therefore, that the ecology of the species is closely similar to that of *D. cronkhitei*. Hubricht (1955, Naut. 69, p. 34) found this species living in Bixby State Park, Iowa, in pockets of leaves and moss in crevices exposed to the cold air (about 50° F.) blowing from a cave.

Associations.—Fossil: W.-60.

General distribution (fig. 537).—Illinois, Iowa, Missouri as a fossil (Peorian in Illinois) and living in Iowa. Farmdale? Loess in Cuyahoga County, Ohio. The species is to be expected in Indiana and other localities in Ohio although its distribution may be restricted to fossil deposits of early Wisconsin age.

Distribution in Ohio (inset, fig. 537).—Farmdale? Loess, near Cleveland, Cuyahoga County (A. B. Leonard, 1953, p. 372 ff.).

Geologic range.—Peorian (Illinois); Pleistocene, unspecified, Missouri and Iowa; Wisconsin (Farmdale?) Ohio. The discovery of living specimens in Iowa makes it likely that this species will be found in Pleistocene deposits of Peorian and younger age elsewhere.

Variation.—The subspecies *D. macclintocki angulatus* F. C. Baker (1928, Naut. 41, p. 134) has been described from loess of Yarmouth age in Illinois. As late as 1948 (Pilsbr, 1948, p. 607) it was unknown from any other locality.

Discus patulus (Deshayes) 1830

--- Fig. 538

Patula perspectiva Call 1900, Moll. Ind., p. 381, pl. 5, fig. 4.

Pyramidula perspectiva Billups 1902, Nautilus, v. 16, p. 51.

Patula perspectiva Sterki 1907, Ohio Acad. Sci. Proc., v. 4, p. 377.

Pyramidula perspectiva Sterki 1920, Ohio Jour. Sci., v. 20, p. 178.

Discus patulus angulatus Kuchka 1938, Nautilus, v. 52, p. 14, pl. 2, fig. 4.

Discus patulus carinatus MacMillan 1940, Nautilus, v. 53, p. 143, new name for *D. patulus angulatus* Kuchka (preoccupied by *D. macclintocki angulatus* F. C. Baker 1928); not *Helix (Patula)* perspectiva carinata Gratacap 1901.

Discus patulus MacMillan 1940, Carnegie Mus. Annals, v. 27, p. 399, pl. 41, figs. 16, 17.

--- Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 274.

--- Oughton 1948, Zoögeogr. study, Ontario,

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 31, pl. 2, figs. 4, 5.

Type locality.—"Environs of New York" (De-shayes); "near Lake Erie" (Say).

Diagnosis.—Shell depressed, convex above, broadly umbilicate and deeply concave below, cinnamon-brown, the base generally lighter; whorls regularly arcuately rib-striate, the riblets rounded, slightly nar-

FIGURE 537.—Distribution of Discus macclintocki in North America; inset, distribution in Ohio.
rower than the intervals, nearly 4 in 1 mm. on the front of the last whorl; below the periphery riblets weakened and others interpolated; within the umbilicus riblets strong again; whorls $5\frac{1}{2}$, strongly convex, slowly widening, the last rounded peripherally, very convex below; aperture simple, but with a rounded tubercle or callous tooth a short distance within on the callus which lines the columellar wall (modified from Pilsbry, 1948, p. 608).

Ecology.—In the rich mold around rotting logs, and

FIGURE 538.—Discus patulus, magnified; after F. C. Baker (1931c, pl. 32, figs. 3A, B).

FIGURE 539.—Distribution of Discus patulus in North America; inset, distribution in Ohio.
under their loose bark, or burrowing in the soft, rotten wood. Oughton (1948, p. 94 ff.) listed this as a species of damp woodlands, especially those of deciduous trees. Archer (1935, p. 81) found it almost abundant under logs and in heavy leaf mold and around the bases of rocks in the Asheville region of North Carolina. The winter habits of this species, at Ithaca, New York, in beech—yellow-birch and sycamore woodlands, have been described by Ingram (1944, Naut. 58, p. 25-27).

General distribution (fig. 539).—West of the Alleghenies between the Potomac and Mohawk valleys, westward to Iowa, Missouri, and Arkansas, south to Georgia, Alabama, and Florida. Its northward limit is in Ontario, in Brant, Elgin, Halton, and Hasting Counties.

Distribution in Ohio (inset, fig. 539).—Over the State, although records are not available for all counties.

Geologic range.—F. C. Baker (1920a, p. 389) gave Yarmouth, Sangamon, Peoria, and "Wabash." Lower and upper PRO-Tazewell loess, Cleveland, Cuyahoga County, Ohio (A. B. Leonard, 1953, p. 372 ff.); Castalia marl (Sterki, 1920, p. 178); "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51).

Subfamily HELICODISCINAE

Genus Helicodiscus Morse 1864

Helicodiscus La Rocque 1953, Cat. Recent Moll. Canada, p. 322.

Type. — *Helix lineata* Say (= *H. parallelopus*).

Diagnosis.—Shell small, disk- or coin-shaped, with nearly flat spire and broadly open umbilicus; pale, unicolored, typically spirally striated or lirate, the embryonic 1¾ whorls often smoother; whorls narrowly coiled, of small caliber; at all stages of growth, the last whorl usually with one to three pairs of small conical teeth at irregular intervals within the outer and basal walls of its cavity (spiral threads and teeth wanting in subgenus *Hebetodiscus*); aperture lunate, lip unexpanded, sharp.

General distribution.—Southern Canada southward to Mexico; one species in the Columbia River drainage, but otherwise wanting on the Pacific slope and in the northern mountain states.

Geologic range.—Yarmouth to present (A. B. Leonard, 1950, p. 34).

Helicodiscus parallelopus (Say) 1821

Pl. 16, figs. 1-3

Helicodiscus lineatus Morse 1864, Portland Soc. Nat. History Jour., v. 1, p. 25, figs. 61, 62; pl. 2, fig. 3; pl. 7, fig. 63.

--- --- Call 1900, Moll. Ind., p. 382, pl. 4, figs. 5, 6.

--- --- Dall 1905, Harriman-Alaska Exped., v. 13, p. 52, fig. 36.

--- --- Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 274.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 34, pl. 2, figs. 10, 11.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 322.

Type locality.—Council Bluffs, Iowa (Pilsby, 1948, p. 627).

Diagnosis.—Shell small, disk-shaped, the upper surface flat or very slightly convex; broadly umbilicate; thin, pale yellow, with a greenish tint, nearly lusterless; whorls 4 to 4½, convex, very narrow and slowly increasing, the last rounded at periphery and base; sculpture of numerous spiral threads; interior of
last whorl with small conical teeth in pairs, within outer and basal walls, commonly two pairs, rarely only one or three or none.

Ecology. — Found on decaying wood and damp leaves, in shady, humid places; commonly collected in leaf sifts and stream debris. H. B. Baker (1922b) found this species common in moist places in Dickinson County, Michigan. He listed the following habitats: (36) outcrop of Quinnesec schist, in dead leaves and humus, collected in hollows of the rocks, overgrown with bearberries and scattered hardwoods and conifers; (38) sandy outwash plains, pine and second growth; (41) hardwood-covered moraine ridges, particularly in maple logs; (42) cedar-tamarack bog, under bark of freshly cut cedar stumps; (43) arboretum swamp: swampy thicket near mouth of a small creek, with arboretum and deciduous trees; (46) clearing in hardwoods; snails in and around old stumps and logs; one of the drier alluvial habitats; (47) floodplain of creek, about 2 feet above July water level; (48) damp hollow in floodplain of Menominee River, with brush of tangle, dogwoods, hazels, and small ashes. Archer (1934c, p. 139) recorded it for hardwoods under leaves and in the limestone talus near the fort on Mackinac Island, Michigan. Oughton (1948, p. 94 ff.) found it in damp woodlands, especially those of deciduous trees in Ontario.

Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. Burch (1955, Naut. 69, p. 66) tabulated its relationships to soil factors in eastern Virginia. Ingram (1941, Naut. 55, p. 14-15) collected it under stones, on a creek floodplain. He (1944, Naut. 58, p. 25-27) described its winter habitats at Ithaca, New York, in beech-yellow-birch and sycamore woodlands. Solem (1952, Naut. 65, p. 129) collected it from virgin pine forest with undergrowth of thimbleberry, in beach drift of Lake Michigan, and near a small freshwater lake on the Door Peninsula of Wisconsin. Teskey (1955, Naut. 69, p. 70-71) found it in leaf mold on loose shale in the Warm Springs area of Georgia. In the coastal area of South Carolina, Rebber (1949, Naut. 62, p. 125) found it under fallen leaves and near fallen logs. In Virginia, Burch (1954, Naut. 68, p. 32) listed it as very common throughout the woodland areas; most common in hardwood forests, exceeded in abundance only by Zonitoides arboreus. In Maryland, Grimm (1959, Naut. 72, p. 125) found it in quarries, in woods, in leaf litter and under debris near railroad tracks, and in the ruins of an old building.

"This small mollusk was the dominant bog species where it was found in abundance on hummocks at the base of bog ferns. None were found in forest stands" (Ingram, 1946, Naut. 59, p. 91, observations on the Huyck Preserve, New York State).

Associations. — Living: MICHIGAN-7, 8, 25, 26, 32, 33, 34, 39, 40; MINNESOTA-2, 4, 5, 7, 22b; OHIO-1, 6, 7, 25, 43; ONTARIO-3, 8, 12; QUEBEC-6; WISCONSIN-138, 139, 140, 141, 142, 144. Fossil: N-2; K-2, 3, 14, 15, 17, 18, 23, 24, 25; I-3; S-1, 2, 3, 4, 5; W-8, 9, 14, 15, 21, 22, 24, 28, 36, 57, 58, 59.

General distribution (fig. 540).— Manitoula east to Newfoundland, Prince Edward Island, New Brunswick, and Maine, south to Oklahoma, Arkansas, Alabama, and Georgia.

Distribution in Ohio (inset, fig. 540).— "Over the state, common" (Sterki, 1907a). This statement is borne out by records which cover every portion of Ohio but the county records are not as numerous as might be desired.

Geological range. — F. C. Baker (1920a, p. 389) gave Aftonian, Yarmouth, Sangamon, and "Wabash." Yarmouth to Recent (A. B. Leonard, 1950, p. 34); Oklahoma, probably Illinoian (D. W. Taylor and Hibbard, 1955, p. 8); "Old Forest bed of the Ohio River" (Bilups, 1902b, p. 51); Castalia marl (Sterki, 1920, p. 178); Sangamon, Bartholomew County, Indiana (F. C. Baker, 1920b, p. 455). Hibbard and Taylor (1960, p. 144) gave the range as Nebraskan or Aftonian to Recent. Clark (1961, p. 26) identified the species from the Castalia deposit, in Ohio.

Helicodiscus singleyanus (Pilsbry) 1890
Pl. 16, figs. 5, 8, 11

Zonites singleyanus Pilsbry 1890, Acad. Nat. Sci. Philadelphia Proc. 1889, p. 84; ibid., 1888, pl. 17, fig. M.

Hyalinia laeviuscula Sterki 1892, Nautilus, v. 6, p. 53.
Hyalinia texana Sterki 1892, Nautilus, v. 6, p. 54; apparently an error for H. laeviuscula.

Type locality. — New Braunfels, Comal County, Texas.

Diagnosis. — Shell minute, depressed, thin, conical, translucent; spire low but convex; surface glossy,
weakly marked by ripples of growth and a few somewhat deeper though inconspicuous grooves; spiral striae very faint, numerous, visible only in good specimens.

Ecology. "It seems to be a burrowing snail" (Pilsbry, 1948, p. 636). D. W. Taylor summarized the habitat of this species as follows: damp to dry habitat, damp, protected places or relatively dry, exposed habitats. This species is more tolerant of drouth than others and requires little cover. In Maryland, Grimm (1959, Naut. 72, p. 125) found it around the foundation of an old burned house, in ruins of another building, and in a quarry.

Associations. Living: OHIO-43. Fossil: P-1, 3, 4; N-1, 2; A-1; K-3; S-2, 4, 5, 6; W-3, 9, 17, 21, 26.

General distribution.—New Jersey, Maryland, and Pennsylvania, west to South Dakota, south to Arizona, New Mexico, Texas, Louisiana, Alabama, and Florida.

FIGURE 540.—Distribution of Helicodiscus parallelus in North America; inset, distribution in Ohio.
Distribution in Ohio.—Tuscarawas County; Troy, Miami County (Sterki, 1907a, p. 373).

Geologic range.—F. C. Baker (1920a, p. 389) gave only "Wabash" for the species. Crete-Loveland sands and silts, Peoria Loess (Tazewellian zone) to Recent (A. B. Leonard, 1952, p. 21); Oklahoma, probably Illinoian (D. W. Taylor and Hibbard, 1955, p. 8); "Defiance sandy deposit (loess?)," probably Wisconsin, recorded as Zonitoides laevisculus by Sterki (1907a, p. 402). Hibbard and Taylor (1960, p. 144) gave late Pliocene to Recent.

Remarks.—The Ohio records probably belong under H. singleanus inermis and are so treated in this report.

Helicodiscus singleanus inermis H. B. Baker 1929

FIGURE 541.—Helicodiscus singleanus inermis, magnified; after F. C. Baker (1939a, p. 89).

Type locality.—Dove (Martin Spring), Marion County, Tennessee.

Diagnosis.—Shell yellowish conicose, with darker varicoid lines; whorls 4½; sculpture of growth lines weak except for a few varicoid ones on the last whorl; surface weakly punctate under high magnification but without trace of spiral ornamentation of any sort.

Ecology.—The type locality, Dove, Marion County, Tennessee, yielded a single specimen from leaf humus near the base of limestone ledges (H. B. Baker, 1929, Naut. 42, p. 87). F. C. Baker (1935, Naut. 48, p. 106) recorded "a number of this recently described race" from Turkey Run State Park, Indiana, and noted that it is common in Indiana and Illinois, but without further ecological details. Morrison (1939, Naut. 53, p. 47) listed this as one of the species of snails from a rooftop deposit in a cave in Virginia. He did not find it living nearby but it probably occurs there.

General distribution (fig. 542).—Similar to that of H. singleanus s.s., but not as extensive; New Jersey west to Indiana, south to Louisiana, Mississippi, Alabama, and Florida.

Distribution in Ohio (inset, fig. 542).—Paulding County, one lot in Museum of Zoology, University of Michigan.

Geologic range.—Not recorded.

Remarks.—The status of the subspecies is in some doubt. It was recognized by H. B. Baker (1929, Naut. 42) and by Pilsbry (1948) but both recognized that the absence of spiral sculpture, categorically stated in the description of the subspecies, is a variable character and one which cannot be discerned on worn specimens. The subspecies is included here because of the Ohio record previously mentioned, but it is quite likely that the subspecies will eventually be considered as identical with the typical form.

Subfamily PUNCTINAE Morse 1864

Punctinæ Morse 1864, Portland Soc. Nat. History Jour., v. 1, p. 27.

Genus Punctum Morse 1864

Punctum Morse 1864, Portland Soc. Nat. History Jour., v. 1, p. 27.

Punctum La Rocque 1953, Cat. Recent Moll. Canada, p. 322.

Type.—Helix minutissima Lea.

Diagnosis.—Shell very minute, umbilicate, subdiscoidal with convex spire; unicolored; sculpture of oblique delicate striate with or without spaced ribs, and excessively minute spiral striae; whorls about 4, convex, the first 1½ smooth or lightly striate spirally, rather indistinctly demarked from those following, the last whorl cylindric; aperture lunate-rounded; the lip simple and thin.

General distribution.—Throughout the Holarctic realm, also South Africa and Mexico. One species, P. bristolii (Gul.), in Bermuda.

Geologic range.—Upper Oligocene to present in Europe. Pleistocene to present in North America.

Punctum minutissimum (Lea) 1841

Punctum pygmaeum of American authors, not of D森parnaud.
Punctum pygmaeum Dall 1905, Harriman-Alaska Exped., v. 13, p. 53.
Punctum minutissimum Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 34, pl. 2, fig. 27.
--- La Rocque 1953, Cat. Recent Moll. Canada, p. 322.

FIGURE 542.—Distribution of Helicodiscus singleyanus inermis in North America; inset, distribution in Ohio.

FIGURE 543.--- *Punctum minutissimum*, magnified; after F. C. Baker (1939a, p. 90).

Type locality. Vicinity of Cincinnati, Ohio.

Diagnosis.—Shell very minute, depressed conoid, umbilicate; thin, corneous or light brown, somewhat translucent, shining; postnuclear whorls with close, somewhat unequal, very delicate axial striae and very fine and faint spiral lines, especially on the base of the last whorl; whorls 3¼, convex, the last well rounded; aperture lunate, the lip simple and acute.

Ecology.—Found on damp leaves, around decaying logs, chiefly in dense hardwood growths. This species prefers the rotten bark of beech trees and Woody fungi such as *Polyporus* and *Boletus*.

Oughton (1948, p. 94 ff.) listed it from both damp and drier, more open woodlands, especially those of deciduous trees in Ontario. Burch (1955, Naut. 69, p. 66) gave details of its relationships to soil factors in eastern Virginia. Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. In Maryland, Grimm (1959, Naut. 72, p. 125) recorded it for woods beside a road, in leaf mold.

Associations.—Living: MICHIGAN: 18, 25, 26, 32, 33; OHIO: 1, 43; ONTARIO: 3; QUEBEC: 6. Fossil: K-6; Y-1; I-5, 7; S-1; W-28, 56, 57, 58, 62, 63, 64, 65, 70.

General distribution (fig. 544).—Newfoundland west to Ontario, Michigan, South Dakota, Idaho, and Oregon, south to New Mexico, Mexico, Georgia, and Florida. Distribution in Ohio (inset, fig. 544).—"Over the state" (Sterki, 1907a, p. 378). Records are sparse but this is probably due to lack of collecting. Pilsbry (1948, p. 645) mentioned only the type locality; Eggleston (ms. records) collected it in Licking and Washington Counties, and there are specimens from Auglaize and Fulton Counties in the University of Michigan collections.

Family ARIONIDAE

Genus Arion Férussac 1821

This is a genus of slugs in which the shell is reduced to rare calcareous granules under the mantle. The probability of a fossil record for these slugs is practically nil. On the other hand, they are important in the living molluscan fauna, especially in urban areas. To illustrate the pattern of distribution of these slugs, a map showing that of *A. bortensis* is given here (fig. 545) and the following notes on ecology of *A. circumscriptus* may be of interest. Both are widely introduced in North America and presumably originated in Europe where they are also widespread.

Ecology of *Arion circumscriptus* Johnston.—Ingram (1946, Naut. 59, p. 92) reported on the Huyck Preserve in New York State: "Individuals avoided forest areas. They were abundant in fields at the bases of berry roots, and on flood plains beneath logs and debris piles. Turning boards around human habitations revealed good collecting grounds. In oak hedge-rows specimens were taken curled up in down-turned acorn cups."

In the Ottawa region, I have collected it mainly in the vicinity of houses and farm yards. It took refuge under the bottom layer of logs in wood piles but also under boards, pieces of cardboard, and the bases of birdbaths. I have also collected it under flower pots and broken pieces of discarded flower pots. It is partial to the vicinity of compost heaps but it seems to thrive equally well under flat flagstones, in this case Ordovician limestone. In Michigan, it was abundant around trash heaps by the side of a country road, under debris of all sorts under sparse tree cover.

Family PHILOMYCIDAE Keferstein 1866

This is a large family of Asiatic and American slugs which have very little chance of preservation as fossils since the shell is completely absent. They are represented in the living molluscan fauna of Ohio by two genera, *Philomyctus* and *Pallifera*, and several species which are listed below for the sake of completeness. Their present distribution (see figs. 546-550) is of interest from the standpoint of Pleistocene history as it does not follow the pattern common in land snail genera found on both sides of the Pacific. In this case, the family is represented in Japan and China and south to Java and the Celebes on the Asian side but on the American side it is absent from the mountain and Pacific states and from the West Indies. It is eastern in distribution but not confined east of the Mississippi, as representatives of *Philomyctus* are known as far west as Oklahoma, Texas, Louisiana, Arkansas, Missouri, and Iowa, and of *Pallifera* as far west as Illinois and Missouri. It has penetrated into
Mexico and Central and South America as far south as Columbia. This distribution is not one that would be expected on the basis of the migration routes open during Pleistocene time, for the whole Pacific slope was then open to molluscan invasion. Possibly this group of slugs penetrated to America in Tertiary time and their range has been progressively restricted since then.

The Ohio species, together with references to Pilsbry's monograph, are the following:

Philomycus carolinianus (Bosc) 1802; Pilsbry, 1948, p. 753, fig. 404 (see also fig. 551, this bulletin).

Philomycus carolinianus flexuolaris Rafinesque 1820; Pilsbry, 1948, p. 756, fig. 405.

Pallifera dorsalis (Binney) 1842; Pilsbry, 1948,

FIGURE 544.—Distribution of *Punctum minutissimum* in North America; inset, distribution in Ohio.
p. 760, figs. 407a-f; 408, 409.
Pallifera obioensis (Sterki) 1916; Pilsbry, 1948, p. 763, fig. 410a, b.
Pallifera hemphilli (W. G. Binney) 1885; Pilsbry 1948, p. 765, figs. 407g, 411d (North Carolina and Georgia to Michigan).
Pallifera fosteri F. C. Baker 1939; Fieldbook Ill. land snails, p. 133, fig.

Ecological notes on two species are given here as illustrations.
Ecology of Philomycus carolinianus.—Ingram (1940, Naut. 54, p. 87) has described the daylight activity of this species. Dimelow (1962, Naut. 76, p. 49) has recorded it from climax deciduous forest on a gentle well-drained slope in Nova Scotia (var. flexuolaris). Oughton (1948, p. 94 ff.) listed it for damp woodlands,

FIGURE 545.—Distribution of Arion bortensis in North America.
PHILOMYCIDAE

especially those of deciduous trees. Archer (1934c, p. 140) found it under leaves and logs in the hardwoods on Mackinac Island, Michigan, but only immature specimens were found. Ingram (1949, Naut. 62, p. 86-93) summarized his observations on this species in New York State as follows: of arboreal tendencies, in beech-hemlock stands especially, favoring beech over hemlock; active throughout all hours of the day, in sun or shadow; rains bring it out, crawling up beech trees up to 60 feet; in summer, two to six individuals under sprung bark of a beech or yellow birch log; it is not solitary in habit, is often taken on gills and stalks of mushrooms in bright daylight; slime tracks are tenacious and conspicuous; its food is fungi, but not shelf fungi; it also feeds on algae growing on beech bark; mushrooms eaten are mainly soft but may range to Polyporus sulphureus, which is medium hard in consistency.

FIGURE 546.—Distribution of Philomycus carolinianus in North America; the records on this map may include a few that should be referred to P. carolinianus flexuolaris; inset, distribution in Ohio.
Ingram (1946, Naut. 59, p. 92) gave the following for the Huyck Preserve in New York State: "This was the most common on the forest slugs. It was one of the dominant animals in the beech-hemlock forest areas. Its local range did not extend into fields or orchards. On the flood plains it was an outer marginal form. In forest areas during summer dry periods they were found concealed beneath humus, logs, fallen bark, and in decaying log crevices. Occasionally they were taken from beneath large mushrooms."

Ecology of Pallifera dorsalis.—Found in damp woodlands, especially those of deciduous trees (Ough-ton, 1948, p. 94 ff.). H. B. Baker (1922b) found it in only one locality, a particularly rich piece of hardwoods near Foster City, Michigan. Dimelow (1962, Naut. 76, p. 49) has collected it in Nova Scotia in

FIGURE 547.—Distribution of *Philomycus carolinianus flexuolaris* in North America; some of these records may refer to other subspecies; inset, distribution in Ohio.
climax deciduous forest on gentle well-drained slopes. Lindeborg (1949, Naut. 62, p. 129) found a single specimen, in moss on a tree trunk after rain.

Family **Succineidae**

Diagnosis.—Shell thin, usually external, ovate, imperforate, of few (up to 4) whorls, the spire usually short, sometimes wanting; aperture large, ovate, with thin, simple peristome (or in *Hyalimax* the shell is reduced to a convex plate concealed in the mantle).

General distribution.—Practically worldwide, on all of the continents and on many oceanic islands.

Geologic range.—Eocene to present. The oldest representative of the genus, according to Henderson

FIGURE 548.—Distribution of *Pallifera dorsalis* in North America; inset, distribution in Ohio.
(1935, p. 158), seems to be *S. papillospira* White of the Green River Eocene.

Remarks.—Until recently, all the Ohio species were placed in the genus *Succinea*. In this report four genera, *Succinea*, *Oxyloma*, *Quickella*, and *Catinella*, are recognized.

Genus Oxyloma Westerlund 1885

Oxyloma Westerlund 1885, Fauna Palæart. Reg. Bin-
nenconch., v. 5, p. 1.
Succinea section 4, Quick 1933, Malac. Soc. London Proc., v. 20, p. 311.
Succinea of American authors, in part.
Oxyloma La Rocque 1953, Cat. Recent Moll. Canada, p. 326.

FIGURE 549.—Distribution of *Pallijera fosteri* in North America; inset, distribution in Ohio.
Type.—Succinea dunkeri Pfeiffer.

Diagnosis.—Shell very thin, with the whorls somewhat flattened above the periphery and the spire generally short; the shells almost indistinguishable from those of Succinea but can generally, from the anatomy of the living mollusks, be assigned to species which are known to belong to one of the two genera.

General distribution.—Northern continents and South Africa; southern and insular limits elsewhere not known.

Geologic range.—Pleistocene, at least from Yarmouth, to present.

Remarks.—Pilsbry (1948, p. 775 ff.) has divided the genus into two sections; the North American mainland species belong in section Neoxyloma Pilsbry.

Oxyloma decampii gouldi Pilsbry 1948

FIGURE 550.—Distribution of Pallifera ohioensis in North America; inset, distribution in Ohio.
Succinea retusa Lea, in part, of many recent authors, *fide* Pilsbry.

FIGURE 551.—*Philomycus carolinianus*, magnified; after F. C. Baker (1939a, p. 131).

FIGURE 552.—Distribution of *Oxyloma decampii gouldi* in North America; *inset*, distribution in Ohio.
Succinea retusa

Type locality.—Near Cincinnati, Ohio.

Diagnosis.—"Typically this species differs from *O. d. gouldi* by the larger size and the broader, more retracted and less deeply curved basal margin of the aperture. However, these are variable qualities; in some of the forms temporarily placed here as races of *retusa*, the basal arc of the peristome is rather deeply arched. The color is colonial buff" (Pilsbry, 1948, p. 786).

Ecology.—Taylor described the habitat of this species as semiaquatic, riparian: among sedges, watercress, and other plants at the water’s edge, or in debris and vegetation in marshy places. Oughton (1948, p. 94 ff.) listed it for wet locations and noted that it may be collected in large numbers in stream drift; it lives on margins of ponds, streams, and other wet places. H. B. Baker (1922b) listed the following specific habitats: (3) swampy shore of a lake; large bog with floating marsh at its edge; (14) permanent pond;
bayou off the East Branch formed by old river channel; pool choked by vegetation; (17) beaver meadow: site of a former beaver pond, not as yet grown over by surrounding thickets; covered with grass, except in a few lower spots where ponds formed after rains; (27) beaver pond damming a creek, with floating vegetation and logs, even forming sedge-covered islands; (28) swampy cutoff of Hancock Creek, filled with water only when the creek was in flood; ditch about 6 feet wide and 2 feet deep, partially choked by logs; (44) ash-cedar swamp, snails in humus around bases of trees; (49) floodplain of Sturgeon River, flooded even in slight overflows, rather unfavorable to land mollusks. Muchmore (1959, Naut. 72, p. 88) recorded this as one of the few species not occurring under stones, even on floodplains, in New York State. Ingram (1940, Naut. 54, p. 87) has described its daylight activity and (1941, Naut. 55, p. 14-15) recorded it from the floodplain of Six

FIGURE 554.—Distribution of Oxyloma retusa in North America; inset, distribution in Ohio.
Mile Creek, under stones, at Ithaca, New York. Solem (1952, Naut. 65, p. 129) recorded it for an exceedingly damp area along the shore of Lake Michigan, on the Door Peninsula in Wisconsin. Ingram (1946, Naut. 59, p. 92) gave the following: "Individuals were confined to lake and pond margins. Collections were made from partially submerged logs in Myosotis lake and in Lincoln pond. Individuals were rarely collected from small stagnant ponds."

Associations.—Living: MICHIGAN-5, 15, 16, 17, 19, 24, 25, 36, 40; MINNESOTA-6, 13b, 16; NEW YORK -34; OHIO-7, 29, 31, 39, 43; ONTARIO-7, 8, 10; WISCONSIN-138. Fossil: N-2; S-6; W-267, 27, 28, 35, 56, 57, 58, 59, 73. Oxyloma retusa bigginsi, living: OHIO-4, 19.

General distribution (fig. 554).—"Yukon and British Columbia east to Labrador and Maine" (La Roque, 1953, p. 327). The range as given by Pilsbry (1948, p. 786) is much more restricted: Ohio, Illinois, Iowa, Minnesota, North Dakota, Montana.

Distribution in Ohio (inset, fig. 554).—"Over the state" (Sterki, 1907a, p. 380). Manuscript records by Eggleston and others cover most of the State. In some cases, these records should perhaps be placed under O. decampii Gould.

Geologic range.—F. C. Baker (1920a, p. 389) gave Aftonian, Yarmouth, Sangamon, and "Wabash." The species is not mentioned by A. B. Leonard (1950,1952), who placed midwestern records under other species. Hibbard and Taylor (1960, p. 141) gave "Early Pleistocene to Recent." In Ohio, the species has been recorded for deposits of Wisconsin age but the identifications are subject to revision: "Defiance sandy deposit (loess?)" (Sterki, 1907a, p. 402); Tinkers Creek marl (Sterki, 1920, p. 174); Castalia marl (Sterki, 1920, p. 181); Orleton mastodon site (La Roque, 1952, p. 12 ff.); Hunter's Run (La Roque and Conley, 1956, p. 326 ff.); Newell Lake deposit (Zimmerman, 1960, p. 20); and Castalia deposit (Clark, 1961, p. 26).

Genus Quickella C. R. Boettger 1939

Succinea, section 1, Quick 1933, Malac. Soc. London Proc., v. 20, p. 310.

Type.—Succinea arenaria Bouchard-Chantereaux.

Diagnosis.—"The penis is without a sheath, and has an appendix in the form of a very short, blunt protruberance, lateral at the apex (or, in the subgenus Mediappendix, a sac arising at and below the middle). There is no distinctly differentiated epiphallus. The vagina is very short. Jaw of the usual arcuate form with rather strong median projection. Marginal teeth of radula few, about equal in number to the laterals, and with very short, broad basal plates." The shell is succineiform, with strongly rounded whorls and produced spire" (Pilsbry, 1948, p. 842-843).

General distribution.—Europe, Atlantic and Channel coast zone of France, Holland, and southern England. America (subgenus Mediappendix): coastal New Jersey and south to North Carolina; Midwest (Indiana and surrounding states); Pacific states.

Geologic range.—Pliocene: Wisconsin, perhaps older.

Remarks.—Until 1958, When Hubricht (1958, Naut. 72, p. 61) pointed out that Succinea avara and S. verma differed specifically, this genus was thought to be restricted to the coastal areas of North America. His placing of S. verma in genus Quickella, which appears to be correct, extends the range as given by Pilsbry (1948, p. 843). This development illustrates the unsettled and confusing state of classification of the Succineidae of North America and indicates that the final revision of the group may be quite different from the current one.

Quickella verma (Say) 1829

Fig. 555

------ ------ ------ La Roque 1953, Cat. Recent Moll. Canada, p. 328.

Quickella verma Hubricht 1958, Nautilus, v. 72, p. 60.

Type locality.—Near New Harmony, Indiana.

Diagnosis.—Sutures very deeply indented, giving the whorls of the spire the appearance of being almost separated; color creamous to bright golden yellow.

Ecology.—Margins of ponds (Say, 1829). Mozeley (1926, Naut. 40, p. 55) listed this species from near a lake in the Jasper Park region of Alberta. He gave no details on the habitat, but this record is an indication of this snail's ability to withstand cold and a short summer season.
General distribution (fig. 556).—Indiana and neighboring states. It has been recorded from Alberta, Manitoba, Ontario, Quebec, and southward, but the identifications require confirmation.

Distribution in Ohio (inset, fig. 556).—Tuscarawas County (Sterki, 1907a, p. 380); it probably occurs elsewhere in the State but has been included under *Sucinea avara*.

Geologic range.—Pleistocene (Sangamon?), Bartholomew County, Indiana (F. C. Baker, 1920b, p. 456).

Remarks.—Hubricht (1958, Naut. 72, p. 61) stated that *Q. vermeta* is not a synonym of *Sucinea avara* but differs specifically from that species. He has dissected specimens from New Harmony, Indiana, the type locality, which indicate that *Q. vermeta* is related to *Q. vagans* and therefore a member of the genus *Quickella*. Although Hubricht appears to be the first to place this species in a genus other than *Sucinea*, he is not...
the first to note its distinctness from *S. avara*. Sterki (1907a, p. 380) insisted on the validity of *S. vermeta* as a variety. Bryant Walker, quoted by Pilsbry (1948, p. 839), believed the two forms to be identical and Pilsbry agreed with that opinion, stating that *S. avara vermeta* was probably the "full development of the species in humid places," but qualifying his opinion by noting that "the variations observed in the genitalia may indicate the existence of several species or races." The shell characters suggest a close relationship between the two forms and it may well be that the genitalia of *S. avara* will indicate that it should also be transferred to *Quickella*. Until these points have been elucidated, *S. avara* and *Q. vermeta* are considered separately in this report and placed in separate genera, following Hubricht.

Genus Succinea Draparnaud 1801

Lucena Oken 1815, Lehrbuch der Naturgeschichte, Zool., v. 3, p. 311-312.

Cocchlobody Féru ssac 1821, Tabl. Syst. Fam. Lima·

Amphibina Hartmann 1821, in Steinmüller's Neue Al·

Succinea La Rocque 1953, Cat. Recent Moll. Canada, p. 328.

Type. *Succinea putris* (Linnaeus).

Diagnosis. Shell thin, ovate, of about 2½ to 3 whorls; variable in degree of elongation but usually with shorter whorls than *Oxyloma*, q. v.; diagnostic characters of the genus especially those of the soft parts of the animal.

General distribution. Europe, Asia, North and South America, Australia, New Zealand.

Geologic range. Eocene of Wyoming and Pliocene of Florida to present.

Remarks. From shell characters alone, it is difficult to distinguish this genus from *Oxyloma*. According to recent work (Quick, 1933; Pilsbry, 1948) the soft parts are sufficiently distinct to warrant recognition of both genera and others as well. At first glance, shells of *Succinea* and *Oxyloma* may be confused with those of *Pseudosuccinea* (family Lymnaeidae) but the character of the ornamentation is sufficient to distinguish them. In the Succineidae, the spiral ornamentation is not normally present; it may be developed sporadically on some specimens but never to such an extent as to cause confusion with *Pseudosuccinea*, which has the fine regular spiral ornamentation of the Lymnaeidae.

Succinea aurea Lea 1846 Fig. 557

Succinea indiana Pilsbry 1905, Nautilus, v. 19, p. 28.

Succinea indiana Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 382.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 328.

FIGURE 557. *Succinea aurea*, magnified; after Walker (1928, p. 171, fig. 269).

Type locality. Springfield, Clark County, Ohio.

Diagnosis. Shell small, ovate, inflated; yellow, the spire or the apex typically red-gold or salmon tinted, but in many specimens the shell is pale yellow; surface glossy, with microscopic wrinkles of growth; whorls 3, very convex, parted by a deep suture; aperture oblique, about two-thirds the total length of the shell (modified from Pilsbry, 1948, p. 815).

Ecology. "Dryish wooded slope bordering maple swamp; on plants in a cat-tail marsh ...; brackish tidal marshes ...; on hillside facing the west" (Pilsbry, 1948, p. 815, 817). Burch (1954, Naut. 68, p. 31) found it along the James River in Virginia; generally picked up from rocks near the water's edge, not common.

General distribution (fig. 558). Ontario east to Maine, south to South Carolina, Indiana, and Ohio.

Distribution in Ohio (inset, fig. 558). Clark, Greene, and Hamilton Counties (Pilsbry, 1948); Pike, Washing·

Remarks. From shell characters alone, it is difficult to distinguish this genus from *Oxyloma*. According to recent work (Quick, 1933; Pilsbry, 1948) the soft parts are sufficiently distinct to warrant recognition of both genera and others as well. At first glance, shells of *Succinea* and *Oxyloma* may be confused with those of *Pseudosuccinea* (family Lymnaeidae) but the character of the ornamentation is sufficient to distinguish them. In the Succineidae, the spiral ornamentation is not normally present; it may be developed sporadically on some specimens but never to such an extent as to cause confusion with *Pseudosuccinea*, which has the fine regular spiral ornamentation of the Lymnaeidae.

*Type.** *Succinea putris* (Linnaeus).

Diagnosis. Shell thin, ovate, of about 2½ to 3 whorls; variable in degree of elongation but usually with shorter whorls than *Oxyloma*, q. v.; diagnostic characters of the genus especially those of the soft parts of the animal.

General distribution. Europe, Asia, North and South America, Australia, New Zealand.

Geologic range. Eocene of Wyoming and Pliocene of Florida to present.

Remarks. From shell characters alone, it is difficult to distinguish this genus from *Oxyloma*. According to recent work (Quick, 1933; Pilsbry, 1948) the soft parts are sufficiently distinct to warrant recognition of both genera and others as well. At first glance, shells of *Succinea* and *Oxyloma* may be confused with those of *Pseudosuccinea* (family Lymnaeidae) but the character of the ornamentation is sufficient to distinguish them. In the Succineidae, the spiral ornamentation is not normally present; it may be developed sporadically on some specimens but never to such an extent as to cause confusion with *Pseudosuccinea*, which has the fine regular spiral ornamentation of the Lymnaeidae.

*Type.** *Succinea putris* (Linnaeus).

Diagnosis. Shell thin, ovate, of about 2½ to 3 whorls; variable in degree of elongation but usually with shorter whorls than *Oxyloma*, q. v.; diagnostic characters of the genus especially those of the soft parts of the animal.

General distribution. Europe, Asia, North and South America, Australia, New Zealand.

Geologic range. Eocene of Wyoming and Pliocene of Florida to present.

Remarks. From shell characters alone, it is difficult to distinguish this genus from *Oxyloma*. According to recent work (Quick, 1933; Pilsbry, 1948) the soft parts are sufficiently distinct to warrant recognition of both genera and others as well. At first glance, shells of *Succinea* and *Oxyloma* may be confused with those of *Pseudosuccinea* (family Lymnaeidae) but the character of the ornamentation is sufficient to distinguish them. In the Succineidae, the spiral ornamentation is not normally present; it may be developed sporadically on some specimens but never to such an extent as to cause confusion with *Pseudosuccinea*, which has the fine regular spiral ornamentation of the Lymnaeidae.
Succinea avara Say 1824
Fig. 559

Succinea avara Say 1824, Long's Exped., App., v. 2, p. 260, pl. 15, fig. 6.
Succinea avara Call 1900, Moll. Ind., p. 402, pl. 7, fig. 3.

--- --- Dall 1905, Harriman-Alaska Exped., v. 13, p. 57, fig. 39.

FIGURE 558.—Distribution of Succinea aurea in North America; inset, distribution in Ohio.

Oughton 1948, Zoögeogr. study, Ontario, p. 74.

Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 47, pl. 2, fig. 30.

Leonard 1952, Kansas Univ. Paleont. Contr., Moll., art. 4, p. 23, pl. 2, fig. G.

La Rocque 1953, Cat. Recent Moll. Canada, p. 328.

Taylor and Hibbard 1955, Okla. Geol. Survey Circ. 37, p. 11.

La Rocque and Forsyth 1957, Sidney Cut, p. 85 ff.

FIGURE 559.—Succinea avara, magnified; after Call (1900, pl. 7, fig. 3).

Type locality.—Northwest Territories.

Diagnosis.—Shell slender, fragile; pale yellowish (varying from a greenish to an ochraceous or a pinkish tint); surface irregularly wrinkled, more coarsely so on the latter part of the last whorl; usually daubed or coated with earth; shell of a little more than 3 very strongly convex whorls, sutures deep; aperture ovate, two-thirds the length of the shell or less (modified from Pilsbry, 1948, p. 837).

Ecology.—Usually found on vegetable debris thrown up on muddy shores, or crawling on the muddy banks of ditches, often exposed to the sun; also in swampy places in pastures. It is an upland species as well, to vary from a greenish to an ochraceous or a pinkish ditches, often exposed to the sun; also in swampy

... strength of convex whorls, sutures deep; aperture ovate, two-thirds the length of the shell or less (modified from Pilsbry, 1948, p. 837).

H. B. Baker (1922) found this species in damp places in Dickinson County, Michigan; specifically, (44) ash-cedar swamp; snails in humus around bases of trees; (48) in a damp hollow of the Menominee River floodplain, with brush of tag alders, dogwoods, hazels, and small ashes. Solem (1952, Naut. 65, p. 129) found it in an exceedingly damp area covered with piles of reeds tossed up during storms in an open spot on the shore line, Door County, Wisconsin; and near a small freshwater lake at the northern end of the Door Peninsula. Teskey (1955, Naut. 69, p. 70-71) collected it from detritus in crannies of stone walls and rotting timbers of an old mill in the Warm Springs area of Georgia. At the other extreme of its range, Wayne (1959, p. 93) recorded it from sedges and mud at the margins of ponds in the muskeg around Churchill, Manitoba.

Branson (1959, Naut. 72, p. 145-146) gave the following notes for Oklahoma: small pond, surrounded by a gently dipping well-vegetated watershed; soil thoroughly saturated by unusually heavy rains; east slope of pond's watershed supported a luxuriant growth of Nostoc sp. from the water's edge to about 30 feet into the Bermuda grass around the pond; S. avara was associated with Nostoc, 31 specimens per square foot; observations were made in April; in July the soil was dry, Nostoc and the snails were absent on the slopes but abundant on mud banks of the pond; in Oklahoma, this species is somewhat amphibious, found on aquatic vegetation or pieces of dead vegetation in the water as well as in truly terrestrial habitats; it is nearly always found in moist situations with algae and molds.

Grimm (1959, Naut. 72, p. 125) listed it from leaf litter in a low area near railroad tracks and around the foundation of an old burned house in Maryland.

Associations.—Living: MONTANA-14, 16, 18; MICHIGAN-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 43, 44, 48, 51, 52, 53, 54, 55, 56, 58, 59, 73.

General distribution (fig. 560).—Mackenzie District south to British Columbia, California, and Mexico; east to Quebec, New Brunswick, and Newfoundland, south to Florida.

Distribution in Ohio (inset, fig. 560).—"Over the state" (Sterki, 1907a, p. 380). Unpublished records in the University of Michigan Museum of Zoology collections and Eggleton's records substantiate Sterki's statement; I have no records for the counties of northeastern Ohio but this may be due more to lack of collecting than to actual absence of the species.

Geologic range.—F. C. Baker (1920a, p. 388) gave Aftonian, Yarmouth, Sangamon, Peorian, and "Wabash" for this species. Yarmouth to Recent (A. B. Leonard, 1950, p. 23); Indiana, pro-Kansan loess (Wayne, 1954, p. 1320); "Defiance sandy deposit (loess?)," Ohio (Sterki, 1907a, p. 402); Tinkers Creek marl (Sterki, 1920, p. 174); Castalia marl (Sterki, 1920, p. 181), the type form and a "peculiar form" which Sterki describes as "possibly distinct; larger, 8-10 mm. long, with 4-4½ rather flat whorls; the spire is long and very slender"; Sidney Cut, early Wisconsin (La Rocque and Forsyth, 1957, p. 85 ff.). More recently, the species has been identified from the following Pleistocene deposits in Ohio: Aultman (Sheatsley, 1960, p. 106), Jewell Hill Mowery, 1961, p. 12), and Castalia (Clark, 1961, p. 26).

Remarks.—The relationships of this species with Quickella vermeta have been described under that species. It may be that the distribution as given here is much too extensive and that later work, especially that of Rehder, who has a monograph of the family in prep—
aration, may show that several species are included under this one name.

Succinea grosvenori Lea 1864
Fig. 561

Succinea mooreiana Lea 1864, ibid.
Succinea grosvenori Dall 1905, Harriman-Alaska Exped., v. 13, p. 57, fig. 40.

FIGURE 560.—Distribution of Succinea avara in North America; inset, distribution in Ohio.
--- Oughton 1948, Zoogeogr. study, Ontario, p. 75.
--- La Rocque 1953, Cat. Recent Moll. Canada, p. 329.
Succinea grosvenori La Rocque and Forsyth 1957, Sidney Cut, p. 85 ff.

FIGURE 561.—Succinea grosvenori, magnified; after Walker (1928, p. 169, fig. 267).

Type locality.—“Santa Rita Valley, Kansas?” (Pilsbry, 1948, p. 821).

Diagnosis.—Shell thin, rather short, inflated, with strongly convex whorls, very deep suture, and generally somewhat coarse sculpture in places, rarely showing some irregular and interrupted spiral impressions in the peripheral region; color pale yellow, never transparent (modified from Pilsbry, 1948, p. 821).

Ecology.—This species, “as now understood, tolerates an astonishingly wide range in practically all external conditions. It occurs from the warm humid Gulf coast to semi-arid areas in the great plains and mountain states, and in British America it extends north within the border of Northwest Territory” (Pilsbry, 1948, p. 821).

Mozley (1928, Naut. 42, p. 16) recorded this species from Baldur, near Cobbs Lake, Manitoba, without details of habitat, but this record at least indicates that the species is a hardy one, able to withstand severe cold and a relatively short summer season. Colton (1929, p. 94) has listed it from Arizona, probably washed from upper layers on the bank of a deep limestone canyon upstream. Again, there are no further details on habitat but this could be taken as fair evidence of ability to withstand heat and prolonged desiccation. Chamberlin and Berry (1929, Naut. 42, p. 125) listed it from localities in Utah which would indicate the same sort of conditions. Mozley (1930, Naut. 43, p. 82) gave a locality in Saskatchewan, again near a lake, which would give the same indications as the Manitoba record. Shimel (1935, Naut. 49, p. 7, 10) noted that in all its range it is usually subject to xeric conditions, and this is true even of the lower Mississippian region. With one exception, he found the species living only on loess banks or bluffs in Iowa, Nebraska, Missouri, Arkansas, Kentucky, Tennessee, Mississippi, and Louisiana. He stated that the “specimens were usually few and scattered, and this was true even in the two localities in which the species was obtained in greatest number. In drier weather the scattered individuals were found clinging to the bare faces of the loess bluffs, or on the equally bare upper parts of the talus at their base, and always on the more sheltered sides, either facing north, or protected by hums and crevices in the bluffs. . . . They creep about in moister weather, or during the early morning hours in drier periods, but close up promptly as soon as dry conditions return.” In winter, they form thick, opaque white epiphrags, in sheltered crevices. He continued: “It is evident that this species selects two quite different major habitats, namely, that noted above, and another on the plains which may be quite moist or wet, but more or less alkaline or saline Both types, however, are distinctly xeric. The plains alkaline ponds and moist spots are very dry during much of the average summer, and even when wet, they are strongly xeric, as shown by the character of their scant vegetation. . . . It is evident, therefore, that this species is far removed in habit from the co-generic ‘amphibious’ and mesophilous forms, and is a distinct xerophile.”

In contrast, Eyerdam (1939, Naut. 53, p. 64) recorded this species in wet moss on Kodiak Island, Alaska. On the other hand, MacMillan (1944, Naut. 57, p. 131) recorded it from a habitat similar to the first described by Shimel in Nebraska. Sand Creek has cut a wide canyon through the badlands, exposing steep banks of white sands and fine clays; MacMillan’s specimens of S. grosvenori came from the face of the outcrop but were dead and devoid of epidemics. He speculated that they came from the outcrop as “there were no lakes or other types of water from which it was possible for these snails to have originated” but it seems a perfectly normal habitat in light of Shimel’s observations.

Associations.—Fossil: K-1, 2, 4, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27; I-1, 2, 3(?), 4; S-1, 7; W-2, 4, 5, 6, 7, 9, 12, 13, 15, 16, 17, 18, 19, 20, 21, 18(?), 43, 44, 60, 61, 64.

General distribution (fig. 562).—Northwest Territories (Great Slave Lake), Alberta, Saskatchewan, Manitoba, Ontario, southward to Florida and Arizona.

Distribution in Ohio (inset, fig. 562).—The species has not, as yet, been recorded living from the State but it occurs here as a Pleistocene fossil.

Geologic range.—F. C. Baker (1920a, p. 389) gave Yarmouth, Sangamon, and Peorian. Blanco to Recent (Leonard, 1952, p. 24) in Iowa, Nebraska, Kansas, Oklahoma, and Texas; Pleistocene, around Las Vegas,
New Mexico (Pilsbry, 1948, p. 821); pro-Kansan loess, Putnam County, Indiana (Wayne, 1954, p. 1320); Sangamon, Farmdale loess, lower and upper pro-Tazewell loess, Cleveland, Ohio (Leonard, 1953, p. 372); Sidney Cut, Shelby County, Ohio (La Rocque and Forsyth, 1957, p. 85 ff.).

Succinea grosvenori gelida F. C. Baker 1927

Type locality.—Boone County, Illinois, one-half mile northwest of depot at Irene, in Peorian Loess.

FIGURE 562.—Distribution of *Succinea grosvenori* in North America; inset, distribution in Ohio.
Diagnosis. — "Shell small, elongated, rather narrow; whorls $3\frac{1}{2}$, convex, separated by deep sutures, last whorl comparatively small, flat-sided, or but slightly convex; spire long, acute; aperture rounded, about half as long as shell; columella straight curving into the parietal wall in a gentle curve, not forming a distinct angle; there is a slight callus which is spread over the parietal wall; sculpture of rather fine, vertical striae" (F. C. Baker, 1927, Naut. 40, p. 118).

Ecology. — Probably the same as the typical form. Associations. — Fossil: I-7; W-61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71. "Catinella gelida var.," fossil: K-6, 7; I-5.

General distribution (fig. 563). — Pleistocene, extinct; Yarmouth to late Wisconsin. Not recorded as living.

Distribution in Ohio (inset, fig. 563). — Lower and upper pro-Tazewell loess, Cleveland, Ohio (A. B.

FIGURE 563. — Distribution of Succinea grosvenori gelida in North America; inset, distribution in Ohio.
Leonard, 1953, p. 372 ff.).

Geologic range.—Yarmouth, Sangamon, and Wisconsin deposits in Illinois; pro-Tazewell loess in Ohio; Wisconsin (?) marl, Livingston County, New York (Robertson and Blakeslee, 1948, p. 48).

Remarks.—The writer follows Pilsbry (1948) in referring this subspecies to *S. grosemori* rather than *S. avara*, as has been done by Leonard (1953) and by Robertson and Blakeslee (1948), mainly because of Baker’s (1927, Naut. 40) insistence on its relationships to the former and not to the latter. The distribution of this form may be greater than is indicated by the records as it may be confused with other species of *Succinea*, as pointed out by Baker (1927, Naut. 40, p. 119).

Succinea ovalis Say 1817

Fig. 564

Succinea obliqua Say 1824, Long’s Exped., App., v. 2, p. 260, pl. 15, fig. 7.

Succinea obliqua Call 1900, Moll. Ind., p. 402, pl. 7, fig. 2.

♀Succinea sp. "very large" Billups 1902, Nautilus, v. 16, p. 51.

Succinea obliqua Dall 1905, Harriman-Alaska Exped., v. 13, p. 58, fig. 41.

— Goodrich and van der Schalie 1944, Revis. Mol. Ind., p. 281.

— Oughton 1948, Zoögeogr. study, Ontario, p. 75.

— Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 49, pl. 2, fig. 28.

Succinea ovalis ovalis La Rocque 1953, Cat. Recent Moll. Canada, p. 329.

Type locality.—Philadelphia, Pennsylvania.

Diagnosis.—Shell oval, inflated, thin, translucent, of a greenish-yellow tint, the summit paler or reddish; glossy; lightly marked with wrinkles of growth; whorls 2½, strongly convex, the last inflated, convex throughout; aperture ovate, about three-fourths the length of shell; this *Succinea* larger and more inflated than any other of the region it inhabits (modified from Pilsbry, 1948, p. 802, 803).

![FIGURE 564. — Succinea ovalis, magnified; after Call (1900, pl. 7, fig. 2).](image)

Ecology.—Found on low ground near streams, in summer often upon the weedy herbage of such places, a foot or two from the ground. It has been collected on the undersides of horizontal limbs and on the trunks of apple trees as much as eight feet from the ground. It is also found in rather dry woods, under stones and leaves, but not commonly.

In the Ithaca region of New York, Ingram (1944, Naut. 57, p. 135-137) noted that this is one of the snails hoarded by shrews (*Blarina*). The same author (1941, Naut. 55, p. 14-15) recorded it for the floodplain of a creek, under stones; and (1944, Naut. 58, p. 25-27) from beech-yellow-birch and sycamore woodlands in the same region, where he studied its winter habits. Oughton (1948, p. 94 ff.) found it in deciduous woodlands in Ontario, in both damp and drier more open woods. He also found it in forest litter, dried but still alive after more than a week. Muchmore (1959, Naut. 72, p. 85-88) collected it under stones in various woodland areas in New York State. Archer (1934c, p. 140) found it below the bluffs near the East End Cottages on Mackinac Island, Michigan; these were very large, elongated, and of a pinkish hue. Lindeborg (1949, Naut. 62, p. 130) found it under decomposing logs in Ontario. Ingram (1946, Naut. 59, p. 92) reported as follows from the Huyck Preserve, New York State: “This snail was typically a flood plain inhabitant where it was taken from beneath stick debris piles; specimens were also taken from beneath logs bordering the lake. Sixteen individuals were collected beneath humus and logs deep in the beech-hemlock forest strips. In bogs individuals were found at the bases of bog ferns on hummocks. On the preserve this species apparently adapts itself well to civilization for it was not uncommon to make collections in hedge-rows bordering roads. The short-tailed shrew fed on this species.”

Associations.—Living: MICHIGAN - 1, 7, 8, 17, 20, 25, 28, 29, 32, 33; MINNESOTA - 3, 7; OHIO - 5(?), 43;
ONTARIO - 7, 8, 10; WISCONSIN - 138, 139, 140. Fossil: K - 18, 23; I - 6; S - 1; W - 2, 24, 27, 28, 35, 48, 49, 50, 51, 62, 63.

General distribution (fig. 565). - Newfoundland and James Bay to North Dakota and Nebraska, south to Alabama and North Carolina.

Distribution in Ohio (inset, fig. 565). - Probably all over the State. Oddly enough, Sterki (1907a, p. 380) considered it rare and gave only Cincinnati and Medina and Tuscarawas Counties. I have seen specimens from four counties in northwestern Ohio and Eggleston (ms. records) has it for many of the southern counties along the Ohio River and as far north as Stark and Portage Counties.

Geologic range. - F. C. Baker (1920a, p. 388) gave Aftonian, Yarmouth, Sangamon, Peorian, and "Wabash" for this species. Yarmouth to Recent (A. B. Leonard, 1950, p. 24); "Old Forest bed of the Ohio River"
(Billups, 1902b, p. 51); Tinkers Creek marl (Sterki, 1920, p. 174); Castalia marl, "frequent, with a short spire, form toteniana or near" (Sterki, 1920, p. 181); Orleton site (La Rocque, 1952, p. 1 2 ff.). Recently, the species has been recorded for the following Ohio Pleistocene deposits: Newell Lake (Zimmerman, 1960, p. 20) and Jewell Hill (Mowery, 1961, p. 12).

Remarks.—Three subspecies, S. ovalis optima Pilbsry, chittenangoensis Pilbsry, and pleistocenica F. C. Baker, are recognized by Pilbsry (1948, p. 805 ff.). Only the first of these has been recorded, by implication, for Ohio.

Succinea ovalis optima Pilbsry 1908

--- --- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 329.

FIGURE 566.——*Succinea ovalis optima*, magnified; after F. C. Baker (1939a, p. 122, fig. B).

Type locality.—Cruger's Valley, near Upper Red Hook, Dutchess County, New York.

Diagnosis.—Shell much more robust than *S. ovalis*, with coarser wrinkle sculpture, and yellow predominating over green; the contour about that of the larger examples of *S. ovalis* but varying to nearly or quite as broad as typical *ovalis*; suture deep and, at the last whorl, obsolete (modified from Pilbsry, 1948, p. 805).

Ecology.—In a report on a sinistral specimen, Ingrum (1941, Naut. 55, p. 67) mentioned this species as collected from beside a small stream at Ithaca, New York.

General distribution (fig. 567).—Ontario (Niagara Glen), New York to Minnesota, south to Kentucky.

Distribution in Ohio.—None recorded, except as implied by the above general distribution.

Geologic range.—None recorded.

Remarks.—Pilbsry (1948, p. 807) himself said that this is a rather dubious subspecies, more likely only a large form, reflecting optimum conditions. It is retained here for completeness of the record.

Suborder ORTHURETHRA

Family STROBILOPSIDAE

Strobilopsidae Hanna 1922, Nautilus, v. 35, p. 91.

Diagnosis.—Orthurethra with globose or subdiscoidal shells with internal lamellae and folds which appear very early and develop continuously into those of the adult shell.

Subdivisions.—The family contains a single genus, *Strobilops*, of eastern North America, South America, and eastern Asia, and the Tertiary of central and western Europe.

Remarks.—Since a single genus is involved, details of geographic and geologic distribution are given under the genus *Strobilops*. Reasons for recognizing a separate family for this single genus are given by Pilbsry (1948, p. 848 ff.).

Genus Strobilops Pilbsry 1893

Strobila Morse 1864, Portland Soc. Nat. History Jour., v. 1, p. 24, 26; not of Sars 1829, nor of Sodowsky 1837.

Strobilus Sandberger 1872; not of Anton, 1839.

Type.—*Helix labyrinthica* Say.

Diagnosis.—Shell small, perforate or umbilicate, trochiform to subdiscoidal, with rounded, angular, or carinate periphery, of 4½ to 6 closely coiled whorls; cavity of the last whorl obstructed by two or three long parietal lamellae, the upper one emerging to the edge of the parietal callus, the lower one weaker, emerging or immersed, the intermediate one, when present, smallest and remote from the aperture; a series of two or more short folds on the basal wall of the cavity deep within the last whorl; these lamellae and folds appearing very early in life, growing at the forward end and being absorbed behind; peristome expanded, usually thickened, the insertions of the lip remote (modified from Pilbsry, 1948, p. 849).

General distribution.—Humid eastern half of North America from Quebec, Ontario, and Manitoba, lat 52° N., to Guatemala; Cuba and Jamaica; South America from Venezuela to Para in eastern Brazil, the Galapagos Islands; Japan, Korea, China, and the Philippines.

Geologic range.—Eocene to Pliocene of central
and western Europe; Pliocene and Pleistocene (Aftonian to present) of North America.

Strobilops labyrinthica (Say) 1817
Fig. 568

Strobila labyrinthica Morse 1864, *Portland Soc. Nat. History Jour.*, v. 1, p. 26, figs. 64-67, pl. 8, fig. 68.

Strobila labyrinthica virgo Pilsbry 1892, *Nautilus*, v. 6, p. 94.

Strobila labyrinthica Call 1900, *Moll. Ind.*, p. 382, pl. 5, figs. 5, 5a.

Strobilops labyrinthica Dall 1905, *Harriman-Alaska Exped.*, v. 13, p. 27, figs. 7-9.

--- Sterki 1907, *Ohio Acad. Sci. Proc.*, v. 4,

FIGURE 567.—Distribution of *Succinea ovalis optima* in North America.
Strobilos labyrinthica virgo Sterki 1907, *ibid.*
Strobilos virgo F. C. Baker 1920, *ibid.*
Strobilos labyrinthicus Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.
Strobilos labyrinthica virgo Goodrich 1932, *ibid.*
Strobilos labyrinthica Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 279.
--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 66.
--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 43, pl. 3, figs. 20-22.
Strobilos labyrinthica virgo Taft 1961, *ibid.*

FIGURE 568. - Strobilos labyrinthica, magnified; after Call (1900, pl. 5, fig. 5).

Type locality. - Philadelphia, Pennsylvania.

Diagnosis. - Shell narrowly umbilicate, dome-shaped, the periphery obtusely subangular; whorls 5½, convex, very slowly widening, the first 1½ smooth, pale, the rest chestnut brown, sculptured with narrow obliquely radial ribs, narrower than their intervals, passing over the periphery but weakening at the base, the first half of which is typically nearly smooth; aperture semilunar; peristome brown, expanded, thick; the parietal lamella extending to the edge of the parietal callus and penetrating inward a little more than half a whorl; the infraparietal lamella much smaller, only shortly emerging, the end visible in a basal view; inside penetrating as far as the parietal lamella; a low and slender interparietal lamella between these lamellae deep within; all three strongly nodose at the edge, the nodes armed with minute prickles directed toward the aperture; within the basal and outer walls, at the last third of the base, a low, rather blunt columnellar lamella and a forwardly curving series of five (or six) unequal basoparietal folds; first and second folds large and high, the second longer; two or three following folds low and thin, the one immediately above the periphery usually longer, and in some specimens another fold above it (modified from Pilsbry, 1948, p. 854).

Ecology. - Found under loose bark of logs, in half-decayed wood, among dead leaves and in sod at bases of trees (Pilsbry, 1948, p. 854).

Burch (1955, Naut. 69, p. 66) has noted the relationships of this species to soil factors in eastern Virginia. Oughton (1948, p. 94 fl.) found it in Ontario, in damp woodlands, especially those of deciduous trees. Lindeborg (1949, Naut. 62, p. 130) found it under logs and on tree moss after a rain, in Ontario also. Teskey (1955, Naut. 69, p. 70-71) recorded it from leaf mold on loose shale and in detritus in crannies of stone walls and rotting timbers of an old mill in the Warm Springs area of Georgia.

The following notes refer to the form or variety *virgo*. H. B. Baker (1922b) found it abundant in hardwoods and the drier habitats in Dickinson County, Michigan. He listed it for 13 specific localities, some of which are detailed here because of their special interest: (36) outcrop of Quinnesec schist, in dead leaves and humus, collected in hollows of the rocks, thickly overgrown with bearberries and scattered hardwoods and conifers; (37) outcrop of Sturgeon quartzite: cliffs along Fern Creek, scattered hardwoods and plants; (38) sandy outwash plains, in pine and second growth; (39) young hardwoods, in small hollow between two granitic ridges; partially burned, some low-growing plants; (40) virgin hardwoods of the Menominee Trough; (42) cedar-tamarack bog; shells under bark of freshly cut cedar stumps; (47) floodplain of Hancock Creek, about 2 feet above July level of water. Archer (1934c, p. 139) found it common both in the limestone talus and in the hardwoods under leaves on Mackinac Island, Michigan.

Associations. - Living: MICHIGAN-1, 4, 9; MINNESOTA-1, 2, 3, 4, 5, 6, 7, 8; OHIO-43; ONTARIO-10. Fossil: P-1; K-6; I-5; W-28, 56, 57, 58, 59, 60. "S. labyrinthica virgo," living: MICHIGAN-40; OHIO-43.

General distribution (fig. 569). - Manitoba, east to New Brunswick and Maine; south to Georgia and Alabama.

Distribution in Ohio (inset, fig. 569). - Over the State: records are not as numerous as might be expected, but this may be due to lack of collecting in many areas. The species has been found in counties where intensive collecting has been done, for example, in northwestern and west-central Ohio, Williams, Fulton,
Mercer, and Auglaize Counties.

Geologic range.—Kansan (Indiana) to late Wisconsin. F. C. Baker (1920a, p. 388) gave Aftonian, Yarmouth, Sangamon, Peorian, and "Wabash" for the type form and Aftonian, Yarmouth, and Peorian for the form virgo. Hibbard and Taylor (1960, p. 121) gave the range of the species as late Pliocene to Recent. Recent collections in Ohio are for the following deposits: Jewel Hill (Mowery, 1961, p. 12) and Castalia (Clark, 1961, p. 26) Castalia marl (Sterki, 1920, p. 179); Farmdale? loess, Cleveland, Ohio (Leonard, 1953, p. 372 ff.); pro-Kansan loess, Putnam County, Indiana (Wayne, 1954, p. 1320); Oklahoma, probably Illinoian (Taylor and Hibbard, 1955, p. 8).

Strobilops affinis Pilsbry 1893

Fig. 570

TERRESTRIAL GASTROPODA

--- Oughton 1948, *Zoogeogr. study, Ontario*, p. 66.

FIGURE 570. *Strobilops affinis*, magnified; after Walker (1928, p. 159, fig. 244).

Type locality.—Upper Red Hook, Dutchess County, New York (Pilsbry, 1948, p. 860).

Diagnosis.—Shell convexly conic with obtusely angular periphery; base moderately convex, rather strongly so in its last third; glossy, brown, with pale apex; narrowly umbilicate; shell with 6 moderately convex whorls, the first two smooth, the rest sculptured with narrow, somewhat retractive ribs; ribs obsolete on the first half of the base, weak over the last half; peristome well expanded, thickened within, its face convex and fleshy brown in color; parietal callus moderately strong; parietal lamella emerging to the edge of the parietal callus, penetrating inward about two-thirds of a whorl; infraparietal lamella low and weak, deeply immersed, not visible in a frontal or basal view; interparietal lamella short and very weak; an obliquely radial series of about 8 folds a third of a whorl within: a short low lamella on the columellar axis, followed by two folds larger and higher than the rest, and an oblique series running to the suture, composed of 4 to 7 short subequal folds (modified from Pilsbry, 1948, p. 860).

Ecology.—Oughton (1948, p. 94 ff.) recorded this species from wetter locations than those of damp woodlands; it may be collected from stream drift, indicating that it probably lives on floodplains of creeks and rivers, ponds and marshes.

General distribution (fig. 571).—Ontario and Massachusetts to Minnesota and Kansas, south to northern New Jersey and west of the Alleghenies to northern Alabama and Oklahoma.

Distribution in Ohio (inset, fig. 571).—"Summit Co.; probably over the state" (Sterki, 1907a, p. 378); Portage County (Pilsbry, 1948, p. 862); Erie and Meigs Counties (Eggleston, ms. records). Castalia marl, Erie County (Sterki, 1920, p. 179).

Geologic range.—F. C. Baker (1920a) gave Sangamon and "Wabash" for this species. Pleistocene, Syracuse, New York (Pilsbry, 1948, p. 860); Castalia marl (Sterki, 1920, p. 179).

Strobilops aenea Pilsbry 1926

Fig. 572

Strobilops labyrinthica of authors, not of Say.

Type locality.—Cazenovia, New York.

Diagnosis.—Shell narrowly umbilicate, low conic, with obtuse, rounded summit, the periphery distinctly but bluntly angular; base somewhat flattened below the periphery, elsewhere moderately convex; whorls 5½, convex, slowly increasing, the first 1½ smooth, cono- nous, the rest dark brown with a red-golden gleam; sculptured with narrow riblets which are somewhat oblique, retractive, rather fine and close; base rather smooth, marked with growth striae only, except on its last third, where the riblets of the upper surface continue over the base; aperture semilunar, low but wide; outer and basal lips brown, well expanded, somewhat thickened, the columellar margin dilated; parietal lamella emerging to the edge of the parietal callus, penetrating inward a half whorl; infraparietal lamella weakly emerging; midway between the lamellae there is a very weak, low, deeply placed interparietal lamella; these lamellae nodose far within, the nodes roughened, shortly prickly; the internal barrier, one-third of a whorl from the aperture, radial but slightly oblique, consisting of a short, weak columellar fold and four basal folds, visible through the shell; the second and fourth folds from the axis long, the first short, the third weak or sometimes wanting; there is no fold above the periphery.
Ecology.—Often found associated with *S. labyrinthica*. The relationships of this species to soil factors in eastern Virginia have been noted by Burch (1955, Naut. 69, p. 66). Oughton (1948, p. 94 ff.) recorded it for damp woodlands, especially those of deciduous trees in Ontario. Burch (1954, Naut. 68, p. 32) found it mainly under the bark of oak logs, fairly common in Henrico County, Virginia.

Associations.—Living: OHIO - 29.

General distribution (fig. 573).—Southern Ontario, New York, and Massachusetts to Michigan, Illinois and Missouri, south to southern Florida, Alabama, and Louisiana.

Distribution in Ohio (inset, fig. 573).—Portage County (Pilsbry, 1948, p. 863); Fulton, Allen, Hancock, and Auglaize Counties (University of Michigan records).

Geologic range.—Clark (1961, p. 26) identified this species from the Castalia deposit, Ohio.

FIGURE 571.—Distribution of *Strobilops affinis* in North America; inset, distribution in Ohio.
FIGURE 572.—Strobilops aenea, magnified; after Walker (1928, p. 157, fig. 243).

Remarks.—Pilsbry (1948, p. 863 ff.) recognized the form micromphala Pilsbry and the subspecies spiralis Pilsbry, both unrecorded for Ohio but to be looked for in collections from this State.

FIGURE 573.—Distribution of Strobilops aenea in North America; inset, distribution in Ohio.

Diagnosis.—Shell elongate, ovate to cylindrical or rarely depressed, rimate or umbilicate, typically with five laminae or teeth, any or all of which may be lacking, in the truncate-oval or rounded aperture.

General distribution.—All continents and most islands; the family includes over 40 genera and nearly 700 recent species.

Geologic range.—The oldest Pupillidae (genera Strophites, Dendropupa, Anthracopupa, and Maturipupa) are from the Pennsylvanian of various localities in North America. Their assignment to the family is based on shell characters but these are so closely similar to those of living Pupillidae that the assignment appears to be correct. Henderson (1935, p. 148 ff.) has given references to the Pennsylvanian and Tertiary genera and species. It is rather surprising to find no record of Mesozoic pupillids for North America in this catalog. The Pleistocene species are closely related to living ones.

Subdivisions.—The family is divided into numerous subfamilies; the genera considered in this report belong to the Gastrocoptinae, Pupillinae, and Vertigininae.

Subfamily GASTROCOPTINAE Pilsbry 1918

Diagnosis.—Shell rimate or perforate, cylindrical or ovate-conic, with angular or parietal lamellae more or less completely united into one biramose, bifid, lobed or sinuous lamella (or rarely the angular lamella is wanting); columellar lamella present; palatal folds present (except in G. corticalia); lip well expanded (Pilsbry, 1948, p. 871).

General distribution.—Nearly worldwide in tropical and temperate regions, but wanting on many oceanic islands and in the recent European fauna, though represented there as Oligocene to Pliocene fossils. Absent on the west coast of North America but widespread elsewhere on this continent.

Geologic range.—Oligocene to Pliocene of Europe; Paleocene(?) of Utah (La Rocque, 1960b); widespread in the Pleistocene.

Gastrocopta armifera (Say) 1821

Pl. 17, fig. 13

Leucochilus armifera Call 1900, Moll. Ind., p. 397, pl. 6, fig. 11a-c.

--- --- Dall 1905, Harriman-Alaska Exped., v. 13, p. 27, fig. 10.

Gastrocopta (=Bifidaria) armifera Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.

Gastrocopta armifera Ahlstrom 1930, Nautilus, v. 44, p. 44.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 50.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 35, pl. 3, fig. 7; pl. 4, fig. 6.

Gastrocopta armifera Taylor and Hibbard 1955, Okla.

Type locality.—Germantown, Philadelphia, Pennsylvania (Pilsbry, 1948).

Diagnosis.—Shell perforate and rimate, oblong, the summit obtusely conic; thin, paraffin white, glossy, weakly marked with very oblique, irregular growth striae; whorls about \(\frac{3}{4} \), moderately convex, the last compressed around the axis; aperture irregularly rounded; peristome thin, well expanded, the margins approaching, in many cases (and typically) connected by a short callus with raised edge across the parietal wall; angular lamella joined to the outer lip near its insertion, united with the parietal lamella, its summit projecting as a short spur on the right side; columellar lamella, as seen in a shell broken to show the interior, subvertical, advancing slightly downward, then retracted toward the base; giving off a short, horizontal branch in front, and visible in the aperture; basal lamella low and inconspicuous in many specimens; palatal folds stand upon a white callus; lower palatal fold short, entering, the upper one shorter; a small suprapalatal tubercle standing above it (modified from Sterki 1909, see Pilsbry, 1948, p. 875).

Ecology.—Prefers limestone districts. Taylor recorded it for protected situations among vegetation: grass, shrubs, or wooded area, but noted that it does not require woods. Oughton (1948, p. 94 ff.) noted it somewhat doubtfully from floodplains of creeks and rivers. In Ontario, he noted that it is confined to Paleozoic terranes (mainly limestones). In central Ohio it is very abundant in disused quarries and in the crevices formed by bedding planes of limestones along roadsides, river banks, and hillside gullies, in some cases in exposed situations without protective cover. It is the commonest pupillid in stream-drift collections in Ohio.

Burch (1955, Naut. 69, p. 66) has shown the relationships of this species to soil factors in eastern Virginia. Grimm (1959, Naut. 72, p. 125) has collected it in Maryland under debris near railroad tracks, in leaf litter along railroad tracks, in the ruins of buildings, in marble quarries, and around the foundations of an old burned house. In Tennessee, Lutz (1950, Naut. 63, p. 1320) found it in the foothills of the Cumberland Mountains, in hardwood forests.

Associations.—Living: MICHIGAN—32, 33, 35; OHIO—1, 2, 7, 43; ONTARIO—11; WISCONSIN—143, 144. Fossil: N-2; K-3, 6, 7, 10, 17, 21, 26, 27; I-3(?), 4, 5; S-1, 2, 3, 4, 5, 6; W-1, 9, 24, 28, 62, 63, 64, 65, 70, 73.

General distribution (fig. 574).—Alberta, Manitoba, Ontario, Quebec, and southward to New Mexico, Texas, and Florida.

Distribution in Ohio (inset, fig. 574).—Entire State; records are more plentiful for the western and southern counties.

Geologic range.—F. C. Baker (1920a, p. 388) gave Aftonian, Yarmouth, Sangamon, Peorian, and "Wabash" (late Wisconsin). Pro-Kansan loess, Indiana (Wayne, 1954, p. 1320); Yarmouth to Recent (A. B. Leonard, 1950, p. 29); "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); Castalia marl (Sterki, 1920, p. 179). Hibbard and Taylor (1960, p. 124) recorded it from the early Pliocene Laverne local fauna of Oklahoma.

Variation.—Two poorly differentiated forms of this species have been recorded for Ohio. Gastrocopta armifera similis Sterki 1909 (see Pilsbry, 1948, p. 877) is said to be found from "northern New York to Iowa, Minnesota," a range that would include at least northern Ohio. G. armifera affinis Sterki 1909 (see Pilsbry, 1948, p. 877) was described from Fairport, Lake County, Ohio, and recorded also for Michigan, Indiana to Minnesota and Kansas, and Wisconsin. These two forms are noted here in case future workers should consider them distinct enough to be recognized.

Gastrocopta contracta (Say) 1822

Fig. 575

Leucochila contracta Call 1900, Moll. Ind., p. 398, pl. 6, fig. 10; text fig. 12.

--- --- Dall 1905, Harriman-Alaska Exped., v. 13, p. 27, fig. 11.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 50.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 35, pl. 4, fig. 1.

Gastrocopta contracta La Rocque 1953, Cat. Recent Moll. Canada, p. 331.

Type locality.—Occoquan, Virginia.

Diagnosis.—Shell rimate, ovate-conic, tapering from the last whorl to the obtuse apex, bluish-milky or spermaceti-colored, imperfectly transparent, glossy, marked with fine growth striae; whorls 5 1/3, very convex, the last half of the last whorl straightened, pinched at the base, impressed over the lower palatal fold, and on both sides of a low rounded ridge which stands a short

FIGURE 574.—Distribution of *Gastrocopta armifera* in North America; inset, distribution in Ohio.
distance behind the peristome; aperture rounded-triangular, almost closed by large teeth; anguloparietal lamella joining the lip, angularly bent to the right near the middle, then abruptly becoming much lower and bent inward; columellar lamella large, thin, very deeply placed, subvertical, the upper end curving forward; a subvertical callus standing in front of it, near the margin; palatal folds two, connected by a low callus, the lower one obtuse, transverse, more deeply placed and larger than the tuberculiform upper fold; peristome thin, well expanded, continuous (modified from Pilsbry, 1948, p. 881).

FIGURE 575. — *Gastrocopta contracta*, magnified; after F. C. Baker (1939a, p. 97).

Ecology. — Taylor summarized the habitat of this species as protected situations among vegetation: grass, shrubs, or wooded areas, but noted that it does not require woods. Oughton (1948, p. 94 ff.) recorded it in Ontario for wet places, margins of ponds, streams, and marshes; seeping hillsides, and sandy flats that receive water by percolation. H. B. Baker (1922b) found it one of the more common shells of the hardwoods in Dickinson County, Michigan, specifically from the following habitats: (36) outcrop of Quinnesec schist, in dead leaves and humus, collected in hollows of the rocks, thickly overgrown with bearberries and scattered hardwoods and conifers; (39) in young hardwoods, in small hollow between two granitic ridges; partially burned, some low-growing plants; (40) virgin hardwoods of the Menominee Trough; (41) hardwood-covered moraine ridges of the Calumet Trough, particularly in maple logs; (48) floodplain of the Menominee River, with brush of tag alders, dogwoods, hazels, and small ashes.

Burch (1955, Naut. 69, p. 66) has shown the relationships of this species to soil factors in eastern Virginia. Muchmore (1959, Naut. 72, p. 85-88) has collected it under stones in various woodland areas in New York State. In Virginia, Burch (1954, Naut. 68, p. 31) found it fairly common, usually around or under the bark of damp hardwood logs and stumps, and in all cases associated with forested stream valleys. Grimm (1959, Naut. 72, p. 125-126) collected it in Maryland from ruins of buildings, leaf litter along railroad tracks, and a quarry.

Associations. — Living: MICHIGAN-5, 21, 22, 23, 25, 26, 32, 33, 40; OHIO-1, 4, 7, 43; ONTARIO-2, 3, 10, 11, 12, 14; WISCONSIN-140, 142, 143. Fossil: K-2, 15, 17, 25; S-1, 2, 3, 4, 5, 6; W-24, 26, 28, 56, 57, 58, 59.

General distribution (fig. 576). — Manitoba, Ontario, Quebec, and Maine, south to Florida, Texas, and Mexico. Cuba and Jamaica, probably introduced.

Distribution in Ohio (inset, fig. 576). — Over the State, according to Sterki (1907a, p. 379), but unpublished Eggleston records are oddly concentrated in a triangle from Erie County to Adams and Washington Counties and I have no records for the western and eastern counties.

Geologic range. — Early Pliocene to Recent (Hibbard and Taylor, 1960, p. 126). Aftonian, Yarmouth, Sangamon, Peorian, "Wabash" (F. C. Baker, 1920a, p. 388). Yarmouth to Recent (A. B. Leonard, 1950, p. 30); "Old Forest bed of the Ohio River" (Billups, 1902b, p. 51); "Defiance sandy deposit (loess?)" (Sterki, 1907a, p. 402); Castalia marl, common (Sterki, 1920, p. 180); Sangamon(?), Bartholomew County, Indiana (Baker, 1920b, p. 455); probably Illinoian, Oklahoma, and Sangamon, Kansas (Taylor and Hibbard, 1955, p. 8, 11). Castalia, Ohio, deposit (Clark, 1961, p. 27).

Gastrocopta bolzingeri (Sterki) 1889

Pl. 17, fig. 14

Pupa bolzingeri Sterki 1889, Nautilus, v. 3, p. 37, 96, 119.

Bifidaria bolzingeri Dall 1905, Harriman-Alaska Exped., v. 13, p. 28.

Gastrocopta bolzingeri Pilsbry 1916, Man. Conchology, v. 24, p. 25, pl. 2, figs. 4-6.

Bifidaria bolzingeri F. C. Baker 1920, Life of Pleistocene, p. 388.

--- --- Oughton 1948, Zoogeogr. study, Ontario, p. 51.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 35.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 331.

--- --- Taylor and Hibbard 1955, Okla. Geol. Survey Circ. 37, p. 11.

Type locality. — Will County, Illinois.
Diagnosis.—Shell cylindric, transparent or whitish; whorls 5, convex, the last with an oblique crest some distance behind the outer lip; aperture broadly oval, the peristome thin, expanded, not continuous; inner end of the parietal lamella curving strongly toward the periphery, and its anterior end produced forward of the junction with the angular lamella, the two lamellae diverging forward, the whole, when viewed from the base, shaped somewhat like a mirror image of the letter y; columellar lamella thin, high, and curving down at the inner end; palatals on a callus ridge (modified from Pilsbry, 1948, p. 883).

Ecology.—Oughton (1948, p. 94 ff.) listed this species for damp woodlands, especially those of deciduous trees; in Ontario, it is confined to Paleozoic terranes (mainly limestones). In the Ottawa region, I have

FIGURE 576.—Distribution of Gastrocopta contracta in North America; inset, distribution in Ohio.
found it particularly abundant in the rich soil accumulated in crevices along bedding planes of Ordovician limestone, in light second-growth woods along the Rideau River.

Associations.—Living: OHIO-1, 4, 7. Fossil: P-1, 3; K-13, 24; S-1, 2, 3, 4, 6; W-6.

General distribution (fig. 577).—Ontario and western New York to Montana, south to Illinois, Kansas, and New Mexico.

Distribution in Ohio (inset, fig. 577).—Apparently rare; Sterki (1907a, p. 379) had it only for Hamilton and Miami Counties and for Put-in-Bay and Kelleys Island in Lake Erie. I have no other records.

Geologic range.—Yarmouth and Sangamon (F. C. Baker, 1920a, p. 388); Aftonian to present (A. B. Leonard, 1950, p. 31); no record as a fossil in Ohio, but to be expected in Wisconsin deposits. Late Pliocene to Recent (Hibbard and Taylor, 1960, p. 126).

FIGURE 577.—Distribution of *Gastrocopta bolzingeri* in North America; inset, distribution in Ohio.
Subgenus Vertigopsis Sterki 1893
Gastrocopta pentodon (Say) 1821
Fig. 578

Pupa montanella Cockerell 1889, Jour. Conchology, v. 6, p. 63.
Pupa curvidens gracilis Sterki 1890, Nautilus, v. 3, p. 119.
Pupilla pentodon Call 1900, Moll. Ind., p. 396, pl. 6, figs. 8, 8a.
Bifidaria pentodon Dall 1905, Harriman-Alaska Exp., v. 13, p. 28, figs. 12a-c.
Bifidaria pentodon gracilis Sterki 1907, ibid.
--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 52.
--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 35, pl. 4, fig. 5.
--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 331.

Type locality.—Pennsylvania.

Diagnosis.—Shell rimate, oblong-conic with obtuse summit, clear corneous or whitish, smooth; whorls 5, convex, the last with a rounded ridge or crest (low or well developed) close behind the lip, and flattened near the base behind the ridge; teeth typically five, the anguloparietal lamella almost simple and straight, columellar lamella thin, horizontal; the palatal folds standing upon a low callus ridge, the lower fold compressed and entering a little more deeply than the smaller, tuberculiform upper one; accessory denticles are usually developed in the subcolumellar, basal, and interpalatal positions; peristome thin, narrowly expanded, with a thin, straight, parietal callus between the widely separated ends (modified from Pilsbry, 1948, p. 886, 888).

Ecology.—Lives on wooded hillsides or in well-drained groves, among leaves in the underbrush; also common among moss and grass in forest and on open slopes.

In Ontario, Oughton (1948, p. 94 ff.) listed this species from damp woodlands, especially those of deciduous trees. Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. Burch (1955, Naut. 69, p. 66) gave data on its relationships to soil factors in eastern Virginia. In South Carolina, Rehder (1949, Naut. 62, p. 125) found two specimens under boards and around planks near a board walk, Myrtle Beach.

FIGURE 578.—Gastrocopta pentodon, magnified; several specimens, to show variation; after Walker (1928, p. 133, fig. 201).

Associations.—Living: MICHIGAN-18, 25, 26, 32, 33, 34, 36; OHIO-1, 4, 43; ONTARIO-2; WISCONSIN-143. Fossil: S-1; W-28, 48, 49, 50, 51, 67.

General distribution (fig. 579).—Prince Edward Island, Maine, Quebec, Ontario, Manitoba, and British Columbia, south to Mexico and Guatemala, but not on the Pacific slope.

Distribution in Ohio (inset, fig. 579).—"Over the state" (Sterki, 1907a, p. 379), but actual records are rare. Sterki (1907a, p. 379) gave Tuscarawas County and Eggleston (ms. records) gave Brown and Washington Counties. I have no other records, except those for fossil occurrences.

Geologic range.—F. C. Baker (1920a, p. 388) gave Yarmouth, Sangamon, Peorian, and "Wabash" for this species. Sterki (1920, p. 180) has recorded it for the Castalia marl, late Wisconsin, Ohio. More recently, Zimmerman (1960, p. 20) has identified it in the Newell Lake deposit and Mowery (1961, p. 12) from the Jewell Hill deposit, both in Ohio.

Gastrocopta tappaniana (C. B. Adams) 1842
Fig. 580; pl. 17, figs. 11, 12

TERRESTRIAL GASTROPODA

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 53.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 36, pl. 4, fig. 2.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 53.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 36, pl. 4, fig. 2.

FIGURE 579.—Distribution of *Gastrocopta pentodon* in North America; inset, distribution in Ohio.
Moll., art. 3, p. 31, pl. 6, fig. D.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 332.

Gastrocopta tappaniana, magnified; several specimens, to show variation; after Walker (1928, p. 135, fig. 203).

Type locality.—Vermont.

Diagnosis.—Shell larger than that of *G. pentodon*, markedly conic though obtuse; only one tooth on the parietal wall, generally six on the columnellar, basal and outer margins, those on the latter standing on a strong rib; lower palatal fold generally not so long and entering as in *G. pentodon* (modified from Pilsbry, 1948, p. 889).

Ecology.—Found living in low, moist places, under wood, often with *Vertigo ovata*, whereas *G. pentodon* lives in drier situations.

Oughton (1948, p. 94 ff.) found this species in rather wet locations in Ontario, such as margins of ponds, streams, and marshes; seeping hillsides; sandy flats that receive water by percolation. H. B. Baker (1922b) noted it for one habitat in Dickinson County, Michigan, an alder swamp, with tag alder, dogwoods, and a few maples and ash with scanty undergrowth. This is one of the species found by Muchmore (1959, Naut. 72, p. 85-88) to live under stones in various woodland areas of New York State.

Associations.—Living: MINNESOTA - 3, 4; OHIO-1. Fossil: P-1, 3, 4; N-1, 2; A-1; K-7, 10, 11, 12, 13, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27; I-3; S-1 (cf.)

2, 3, 4, 5, 6; W-28, 52, 54, 56, 57, 58, 59, 70.

General distribution (fig. 581).—Ontario and Maine to Virginia and Alabama, west to South Dakota and Kansas, southwest to Arizona, but not known from the southeastern Atlantic states, Virginia to Florida.

Distribution in Ohio (inset, fig. 581).—"Over the state, common" (Sterki, 1907a, p. 379); definite records are rare; I have only two, for Fulton and Mercer Counties, based on specimens in the University of Michigan collections, and another, for Erie County, fossil (Eggleston, ms. records).

Geologic range.—F. C. Baker (1920a, p. 388) gave Yarmouth and "Wabash." A. B. Leonard (1950, p. 31)

--- extended this to Aftonian to Recent; but not in the Peoria Loess of Kansas (Leonard, 1952, p. 20); probably Illinoian of Oklahoma (Taylor and Hibbard, 1955, p. 8); Sterki (1920, p. 180) had already recorded the species from the Castalia marl (late Wisconsin) of Ohio. Hibbard and Taylor (1960, p. 127) extended the range still further, from late Pliocene to Recent. Two occurrences from Ohio deposits have been cited recently: Aultman deposit (Sheatsley, 1960, p. 109), and Castalia deposit (Clark, 1961, p. 27).

Remarks.—Sterki (1894, p. 5) has described a form *curta* from New Philadelphia, Ohio, which has little, if any, taxonomic value.

Gastrocopta carnegiei (Sterki) 1916

Bifidaria minuta Sterki 1916, Nautilus, v. 29, p. 105; not *P. minuta* "Say" Pfeiffer, 1842, =*Gastrocoptta procera*.

Type locality.—Woods north of Geneva, Ashtabula County, Ohio.

Diagnosis.—Similar to Gastrocopta tappaniana, "but differs from that species as follows: it is much smaller, more conical, the whorls are less in number, more rapidly increasing, more convex, the last is comparatively larger; there is no callus in the palate or a very slight one, the palatal folds are longer and there are no secondary ones" (Sterki, quoted by Pilsbry, 1948, p. 890).

General distribution.—Geneva, Ashtabula County, Ohio; no other locality is given by Pilsbry (1948, p. 890). No fossil record.

Remarks.—This species is based on three specimens collected by Sterki of which only one, the type, is perfect. It has not been collected by later workers.

FIGURE 581.—Distribution of Gastrocopta tappaniana in North America; inset, distribution in Ohio.
Pilsbry (1948, p. 890) says that it appears to be distinct from *G. pentodon* and *G. tappaniana* "but in so variable a group further specimens are required for a full understanding of its relation to these species."

Subgenus *Privatula* Sterki 1893
Gastrocopta corticaria (Say) 1816
Fig. 582

Odostomia corticaria Say 1816, Nicholson's Encycl., Am. ed., v. 2, pl. 4, fig. 5.
Leucochila corticaria Call 1900, Moll. Ind., p. 399, pl. 6, figs. 12, 12a-c; text fig. 13.

--- Oughton 1948, Zoögeogr. study, Ontario, p. 51.
--- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 36, pl. 4, fig. 24.
--- La Rocque 1953, Cat. Recent Moll. Canada, p. 331.

FIGURE 582.—*Gastrocopta corticaria*, magnified; after Call (1900, pl. 6, fig. 12).

Type locality.—Philadelphia, Pennsylvania.
Diagnosis.—Shell minutely rimate, nearly cylindric, tapering slightly to the very obtuse summit; thin, translucent white, almost smooth, very faintly marked with growth lines; whorls 5½, quite convex, the last rounded basally, without a crest behind the lip; aperture irregularly oval; peristome thin, well expanded, the lip ends widely separated; angular and parietal lamellae united into one small bilobed lamella, or almost separate; columellar lamella very low, subvertical, a minute tubercle in front of its lower end (Pilsbry, 1948, p. 894).

Ecology.—Often found crawling upon trees a foot or two from the ground (Pilsbry, 1948, p. 894). In Ontario, Oughton (1948, p. 89) found it confined to Paleozoic terranes (mainly limestones). In Dickinson County, Michigan, H. B. Baker (1922b) noted it for hardwood-covered moraine ridges of the Calumet Trough, particularly in maple logs.

General distribution (fig. 583).—New Brunswick, Maine, and Ontario, west to Minnesota, south to Louisiana, Alabama, Georgia, and Florida.

Distribution in Ohio (inset, fig. 583).—"Over the state" (Sterki, 1907a, p. 379); actual records are few: Williams and Allen Counties (University of Michigan collections); Washington County (Eggleston, ms. records).

Subgenus *Gastrocopta* Wollaston 1878
Gastrocopta procera (Gould) 1840
Pl. 17, fig. 15

--- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 36, pl. 4, fig. 11.
--- La Rocque 1953, Cat. Recent Moll. Canada, p. 331.
--- Taylor and Hibbard 1955, Okla. Geol. Survey Circ. 37, p. 11.

Type locality.—Baltimore, Maryland.
Diagnosis.—Shell shortly rimate, cylindric, with convexly conic, obtuse summit; red-brown, paler at the summit, somewhat glossy, lightly, irregularly striate; whorls 5¾, rather strongly convex, the last one flattened in the region of the lower palatal fold, and slightly impressed over the basal fold; having a more or less prominent low crest close behind the outer lip; aper-
ture with five teeth; anguloparietal lamella sinuous, showing a distinct spur on the right side, in a front view; in basal view this spur seen to be the inner end of the angular lamella, whereas the parietal lamella forms a very inconspicuous projection of the outline on the left side, and its inner end curves slightly to the right; columellar lamella stout, transverse, nearly a half whorl long; below it a low tubercle, variable in prominence and not visible in a face view in some specimens; upper palatal fold short, situated exactly opposite the spur of the parietal, and rather deep within; lower palatal fold much longer, more deeply placed, its inner end reaching a dorsal position; basal fold short, about as deep within as the upper palatal; peristome thickened within by a strong, cinnamon callus ridge, in front of the lip teeth, and excavated near the upper insertion (modified from Pilsbry, 1948, p. 907).

Ecology.—D. W. Taylor (1960) gave protected situ-

FIGURE 583.—Distribution of Gastrocopta corticaria in North America; inset, distribution in Ohio.
ations among vegetation: grass, shrubs, or wooded area, but noted that woods are not required.

Associations.—Fossil: W-73.

General distribution (fig. 584).—Ontario (La Rocque, 1953, p. 331, probably quoted from Robertson and Blakeslee, 1948); eastern United States, Maryland to South Carolina, west to Shawnee County, Kansas, and Payne County, Oklahoma; south to Alabama and eastern Texas.

Distribution in Ohio (inset, fig. 584).—Butler, Hamilton, Brown, Highland, and Franklin Counties (Sterki, 1907a; University of Michigan collections; Eggleston, ms. records; Pilsbry, 1948). It does not seem to have progressed much north of the Ohio River in this State.

Geologic range.—F. C. Baker (1920a, p. 388) gave Sangamon, Peorian, and "Wabash" for this species. A. B. Leonard (1950, p. 32) gave Aftonian to Recent; Hibbard and Taylor (1960, p. 123) gave early Pleisto-
cene (Nebraskan or Aftonian); Taylor (1960, p. 67) noted that Pliocene records for \textit{G. procera} should be placed under another species, \textit{G. franzenae} Taylor. So far, there is no fossil record for \textit{G. procera} in Ohio.

Subfamily PUPILLINAE

Diagnosis.—Shell rimate or perforate, long-ovate to cylindric; internal lamellae absent or reduced in number (0-5) and size; significant characteristics in the soft parts.

General distribution.—All continents.

Geologic range.—Lower Pliocene to present.

Subdivisions.—Two genera only, \textit{Pupoides} and \textit{Pupilla}, both of them widely distributed in North America and present in the living fauna of Ohio.

Genus Pupoides Pfeiffer 1854

\textit{Leucocboa} von Martens 1860, Die Heliceen, p. 296.

\textit{Themapupa} Iredale 1930, Victorian Naturalist, v. 47, p. 120.

Type.—\textit{Pupoides nitidulus} Pfeiffer.

Diagnosis.—Shell long, rimate; long-ovate, turreted or rarely cylindric, with obtuse apex and few (generally 5-6) rather long whorls; aperture ovate, toothless except for a small tuberculiform angular lamella close to the insertion of the outer lip, or united with it, in some specimens wanting; peristome expanded, reflected and generally thickened within; internal axis slender, perforate (modified from Pilsbry, 1948, p. 920).

General distribution.—All of the continents except Europe. Eastern North America from Ontario and Maine to the Gulf of Mexico, west to the Dakotas, Colorado and western Arizona (Yuma County); in northern Mexico on islands in the Gulf of California, at Monterey and Tampico. Cuba, Haiti, Puerto Rico, Bermuda.

Geologic range.—Oligocene, Tampa Silex beds, two species (Henderson, 1935, p. 152).

Pupoides albilabris (C. B. Adams) 1841

Pl. 17, fig. 1

\textit{Leucocboa fallax} Call 1900, Moll. Ind., p. 397, pl. 6, fig. 9; text fig. 11.

\textit{Pupoides marginata} Sterki 1920, Ohio Jour. Sci., v. 20, p. 179.

\textit{Leucocboa fallax} F. C. Baker 1920, ibid.

\textit{Pupoides} Oughton 1948, Zoögeogr. study, Ontario, p. 54.

\textit{Pupoides} Robertson and Blakeslee 1948, Moll. Niag. Frontier, p. 40, pl. 4, fig. 15.

\textit{Pupoides} Leonard 1950, Kans. Univ. Paleont. Contr., Moll., art. 3, p. 29, pl. 6, fig. Q.

\textit{Pupoides} La Rocque 1953, Cat. Recent Moll. Canada, p. 332.

Type locality.—Upper Missouri (Say).

Diagnosis.—Shell minutely perforate, rimate, slowly tapering from the last whorl to the obtuse summit, cinnamon or slightly darker, somewhat glossy; surface lightly marked with striae of growth; whorls rather strongly convex, the last half-whorl somewhat compressed laterally, tapering to the narrowly rounded base; aperture oval; peristome expanded and reflected, strongly thickened within, its face flattened; outer lip more strongly arched near the upper insertion; parieta1 callus transparent, bearing a short low tubercle connected with the outer lip (Pilsbry, 1948, p. 921).

Ecology.—This common snail prefers limestone soils, though also found elsewhere. It lives under stones or at the roots of grass, in well-drained but often sunny places; following rains it is sometimes found on trees a few feet from the ground. It occurs in all the states from Arizona and Colorado eastward, but never at high elevations. The living shell is usually more or less coated with dirt. Taylor (1960) recorded this species for damp to dry habitats: damp protected places, or relatively dry exposed habitats, more tolerant
of drought than others, and requiring little cover. Oughton (1948, p. 95) recorded it somewhat doubtfully from floodplains of creeks and rivers, which would help explain its widespread dispersal. It undoubtedly lives in areas flooded by rivers and creeks, even though this may happen only occasionally, as it is one of the most frequent species in the stream drift from floodplains in Ohio. In the Asheville, North Carolina, region, Archer (1935c, p. 82) found it in the grass in a clearing. Grimm (1959, Naut. 72, p. 126) recorded it along railroad tracks and around the foundation of an old burned house in Maryland. In Virginia, Burch (1954, Naut. 68, p. 31) collected it in and around decaying oak and maple stumps. Rehder (1949, Naut. 62, p. 125) found it fairly common, under boards and around planks near a boardwalk, Myrtle Beach, South Carolina, and under logs and debris along the edge of Tar River, in North Carolina (1949, Naut. 62, p. 123-124).

Associations.—Living: MICHIGAN-32, 33; OHIO-43; WISCONSIN-144. Fossil: P-1, 3, 4; N-1, 2; A-1; K-3, 5, 10, 11, 13, 18, 22, 24, 25, 26, 27; I-3, 4; S-1, 2, 3, 4, 5, 6; W-24, 28, 73.

General distribution (fig. 585).—Ontario, Quebec, and Maine, south to northern Mexico; west to North Dakota, South Dakota, Colorado, and Arizona.

Distribution in Ohio (inset, fig. 585).—"Over the state" (Sterki, 1907a, p. 378), but records are concentrated in the southern and western parts of the State: Washington and Erie Counties (Eggleston, ms. records); Auglaize and Hamilton Counties (University of Michigan collections); Greene, Hamilton, Brown, and Adams Counties (Eggleston, ms. records).

Geologic range.—F. C. Baker (1920a, p. 388) gave Yarmouth, Sangamon, and Peorian for this species under Leucocbila fallax (Say), and Sangamon and "Wabash" under Pupoides marginatus (Say). Hibbard and Taylor (1960, p. 128) gave early Pliocene to Recent. In Ohio, it occurs in the Jewell Hill deposit (Mowery, 1961, p. 12) and in the Castalia deposit (Clark, 1961, p. 27).

Pupilla Leach 1831

Pupilla (Leach ms.) Fleming 1828, Brit. Animals, p. 268.

Type.—*Pupa marginata* Draparnaud =*P. muscorum* Linnaeus.

Diagnosis.—Shell cylindric, with rounded, obtuse ends, rimate and commonly perforate, of short, slowly increasing whors, the sutures but slightly oblique; small aperture with 0-5 teeth, the parietal, columellar and palatal teeth deeply placed when present; no basal fold; no teeth present in immature stages; peristome narrowly reflected; shell axis small, perforate (modified from Pilsbry, 1948, p. 926).

General distribution.—North America, Eurasia, Africa, Australia, almost wholly in temperate and cold regions.

Geologic range.—Upper Oligocene to present in central Europe. Pleistocene (Yarmouthian) to present in North America. A Paleocene species, *P. inermis* Russell, from Alberta, Canada (Henderson, 1935, p. 151), should be placed elsewhere according to Pilsbry (1948, p. 928, footnote).

Species.—Six species of the genus are described by Pilsbry (1948, p. 928 ff.); only one, *P. muscorum*, has been recorded for Ohio, both as a Pleistocene fossil and as a living snail. The other five species are western but are not confined to the Pacific slope.

Pupilla muscorum (Linnaeus) 1758

Pl. 17, fig. 7

Pupilla muscorum Dall 1905, Harriman-Alaska Exped., v. 13, p. 28, figs. 14-16.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 54.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 40, pl. 4, fig. 7.

--- --- Leonard 1950, Kans. Univ. Paleont. Contr., Moll., art. 3, p. 28, pl. 6, fig. N.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 332.

Type locality.—Sweden.

Diagnosis.—Shell shortly rimate, cylindric, auburn or some similar brown shade, white or light behind the lip, moderately solid; summit rounded, obtuse; post-embryonic whors with fine blunt uneven striation, moderately convex; last half of the last whorl tapering
downward, compressed, rising to the aperture, having a strong whitish crest near and parallel to the outer and basal lip; aperture somewhat oblique, truncate-rounded, typically without teeth (but in various varieties or mutations provided with one to three teeth); peristome narrowly reflected outwardly, broadly on the columellar side, having a strong pale callus within (modified from Pilsbry, 1948, p. 933).

Ecology.—Especially abundant in rocky areas such as limestone quarries and escarpments, under limestone slabs with accumulations of rock powder and soil, and in joints and fissures of rocks.

In Ontario, Oughton (1948, p. 95) was somewhat doubtful about this species living on floodplains of creeks and rivers. He pointed out that in Ontario it is confined to Paleozoic terranes, mainly limestones (1948, p. 89). My stream drift records in Ohio indicate that if it does not live on floodplains, it must be

![FIGURE 585.—Distribution of *Pupoides albilabris* in North America; inset, distribution in Ohio.](image-url)
washed down from drier habitats, probably high banks, for it is an abundant species in such associations. Archer (1934c, p. 139) found a few in the limestone talus on Mackinac Island, Michigan, and Goodrich (1932) found it abundant on the sides of a well on the same island. In Maryland, Grimm (1959, Naut. 72, p. 126) has recorded it from under debris near railroad tracks. Wayne (1959b, p. 93) found it beneath cardboard debris or fallen spruce wood between one and three meters above the muskeg at Churchill, Manitoba.

Associations.—Living: MANITOBA - 39. Fossil: K - 2, 4, 6, 7, 9, 12, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27; S - 6, 7; W - 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73.

General distribution (fig. 586).—Alaska south and east to New Mexico and Arizona; in the east, Newfoundland and Anticosti south to New Jersey; westward

FIGURE 586.—Distribution of Pupilla muscorum in North America; inset, distribution in Ohio.
in Canada and the northern tier of states to Oregon.

Distribution in Ohio (inset, fig. 586).—"Cited from Ohio (and no doubt to be found, being known from New York, Michigan and Illinois)" (Sterki, 1907a, p. 379). It is undoubtedly rare in the State as a living snail; Eggleston (ms. records) has no specimens and the only records for the State are fossils. Geologic range.—F. C. Baker (1920a, p. 388) gave Yarmouth, Sangamon, and Peorian. Wayne (1954, p. 1320) has recorded it from pro-Kansan loess, Putnam County, Indiana; Leonard (1950, p. 28) gave Yarmouth to Recent. In Ohio, Leonard (1953, p. 372 ff.) has recorded it from Sangamon, Farmdale? Loess, lower and upper pro-Tazewell loess, both from the Cleveland area. Hibbard and Taylor (1960, p. 132) gave late Miocene to Recent but noted that the earliest North American record is middle Pliocene.

Remarks.—In Yarmouth interglacial beds of Kansas (Leonard, 1950, p. 28) the species is represented by a sinistral form, P. muscorum sinistra Franzen, which occurs as a pure population at the type locality but as a minor element (25 percent) of a dextral population elsewhere.

European and American populations of the species are subject to much variation in the number of the teeth. The typical form, also present in North America, has no teeth; in form marginata Drap. there is a short parietal lamella; this is the form described by Adams as Pupa badia from Crown Point, New York. In form masclaryana Paladilhe, there is a tubercular or short parietal lamella and a small tubercular lower palatal fold. Another form, unnamed by Pilsbry, has a columellar tooth more or less well developed; it has been observed in America only in the mountain states of the west but has also been recorded from France.

Subfamily VERTIGININAE

Diagnosis.—Pupillidae with compact, oval, ovate or cylindrical shells of quite small or minute size, 1½ to 3 mm. long, from brown to amber or olivaceous color, with the typical 6 teeth of the family, or varying to none or to a greater number; axis perforate, but commonly closed in the adult stage (modified from Pilsbry, 1919, p. 68).

General distribution.—Abundant in Holarctic, Polynesian, and Hawaiian faunas, almost wholly wanting in South American and African.

Geologic range.—Two species of Vertigo are recorded by Henderson (1935, p. 151) for the Eocene of Wyoming. For the distribution of Pleistocene species, see under genus Vertigo.

Subdivisions.—According to Pilsbry (1919, p. 69) the genera fall into two main geographic divisions: 1, northern or mainly Holarctic, including Vertigo, Columnella, Truncatellina, Sterkia and their satellite groups, and 2, Polynesian and Tropical, with Nesopupa and the associated groups.

Genus Vertigo Müller 1774

Nearctica Sterki 1892, Nautilus, v. 6, p. 5.

Haplopupa Pilsbry 1908, Nautilus, v. 11, p. 119.

Type.—Vertigo pusilla Müller.

Diagnosis.—Shell small, deeply rimate, oval, cylindric-oblone or ovate, with very blunt summit, generally glossy and some shade of brown; aperture with the typical six teeth of Pupillidae, none of them concrescent, part or all of them commonly wanting; angular lamella not reaching the margin, when present; outer lip straightened or looped inward in the middle (modified from Pilsbry, 1948, p. 943).

General distribution.—Practically the entire Holarctic realm, from near sea level to at least 10,000 feet.

Geologic range.—Eocene (Yen, 1946b, p. 498, figs. 10, 11); Pliocene (Kansas), Pleistocene to present.

Subdivisions.—The American species are placed in three subgenera, Vertigo s. s., Angustula, and Vertillaria. The species in this report are grouped under the first two subgenera, following Pilsbry (1948, p. 944 ff.). Subgenus Vertillaria has not been recorded for Ohio.

Subgenus Angustula Sterki 1888

Vertigo milium (Gould) 1840

Fig. 587

Isthmia (Vertigo) milium Call 1900, Moll. Ind., p. 400.

Vertigo (Vertilla) milium Dall 1905, Harriman-Alaska Exped., v. 13, p. 32, fig. 24.

--- --- F. C. Baker 1920, Life of Pleistocene,
--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 334.
--- --- Taylor and Hibbard 1955, Okla. Geol. Survey Circ. 37, p. 11.

Type locality.—Oak Island, Chelsea, near Boston, Massachusetts.

Diagnosis.—Shell shortly oval, cinnamon or paler, glossy, weakly striate; last whorl with external impression over the lower palatal fold and a swelling in front of it, below a deeper impression which runs to the lip, over the upper palatal fold; angular lamella high, short, and situated inward from the insertion of the outer lip; parietal lamella high and long, entering deeply; strong columellar lamella entering horizontally at first, then turning downward, being crescent shaped; upper palatal fold long and high, slightly curved; lower palatal fold a little immersed, high, thin, and entering to the dorsal side, where it curves downward; basal fold somewhat immersed, short and high; small, tubercular suprapalatal fold in some specimens; outer lip somewhat expanded and strongly biarcuate; parietal callus generally rather thick (modified from Pilsbry, 1948, p. 944).

Ecology.—Apparently confined almost entirely to lime-rich areas. Hibbard and Taylor (1960; see Association S-2, this bulletin, p. 32) recorded this species for moist leaf mold and plant debris: under logs and bark, or among leaves, moss, or grass in moist situations not far from water. Oughton (1948, p. 94 ff.) recorded it, somewhat doubtfully, from floodplains of creeks and rivers, confined to the Paleozoic terranes, mainly limestones, in Ontario. Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State.

Associations.—Living: OHIO-1, 43. Fossil: P-1, 2, 3, 4; N-1, 2; A-1; K-1, 5, 9, 11, 13, 15, 17, 19, 21, 24, 25; S-1, 2, 3, 4, 6; W-3, 13, 28, 56, 57, 58, 59.

Geologic range.—Shell large for the genus, cylindrical-ovate, some shade of brown, glossy, with few, weak striae; whorls slowly increasing, the last scarcely higher than the penult, with a moderate crest behind

General distribution (fig. 588).—Maine, Quebec, and Ontario west to South Dakota, Colorado, and southeastern Arizona; southward to Florida and Mexico. Jamaica; Santo Domingo.

Distribution in Ohio (inset, fig. 588).—"Over the state" (Sterki, 1907a, p. 379); Eggleson (ms. records) does not list the species, but three county records, for Fulton, Allen, and Auglaize Counties, are in the University of Michigan collections. The species should be more widely distributed in the State as lime-rich soils are widespread in Ohio. Perhaps its apparent absence from the Ordovician and Devonian areas of outcrop in the State is merely due to insufficient collecting because of its small size.

Remarks.—According to Pilsbry (1948, p. 944) this species and two others form an American group of the genus Vertigo that is subgenerically distinct from others.

Type locality.—Joliet, Illinois.

Diagnosis.—Shell large for the genus, cylindrical-ovate, some shade of brown, glossy, with few, weak striae; whorls slowly increasing, the last scarcely higher than the penult, with a moderate crest behind
the lip, and a wide depression over the palatal folds; there is a distinct crease from the crest to the lip point; aperture relatively small, outer margin angularly in-bent near the middle; teeth typically nine: three on the parietal wall, as in *V. ovata*; a strong columellar lamella, a smaller basal fold, subcolumellar in position; upper and lower palatal folds high and rather long; small tubercular suprapalatal and infrapalatal folds; infraparietal and infrapalatal tubercles rudimentary or wanting in some specimens; peristome a little expanded.

Ecology.—Oughton (1948, p. 94 ff.) recorded this species somewhat doubtfully for floodplains of creeks and rivers.

Associations.—Fossil: W-28, 52, 53, 54, 55, 56, 57, 58, 59.

General distribution (fig. 590).—New York and New Jersey west to Grand Rapids, Michigan, Indiana, and

FIGURE 588.—Distribution of *Vertigo milium* in North America; inset, distribution in Ohio.
Illinois. In Ontario it is not known north of Hastings County.

Distribution in Ohio (inset, fig. 590).—"Castalia, Erie Co." according to Sterki (1907a, p. 379); this probably refers to the Pleistocene record mentioned below. Sterki continues "and probably over the north-western part of the state, being known from north-east Indiana, and Michigan." This seems to indicate that he had no living specimens, at least at the time of

FIGURE 590.—Distribution of _Vertigo morsei_ in North America; _inset_, distribution in Ohio.
writing, from Ohio. I have no further records and Eggleston (ms. records) lists only the fossil occurrence mentioned above.

Geologic range.—Late Wisconsin, Castalia marl, Erie County, Ohio (Sterki, 1920, p. 180), “very common.” F. C. Baker (1920a, p. 388) gave only “Wabash.” Recently, it has been identified from the Aultman deposit (Sheatsley, 1930, p. 116) and from the Castalia deposit (Clark, 1961, p. 27) of Ohio, both late Wisconsin in age.

Vertigo ovata Say 1822
Pl. 17, fig. 8
Istibmia (Vertigo) ovata Call 1900, Moll. Ind., p. 400, pl. 6, fig. 13; pl. 7, fig. 1.
Vertigo ovata Dall 1905, Harriman-Alaska Exped., v. 13, p. 32, figs. 20-23.
--- Oughton 1948, Zoögeogr. study, Ontario, p. 62.
--- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 36, pl. 4, fig. 3.
--- La Rocque 1953, Cat. Recent Moll. Canada, p. 335.

Type locality.—Philadelphia, Pennsylvania.

Diagnosis.—Shell ovate, very convexly conic, summit obtuse; color reddish brown, the apex paler; whorls increasing rapidly, the last much the largest, with a strong opaque light-colored crest behind the lip; a depression with two furrows behind it, and a deep furrow running from crest to lip point; aperture with a distinct sinusus defined by a strongly inbent point in the outer lip, which is thin and expanded; parietal lamella strong and rather long; angular lamella small; a minute infraparietal tubercle commonly present; columellar lamella strong; basal fold well developed but small and thin, in a subcolumellar position; a minute infrapalatal fold in the basal margin commonly below it; upper and lower palatal folds strong and standing on a tinted callus ridge, a minute suprapalatal tubercle commonly above them (modified from Pilsbry, 1948, p. 953).

Ecology.—Its wide distribution indicates that this is a species that can adapt itself to many variations of climate and of soil. Hibbard and Taylor (1960; see Association S-2, this bulletin, p. 32) described the habitat as moist leaf mold and plant debris: under logs and bark, or among leaves, moss, or grass in moist situations not far from water. Oughton (1948, p. 94 ff.) found it in wet locations, such as floodplains of creeks, margins of ponds, streams, and marshes, in Ontario. Burch (1955, Naut. 69, p. 66) has shown its relationships to soil factors in eastern Virginia. Beetle (1962, Naut. 76, p. 74) has collected it from moss, near a pond in Wyoming. Teskey (1955, Naut. 69, p. 70-71) has found it in a cattail swale at the edge of a man-made pond in Georgia. Dawley (1955, Naut. 69, p. 60) noted that it is found especially on cattails or grasses on the edge of lakes or swamps, in Minnesota.

Associations.—Living: MICHIGAN-17, 19, 22; OHIO-43; ONTARIO-2, 3, 7. Fossil: N-1, 2; A-1; K-1, 4, 5; Y-2, 3, 5, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20; S-1, 2, 3, 4, 5, 6; W-28, 35, 48, 49, 50, 51, 67.

General distribution (fig. 591).—Labrador west to British Columbia and Alaska; south to Florida, Mexico, and the West Indies. The typical form is not recorded south of Oregon on the west coast but it penetrates southward to Arizona and Texas and into Mexico.

Distribution in Ohio (inset, fig. 591).—Sterki (1907a, p. 379) gave “over the state” but records are few. Eggleston (ms. records) gave Athens County, and there are specimens from Fulton and Mercer Counties in the University of Michigan collections.

Geologic range.—F. C. Baker (1920a, p. 388) gave Yarmouth, Peorian, and "Wabash." Lower Pliocene (Laverne Formation, Kansas) to present. Late Wisconsin, Castalia marl, Erie County, Ohio (Sterki, 1920, p. 180). Hibbard and Taylor (1960, p. 135) gave early Pliocene to Recent. Additional Ohio records are for the Newell Lake deposit (Zimmerman, 1960, p. 20), the Jewell Hill deposit (Mowery, 1961, p. 12), and the Castalia deposit (Clark, 1961, p. 27).

Vertigo elatior Sterki 1894
Fig. 592
Vertigo elatior Sterki 1920, Ohio Jour. Sci., v. 20,
Vertigo elatior Pilsbry 1931, Man. Conchology, v. 28, p. 93, pl. 15, fig. 2.
Vertigo elatior Oughton 1948, Zoögeogr. study, Ontario, p. 64.
Vertigo ventricosa elatior Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 37, pl. 4, fig. 22.

FIGURE 591.—Distribution of Vertigo ovata in North America; inset, distribution in Ohio.
Vertigo elatior La Rocque 1953, Cat. Recent Moll.
Canada, p. 334.

Wayne 1954, Geol. Soc. America Bull.,
v. 65, p. 1320.

v. 1, no. 3, p. 44.

Type locality.—New Philadelphia, Tuscarawas
County, Ohio.

Diagnosis.—Shell larger and more elevated than

FIGURE 592.—Vertigo elatior, magnified; after F. C. Baker (1939a, p. 106).

FIGURE 593.—Distribution of Vertigo elatior in North America; inset, distribution in Ohio.
that of V. ventricosa, with a rather acute apex; palatal callus strong, basal fold well developed; external impression over the lower palatal fold distinct, deeper than in V. pygmaea; suprapalatal fold commonly developed; angular lamella rarely present.

Ecology.—A hardy species typical of rigorous climate zones but able to survive in mountainous areas to the south.

H. B. Baker (1922b) recorded this species for the floodplain of Hancock Creek, about 2 feet above July level of water, in Dickinson County, Michigan. Beetle (1962, Naut. 76, p. 74) found it in an aspen grove, under leaves, in Wyoming.

Associations.—Living: MICHIGAN - 40; OHIO- 43.

General distribution (fig. 593).—Newfoundland west to British Columbia, south to New Mexico; absent on the west coast and from the Rocky Mountain region in general.

Distribution in Ohio (inset, fig. 593).—Summit, Stark, and Tuscarawas Counties (Sterki, 1907a, p. 379). Also found in the State as a fossil.

Vertigo ventricosa (Morse) 1865

Fig. 594.—Vertigo ventricosa, magnified; after Walker (1928, p. 144, fig. 221).

Ecology.—In Ontario, Oughton (1948, p. 94 ff.) found this species in wet locations, such as floodplains of creeks and rivers, margins of ponds, streams, and marshes. Muchmore (1959, Naut. 72, p. 85-88) collected it under stones in various woodland areas in New York State. Archer (1934c, p. 139) found it common in the limestone talus on Mackinac Island, Michigan. Grimm (1959, Naut. 72, p. 126) listed it from around foundations of an old burned house and from a field in Maryland.

Associations.—Living: MICHIGAN - 8, 18; MINNESOTA- 3, 4; OHIO- 43.

General distribution (fig. 595).—Prince Edward Island and Quebec (Magdalen Islands) south to New England and New York, west to Ontario, Ohio, Illinois, and Missouri.

Distribution in Ohio (inset, fig. 595).—"Over the state" (Sterki, 1907a, p. 379). Eggleston (ms. records) has no specimens and the only record in the University of Michigan collections is for fossil specimens from Butler County. Its absence from the Castalia marl is notable.

Geologic range.—Loess of Posey County, Indiana (Goodrich and van der Schalie, 1944, p. 276). Pilsbry (1948) does not record it as a fossil.

Vertigo pygmaea (Draparnaud) 1801

Fig. 596.—Vertigo pygmaea, Draparnaud 1801, Tabl. Moll. France, p. 57.

Pupa (Nearctica) superioris Pilsbry 1899, Nautilus, v. 12, p. 103.

Vertigo (Isthmia) pygmaea Dall 1905, Harriman-Alaska Exped., v. 13, p. 33.

Type locality.—Not specified. Morse probably described Maine specimens but to my knowledge no type locality has been designated by him or by any subsequent author.

Diagnosis.—Shell umbilicate, ovate, conic, smooth, polished; apex obtuse; suture deep; whorls 4, convex; aperture semicircular, with five teeth, one prominent on the parietal margin, two smaller on the columellar margin, and two, prominent within, contracting the aperture at the base; peristome widely reflected, the right margin flexuose, within thickened and colored (Morse, quoted by Pilsbry, 1948, p. 957).
--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 37, pl. 4, fig. 12.

Type locality.—Europe. Draparnaud’s specimens probably came from France.

Diagnosis.—Shell cylindric-oval, some shade of brown, glossy, with only weak traces of striation; whorls moderately convex, the last with a strong light-colored rounded crest a short distance behind the peristome; parietal lamella strong but rather short, median;

FIGURE 595.—Distribution of Vertigo ventricosa in North America; inset, distribution in Ohio.
columellar lamella deeply placed, short, ascending inwardly; both palatal folds strong, the lower one longer, both standing on a strong callus; basal fold very small, rarely absent; a suprapalatal fold commonly present; peristome narrowly expanded, colored like the shell; the outer lip only slightly incurved (modified from Pilsbry, 1948, p. 961).

Ecology.—This species, at least in North America, seems to be partial to lime-rich Paleozoic soils; it is a hardy species, capable of surviving in the rigorous

FIGURE 596.—Vertigo pygmaea, magnified; after Pilsbry (1948, p. 958, figs. 11, 12).

FIGURE 597.—Distribution of Vertigo pygmaea in North America; inset, distribution in Ohio.
climatic of the Hudson Bay area, but it has spread as far south as Virginia so that it is probable that lime content of substrate is a more important factor for this species than cool climate.

Oughton (1948, p. 94 ff.) noted it somewhat doubtfully as a species of floodplains of creeks and rivers; in Ontario, it is confined to Paleozoic terranes, mainly limestones. Grimm (1959, Naut. 72, p. 126) found it in fields and near railroad tracks in Maryland.

General distribution (fig. 597).—Nova Scotia, Quebec, and Ontario; Maine to Virginia and west to Ohio.

Distribution in Ohio (inset, fig. 597).—It appears to be rare in the State, as the record rests on Sterki's (1907a, p. 379; 1914, p. 272) collections for Franklin and Summit Counties. I have no other record.

Geologic range.—Sangamon, Farmdale? Ioess; lower and upper pro-Tazewell Ioess, Cleveland area (Leonard, 1953, p. 372). Late Wisconsin, Aultman deposit, Stark County, Ohio (Sheatsley, 1960, p. 117).

Vertigo tridentata Wolf 1870
Fig. 598

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 63.

Type locality.—Canton, Illinois.

Diagnosis.—Shell ovate to tapering oblong, honey yellow, shading to somewhat browner below, paler above; surface smooth, with only faint indications of striae, glossy; last whorl somewhat flattened externally over the lower palatal fold and with a rather narrow but generally distinct crest behind the lip; outer lip projecting forward and slightly inward near the middle; parietal lamella high, rather short; columellar lamella blunt, directed downward; lower palatal fold strongly developed; upper palatal fold quite small or occasional- ly wanting; these folds standing on a more or less distinct palatal callus; angular lamella and basal fold never developed (modified from Pilsbry, 1948, p. 965).

FIGURE 598.—Vertigo tridentata, magnified; after F. C. Baker (1939a, p. 106).

Ecology.—"Abundant in shady copes on green weeds, climbing as high as three feet from the ground. I collected 12,000 from standing weeds and not one from the ground, although it was searched well to find them." (Wolf, 1870).

Oughton (1948, p. 95) recorded it somewhat doubtfully as a species of floodplains of creeks and rivers in Ontario. H. B. Baker (1922b) found it in Dickinson County, Michigan, on high moraines with fine hardwood cover, particularly in maple woods. Grimm (1959, Naut. 72, p. 126) collected it from a quarry and from the ruins of a building in Maryland.

Associations.—Living: OHIO-43. Fossil: K-17; W-2, 28.

General distribution (fig. 599).—Maine and Quebec west to Ontario and Minnesota; south to New Jersey, Pennsylvania, West Virginia, Ohio, Indiana, Illinois, Missouri, and Texas.

Distribution in Ohio (inset, fig. 599).—The only record is Sterki's (1907a, p. 380) for Summit, Tuscarawas, Franklin, Miami, and Hamilton Counties. Eggleston has no records and there are no Ohio specimens in the University of Michigan collections.

Vertigo alpestris oughtoni Pilsbry 1948
Fig. 600

Vertigo alpestris Oughton 1948, Zoögeogr. study, Ontario, p. 53.
--- --- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 333.
Vertigo alpestris oughtoni La Rocque and Forsyth 1957, Sidney Cut, p. 85 ff.

Type locality.—Lake Harbour, Baffin Island, Northwest Territories, Canada.

Diagnosis.—"The shortly cylindric shell, with rounded summit, convex whorls and well impressed suture, is like *V. alpestris* Alder ... in form, and in the absence of a crest or of any external impressions behind the outer lip; but it is smoother than *V. alpestris*, the shining surface showing only weak, irregular striae (*V. alpestris* being distinctly, closely striate, especially on the penult whorl). The color is a dilute, slightly transparent hazel, fading to whitish on the summit. The slightly straightened but not in-bent lip is brown. Teeth are smaller than in *V. alpestris*, those present (typically) being the parietal, a low columnellar (which is often wanting), and a small lower-palatal fold.

![Figure 599](image-url)
FIGURE 599.—Distribution of *Vertigo tridentata* in North America; inset, distribution in Ohio.
(which may be absent) (Pilsbry, 1948, p. 968-969, original description).

Ecology.—Wayne (1959b, p. 94) has collected living specimens from a boggy flat and from the adjacent slope up to about 2 meters above the muskeg water level at the Churchill, Manitoba, airstrip; most of the specimens were beneath pieces of fallen spruce wood and crating lumber.

FIGURE 600.—Vertigo alpestris oughtoni, magnified; after Pilsbry (1948, p. 968, fig. 519).

Vertigo parvula Sterki 1890

Type locality.—Summit County, Ohio. This type locality can be arrived at by elimination, although none is given by Pilsbry (1948, p. 969). In the original description (Sterki, 1890, Naut. 3, p. 136), specimens of this species are said to have come from Summit and Lake Counties, Ohio. In the Catalogue (Sterki, 1907a, p. 380) only Summit County is mentioned. Later (Pilsbry, 1919, p. 105) only Summit County is mentioned for Ohio, but the North Carolina locality is mentioned, apparently for the first time. The types are no. 270 of the Sterki collection and I assume that they came from the original lot, therefore from Summit County, Ohio.

Diagnosis.—Shell minute, subcylindric, tapering very little upward, the summit obtuse; thin, translucent, slightly yellowish, smooth and glossy, becoming finely striate behind the outer lip; whorls moderately convex, the last whorl well rounded, slightly impressed behind the projection of the outer lip; aperture somewhat triangular with three teeth; parietal lamella rather short and high; columnar lamella short, steeply ascending inwardly; lower palatal fold rather high in front, rapidly becoming lower as it recedes, penetrating to the dorsal side; peristome very little everted, slightly thickened, and having a distinct callus ridge within; outer lip projecting forward and slightly bent inward above the middle; length 1.55, diameter 0.85 mm.; barely 5 whorls (Pilsbry, 1948, p. 970).

Ecology.—Practically nothing has been recorded on the ecology of this species. Sterki (1890, Naut. 3, p. 136) described the species from Summit and Lake Counties in Ohio and later added that it also occurred "in the mountains of North Carolina." It has not, to my knowledge, been collected again in Ohio and the only recent mention of it that I know of is MacMillan's (1944, Naut. 57, p. 127-129) account of it, which includes no ecologic data. If the species was indeed collected in either Summit or Lake Counties in Ohio, it came from a glaciated region in which the bedrock is extremely varied. In Lake County, the bedrock may have been either Devonian shales, Mississippian limestones and sandstones, or the varied shales, limestones, and sandstones of the Pennsylvanian. In Summit County, the same rocks are represented but there is only a very small area of Devonian exposed. The variety of bedrock makes it hazardous to come to any conclusion on the relationship of this species to the calcium carbonate content of its presumed locality. The North Carolina locality is Hollow Poplar Creek, Mitchell County.

General distribution (fig. 603).—Ohio, Virginia, Tennessee, North Carolina.

Distribution in Ohio (inset, fig. 603).—Summit County, perhaps also Lake County. Lake County is mentioned in the original description but Sterki gives only Summit County in his Catalogue (1907a, p. 380). Apparently, there is no other record for the species in Ohio.

Geologic range.—Unknown.

Remarks.—This species has been collected only once, to my knowledge, in Ohio. Either it is a very rare species, as Pilsbry (1948, p. 970) believed, or it has been confused with other species in subsequent collections.
Vertigo gouldii (Binney) 1843
Pl. 17, fig. 10

Vertigo gouldii Dall 1905, Harriman-Alaska Exped., v. 13, p. 30, fig. 17a, b.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 58.
--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 37, pl. 4, fig. 4.
Vertigo gouldi Pilsbry 1948, Land Moll. N. America,

FIGURE 601.—Distribution of Vertigo alpestris oughtoni in North America; inset, distribution in Ohio.
Vertigo parvula, magnified; after Pilsbry (1948, p. 967, figs. 7, 9).

Vertigo gouldi Leonard 1950, Kans. Univ. Paleont. Contr., Moll., art. 3, p. 27, pl. 6, fig. E.

Vertigo gouldii gouldii La Rocque 1953, Cat. Recent Moll. Canada, p. 334.

FIGURE 603.—Distribution of *Vertigo parvula* in North America; *inset*, distribution in Ohio.
Type locality.—Brookline, Massachusetts.

Diagnosis.—Shell oval to cylindric-oblong, light chestnut colored, closely and sharply striate, especially the penult whorl; last whorl with a crest close behind the lip; aperture with an upper bay or sinusus, the outer lip flattened or a little inflected below it, being slightly biarcuate; teeth white; angular lamella only rarely present; parietal lamella strong and rather long; columellar lamella strong, a subcolumellar basal fold below it; two parietal folds strong, rather near together, the lower a little farther inward (Pilsbry, 1948, p. 972).

Ecology.—Hibbard and Taylor (1960; see Association S-2, this bulletin, p. 32) gave the habitat of this species as moist leaf mold and plant debris: under logs and bark, or among leaves, moss, or grass in moist situations not far from water. Oughton (1948, p. 94 ff.) found it in Ontario in wet locations. H. B. Baker (1922b) gave two habitats: (41) hardwoods on high mo-

FIGURE 604.—Distribution of Vertigo gouldii in North America; inset, distribution in Ohio.
raines of the Calumet Trough, particularly in maple logs; (42) quite common in a cedar-tamarack bog, under bark of freshly cut cedar stumps; both localities in Dickinson County, Michigan. Muchmore (1959, Naut. 72, p. 85-88) recorded it under stones in various woodland areas in New York State.

FIGURE 605.—Vertigo bollesiana, magnified; after Walker (1928, p. 146, fig. 223).

FIGURE 606.—Distribution of Vertigo bollesiana in North America; inset, distribution in Ohio.
General distribution (fig. 604).—Prince Edward Island, Quebec, Ontario, and Michigan, south to Maine, New York, Ohio, Kentucky, Tennessee, and Alabama, west to Indiana and Missouri (typical form); varieties are found much farther west.

Distribution in Ohio (inset, fig. 604).—Probably all over the state” (Sterki, 1907a, p. 380), but specifically mentioned only for Summit, Portage, and Tuscarawas Counties; Eggleston (ms. records) has specimens from Washington County.

Geologic range. —Yarmouth to Recent, Kansas (Leonard, 1950, p. 27). No specific record from Ohio Pleistocene deposits. Late Illinoian (Butler Springs local fauna) to present (Hibbard and Taylor, 1960, p. 134).

Remarks. —Many subspecies are recognized by Pilsbry (1948, p. 972 ff.) of which the following, and perhaps others, may be found in Ohio, either as living snails or fossils:

V. gouldi paradoxa Sterki has been recorded by Leonard (1952, p. 25) in Peoria loess in the Tazewelian faunal zone, in Kansas. It is found in Ontario (Oughton, 1948, p. 59) and Michigan (Pilsbry, 1948, p. 972) but not, so far, in Ohio.

V. gouldii cristata Sterki (Pilsbry, 1948, p. 973) is recorded by Oughton (1948, p. 58) from Lakes Erie and Ontario north almost to James Bay and Borthwick Lake. It may occur on the islands of Lake Erie and on the Lake Erie shore of Ohio.

Vertigo bollesiana (Morse) 1865

--- Oughton 1948, Zoögeogr. study, Ontario, p. 56.

--- La Rocque 1953, Cat. Recent Moll. Canada, p. 333.

Type locality.—Orono, Maine.

Diagnosis.—Shell minutely perforate, cylindrical-ovate, delicately striated, subtranslucent; apex obtuse; suture well defined; whorls four, subconvex; aperture suborbicular, somewhat flattened on its outer edge; with five teeth, one prominent and rather curved on the parietal margin, and two slightly elevated lamelliform teeth within and at the base, peristome subreflected and thickened (Pilsbry, 1948, p. 981).

Ecology.—Found under dead leaves and on bark, in hardwood groves. In Ontario, Oughton (1948, p. 94 ff.) has found this species both in damp woodlands, especially those of deciduous trees, and in drier more open woods or fields.

Associations.—Living: ONTARIO-2.

General distribution (fig. 606).—Maine, New York, Ontario, and Michigan, south to Indiana, Tennessee, and Virginia; the records west and south of New York are somewhat doubtful.

Distribution in Ohio (inset, fig. 606).—Sterki, quoted by Pilsbry (1948, p. 981), stated that he had no specimens from Michigan and Ohio. Eggleston (ms. records) had one lot from Washington County. I have no other records.

Geologic range. —F. C. Baker 1920a, p. 388) gave only Yarmouth. Pro-Kansan loess, Putnam County, Indiana (Wayne, 1954, p. 1320). This appears to be the only fossil record for the species but it suggests that it should be found in later Pleistocene deposits in the midwest and particularly in Ohio. Sheatsley (1960, p. 113) has recorded it for the Aultman deposit, Stark County, Ohio, late Wisconsin.
Pupilla decora F. C. Baker 1920, ibid.
--- Oughton 1948, Zoogeogr. study, Ontario, p. 60.
--- Pilsbry 1948, Land Moll. N. America, v. 2, pt. 2, p. 982, fig. 527; fig. 528, 1-3; p. 991, fig. 531, 1, 2.
--- Leonard 1950, Kans. Univ. Paleont. Contr., Moll., art. 3, p. 27, pl. 6, fig. H.
--- La Rocque 1953, Cat. Recent Moll. Canada, p. 335.

FIGURE 608.—Distribution of Vertigo modesta in North America; inset, distribution in Ohio.
Type locality. — "Northwest Territory ... somewhere near or west of the western end of Lake Superior" (Pilsbry, 1948, p. 983).

Diagnosis. —Shell cylindric-oblong, tawny to cinnamon colored, glossy, rather weakly striate, the striae more distinct on the middle whorls; last whorl with a weak crest behind the obtuse, brown outer lip, which expands very little, and is not noticeably caught in to form a sinus; teeth four, white; the parietal and columellar lamellae and lower palatal fold subequal, short; the upper palatal fold smaller (Pilsbry, 1948, p. 982).

Ecology. —In Ontario, Oughton (1948, p. 94 ff.) found it in wet locations, such as margins of ponds, streams, and marshes. Lindeborg (1949, Naut. 62, p. 130) collected it under logs in Ontario but did not specify the location further.

Associations. —Fossil: K-4, 6, 9, 14; Y-1 (cf.); I-5, W-4, 5, 6, 9, 12, 13, 15, 16, 17, 18, 19, 21, 22, 62, 64, 65, 73.

General distribution (fig. 608). —Alaska south to California (weakly differentiated races) east to James and Hudson Bays, Labrador, and Newfoundland; south to California (weakly differentiated races) east to James and Hudson Bays, Labrador, and Newfoundland; south to Maine, Vermont, and Connecticut, and to Ohio. The geologic range (see below) is much more extensive in the midwest.

Distribution in Ohio (inset, fig. 608). —The record for living specimens in the State is somewhat doubtful. Sterki (1907a, p. 380) gave the following: "Columbus, cited by Surface. The place seems to be outside of the range of its distribution, and probably pygmaea was mistaken for it, which I received, as 'modesta,' from the late Hy. Moores." Eggleston has no records and there are no specimens in the University of Michigan collections. Nevertheless, it is quite possible that it will be found in Ohio as a fossil.

Geologic range. —F. C. Baker (1920a, p. 388) has recorded this species from the Peorian under V. modesta and Pupilla decora. Yarmouth to Recent (Leonard, 1905, p. 27); loess of Posey County, Indiana (Goodrich and van der Schalie, 1944, Revis. Moll. Ind., p. 277). Not specified; probably France.

Remarks. —Pilsbry (1948, p. 985 ff.) recognized several subspecies which should be looked for in Pleistocene deposits of Ohio.

Genus Columella Westerlund 1878

Edentula Clessin 1876, Deutsche Excursions-Moll.-Fauna, p. 208 (non Pfeiffer, 1855).

Type. —Pupa inomata Michaud.

Diagnosis. —Shell cylindric or cylindric-tapering with obtusely conic summit and distinctly perforate axis, brown and nearly smooth, composed of 5 to 9 convex whorls; aperture subbasal, semicircular, oblique; peristome thin and sharp, the outer lip not expanded, regularly arcuate; columellar margin dilated.

General distribution. —Palearctic region of Europe and Asia, eastward to Japan; North America generally, south to Nicaragua; three Hawaiian species.

Geologic range. —Pleistocene of Europe and North America to present.

Columella edentula (Draparnaud) 1805

Fig. 609

Vertigo simplex W. G. Binney 1878, Tetr. Moll., v. 5, p. 219, pl. 73, fig. 3.

Sphyramidum edentulum Dall 1905, Harriman-Alaska Exped., v. 13, p. 54, fig. 37.

— Oughton 1948, Zoögeogr. study, Ontario, p. 48.

Type locality. —Not specified; probably France.

Diagnosis. —Shell perforate, oblong-ovate, tapering above, cylindric in the lower two whorls, or tapering slightly from the last whorl, the summit rounded; thin; cinnamon or a little darker colored, some specimens with whitish streaks; glossy, nearly smooth, but with microscopic irregular wrinkles of growth; whorls convex, the last two rather strongly so; aperture oblique, rounded, truncated by the preceding whorl, toothless; lip thin, sharp, unexpanded, the columellar margin

FIGURE 609.—Columella edentula, magnified; after Walker (1928, p. 153, fig. 238).
reflected; margins remote (modified from Pilsbry, 1948, p. 1002).

Ecology.—Oughton (1948, p. 94 ff.) listed this species from damp woodlands, especially those of deciduous trees in Ontario. Archer (1934c, p. 139) found it in limestone talus on Mackinac Island, Michigan. Burch (1955, Naut. 69, p. 66) gave a table showing the relationships of this species to soil factors in eastern Virginia. Lindeborg (1949, Naut. 62, p. 129) found it under logs in Ontario. Burch (1954, Naut. 68, p. 31) collected it in most cases under and among decaying maple, sweet gum, and oak leaves in Virginia. Grimm (1959, Naut. 72, p. 126) recorded it under stones, in marble quarries in Maryland.

Associations.—Living: MICHIGAN - 1, 40; OHIO - 43; ONTARIO - 2, 3. Fossil: K - 6; Y - 1; I - 5; W - 28.

General distribution (fig. 610).—Newfoundland, Labrador, Quebec, Ontario, Manitoba, British Columbia,
and Alaska, southward to New Jersey, New York, Pennsylvania, Ohio, Indiana, Iowa, Montana, and Oregon; Alabama.

Distribution in Ohio (inset, fig. 610).—Hamilton, Summit, and Tuscarawas Counties; probably over the State (Sterki, 1907a, p. 378). Eggleston (ms. records) does not list the species.

Geologic range.—Pro-Kansan loess, Putnam County, Indiana (Wayne, 1954, p. 1320); Castalia marl (late Wisconsin), Erie County, Ohio (Sterki, 1920, p. 178).

Remarks.—Pilsbry (1948, p. 1003) stated that there is some reason for segregating the prevalent form in the eastern states as a local race, *C. edentula simplex* (Gould).

Columella alticola (Ingersoll) 1875

Fig. 611

Columella alticola Oughton 1948, Zoögeogr. study, Ontario, p. 48.

--- --- La Rocque and Forsyth 1957, Sidney Cut, p. 85 ff.

Ecology.—Henderson (1924, Nat. 37, p. 79) reported this species, together with a number of others, from aspen groves near Tolland, Colorado. Hanna (1925, Nat. 38, p. 123) found it near Unalaska, Alaska. Mozley (1926, Nat. 40, p. 54) reported it from Signal Mountain, 4,000 feet, in the Jasper Park region of Alberta. Berry (1931, Nat. 44, p. 114) reported it from Lamb’s Canyon, Utah, which he described as follows: “The altitude rises from about 7,500 feet at the mouth to almost 11,000 feet at its head, a distance of only seven miles. The dense verdure and frequent rainfalls which occur in this canyon create an ideal collecting ground for the conchologist.” Eyerdam (1933, Nat. 46, p. 128) found it under *Heracleum lanatum*, with several other species of snails, in the Aleutian Islands, Alaska. Oughton (1940, Nat. 53, p. 128) found “about 200 shells from a boggy upland flat; in crevices at edge of temporary stream; under rocks beside a small brook” at Lake Harbour, Baffinland. Gregg (1942, Nat. 55, p. 143) found a number of specimens along the head of Mammoth Creek, southwest corner of Garfield County, Utah, under pieces of rotten wood in well-shaded places within a rather closely restricted area where the road diverges from the creek and turns south, altitude about 8,000 feet. He listed its associates at this point.

Associations.—Living: MANITOBA - 39. Fossil: W-5, 6, 9, 12, 15, 17, 44, 61, 62, 63, 64, 66, 67, 69, 73.

General distribution (fig. 612).—Living colonies from Alberta and British Columbia south to New Mexico and Arizona, east to far northern Ontario; Wyoming and Colorado. As a fossil, it ranges much farther east.

Distribution in Ohio (inset, fig. 612).—All records for the State are for fossil specimens.

Geologic range.—F. C. Baker (1920a, p. 389) gave Aftonian, Yarmouth, Sangamon, Peorian, and “Wabash.” Peoria Loess (Tazewellian zone) of Kansas (Leonard, 1952, p. 18; lower and upper pro-Tazewell loess, Cleveland, Ohio (Leonard, 1953, p. 372 ff.); early Wisconsin silt, Sidney Cut, Shelby County, Ohio (La Rocque and Forsyth, 1957, p. 85 ff.).

Family VALLONIIDAE

Diagnosis.—“Minute orthurethrous snails with perforate or umbilicate shells of few whorls, from discoidal to ovate-conic in form, without internal laminae; often with sculpture of spaced cuticular ribs; the peristome either expanded, thickened, or simple; toothless (except in *Spelaeodiscus*) (Pilsbry, 1948, p. 1018).
General distribution.—America north of Mexico, Europe, northern and central Asia, and Japan.

Geologic range.—Paleocene, Eocene, Miocene, and Pliocene of Europe, and Pleistocene of Europe and America.

Subdivisions.—The three North American genera are Vallonia, Planogyra, and Zoogenetes; only the first of these is represented in the living fauna of Ohio; the other two are unknown for Ohio, either as living forms or fossils, but they are included here as they may eventually appear in Pleistocene deposits of the State.

Two subfamilies (Valloniinae and Acanthinulinae) have been recognized by some authorities but Pilsbry (1948, p. 1019) states that "their structural divergences seem insufficient."

Genus Vallonia Risso 1826

Amplexus Brown 1827, Illus. Conch. Great Britain and Ireland, expl. of pl. 41.

Zurama Leach, in Turton 1831, Man. land and fresh-water shells Brit. Isles, p. 64.

Circinaria Beck 1837, Index Moll., p. 23.

Lucena "Hartmann" Gray 1840, in Turton's Man. land and fresh-water shells Brit. Isles, p. 142, non Hartmann, 1821.

Amplexus Brown 1844, non Sowerby 1815.

Glaphyra Albers 1850, Die Helicen, p. 87.

Type. *Helix pulchella* (Müller).

Diagnosis. Shell minute, widely or openly umbilicate, depressed, the spire low, convex, of 3 to 4½ rounded whorls, the last usually descending in front; color very light, uniform; surface smooth, or ribbed along lines of growth; aperture oblique, circular or rounded-oval, without teeth or laminae; peristome cately and minutely striate, the striation stronger and more regular in the umbilicus, the apical whorl smooth; the 3½ convex whorls parted by a deep suture, which descends only very slightly to the aperture; the last whorl well rounded, not descending noticeably in front; aperture oblique, the peristome rather abruptly expanding, heavily thickened within, and forming about five-sixths of a circle (modified from Pilsbry, 1948, p. 1023).

General distribution.—North America north of Mexico, Europe, northern and central Asia, and Japan.

Geologic range.—Paleocene to Pleistocene of Europe; Pleistocene of North America.

Vallonia pulchella (Müller) 1774

Vallonia pulchella Stecki 1893, Man. Conchology, v. 8, p. 248, pl. 32, figs. 1-5.

--- Call 1900, Moll. Ind., p. 395, pl. 4, fig. 9.

--- Billups 1902, Nautilus, v. 76, p. 50.

--- Dall 1905, Harriman-Alaska Exped., v. 13, p. 22, fig. 2.

--- Stecki 1920, Ohio Jour. Sci., v. 20, p. 179.

--- Ahlstrom 1930, Nautilus, v. 44, p. 44.

--- Goodrich and van der Schalie 1944, Revis. Moll. Ind., p. 280

--- Oughton 1948, Zoögeogr. study, Ontario, p. 70.

--- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 46, pl. 3, figs. 5, 6.

--- La Rocque 1953, Cat. Recent Moll. Canada, p. 338.

Type locality.—Denmark.

Diagnosis. Shell depressed, umbilicate, the umbilicus in its last half turn enlarging to double its former diameter; conocephal and imperfectly transparent, or of somewhat milky tint; the surface glossy, very delicately and minutely striate, the striation stronger and more regular in the umbilicus, the apical whorl smooth; the 3½ convex whorls parted by a deep suture, which descends only very slightly to the aperture; the last whorl well rounded, not descending noticeably in front; aperture oblique, the peristome rather abruptly expanding, heavily thickened within, and forming about five-sixths of a circle (modified from Pilsbry, 1948, p. 1023).

Ecology.—According to Oughton (1948, p. 94 ff.) this species is found occasionally in drier more open woods and fields in Ontario, but it also occurs in wetter locations. In Ontario, it is confined to the Paleozoic terranes, mainly limestones. It survived after more than one week in dried forest litter (Oughton, 1948, p. 94 ff.). Oughton reported that Whitney (1938) kept it for 117 days in dry vials but that it was then able to produce viable eggs when moisture was restored. Dawley (1955, Naut. 72, p. 126) collected V. pulchella from fields, railroad tracks, around foundations of an old burned house, and from marble quarries in Maryland.

Associations.—Living: MICHIGAN-31, 32, 33, 34, 35, 38; OHIO-1, 4, 7, 43; ONTARIO-7; WISCONSIN-139, 144. Fossil: N-1; K-3, 9, 15, 17, 18, 19, 22, 26, 27, W-24, 28, 73.

General distribution (fig. 614).—North Africa; Europe; Siberia east to the Amur; North America east of the Rocky Mountains: Newfoundland, Prince Edward Island, and Maine, west to Manitoba and Alaska, south to Colorado in the west and Massachusetts in the east. Its western and southern limits are ill defined because of the uncertain identity of published records and the likelihood of introduction, for example in California.

Distribution in Ohio (inset, fig. 614).—"Over the state, common, somewhat variable" (Sterki, 1907a, p. 378); Buckeye and Green Islands, in Lake Erie (Ahlstrom, 1930, p. 44); Hamilton County (University of Michigan collections); Auglaize, Clark, Adams, and Washington Counties (Eggleston, ms. records).
Geologic range.—F. C. Baker (1920a, p. 388) gave Yarmouth, Sangamon, Peorian, and "Wabash." Pleistocene of the Ohio and northern Mississippi valleys (Yarmouth stage to Recent) (Pilsbry, 1948, p. 1024); Yarmouth to Recent (Leonard, 1950, p. 33); "Old Forest bed of the Ohio River" (Billups, 1902b, p. 50); late Wisconsin, Castalia marl (Sterki, 1920, p. 179). D. W. Taylor (1960, p. 76) recorded the species for the Sand Draw local fauna (Nebraskan). In recent years, it has been identified from two Pleistocene deposits in Ohio:

Newell Lake (Zimmerman, 1960, p. 20) and Jewell Hill (Mowery, 1961, p. 13).

Vallonia excentrica Sterki 1893

Fig. 615

Vallonia excentrica Sterki 1893, Man. Conchology, v. 8, p. 249, pl. 32, figs. 6, 9.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 70.

--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 46, pl. 3, fig. 15.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 337.

FIGURE 615.—*Vallonia excentrica*, magnified; after F. C. Baker (1939a, p. 118).

Type locality.—Staten Island, New York (Pilsbry, 1948, p. 1025).

Diagnosis.—Shell moderately umbilicate, the umbilicus elongate and rapidly widening in the last third of a whorl; pale corneous, transparent or nearly opaque, with a somewhat oily gloss; smooth, or very finely and irregularly striate, the first whorl smooth; the upper surface slightly convex; the 3 to $3\frac{1}{2}$ whorls increasing rather rapidly and joined by a moderately deep suture; the last whorl relatively large, well rounded and expanding a little towards the aperture, not descending in front; aperture rather oblique; peristome forming five-sixths of a circle, and distinctly everted at the lower part only; the outer margin of the lip turned out very much less than in *V. pulchella*; strengthened within by a strong, white lip shining through the shell outside (modified from Pilsbry, 1948, p. 1025).

Ecology.—Burch (1955, Naut. 69, p. 66) has shown the relationships of this species to soil factors in eastern Virginia. Grimm (1959, Naut. 72, p. 126) has found it along railroad tracks in Maryland. Hibbard and Taylor (1960, their Association P-1) summarized its habitat as damp to dry: damp protected places or relatively dry exposed habitats. This species is more tolerant of drouth than others and requires little cover.

Associations.—Living: OHIO-4, 43. Fossil: K-6 (cf.); I-7 (cf.).

General distribution (fig. 616).—Europe. Madeira. South Africa. In North America, Ontario east to Newfoundland, Maine, and Nova Scotia, southward to Maryland, Ohio, Indiana, Illinois; Oregon, California, Mexico (probably introduced).

railroad tracks in Maryland.

Associations.—Living: MICHIGAN - 32, 35; OHIO - 43; WISCONSIN - 140. Fossil: W - 73.

General distribution (fig. 618).—Europe; Asia, east to the Amur Valley; North Africa. In North America, Alberta east to Quebec, Maine, and New York, south to Virginia, Ohio, Indiana, Illinois, but apparently absent (according to Pilsbry’s records) from Montana, the Dakotas, Minnesota, Wisconsin, and Iowa.

Distribution in Ohio (inset, fig. 618).—"Over the state" (Sterki, 1907a, p. 378); Clark, Miami, and Ottawa Counties (Pilsbry, 1948, p. 1027); Hamilton County (University of Michigan collections); Highland County (Eggleston, ms. records).

Geologic range.—Illinoian and Wisconsin of northwestern Kansas (Leonard and Frye, 1943, p. 457). Not recorded as a fossil from Ohio or any of the surrounding states. F. C. Baker (1920a, p. 388) gave Aftonian.
Sangamon, and Peorian for this species, but his records may include other, similar, species confused with *V. costata*.

Vallonia parvula Sterki 1893
Pl. 17, figs. 3, 4, 9

FIGURE 617.—*Vallonia costata*, magnified; after F. C. Baker (1939a, p. 119).

FIGURE 618.—Distribution of *Vallonia costata* in North America; inset, distribution in Ohio.
Vallonia gracilicosta Reinhardt 1883

Pl. 18, figs. 1-6

--- --- Sterki 1893 (in part), Man. Conchology, v. 8, p. 256, not pl. 33, figs. 48, 49.

--- --- Va/lonia costata var. montana Sterki 1893, ibid., v. 8, p. 254.

--- --- V. gracilicosta Dall 1905, Harriman-Alaska Exped., v. 13, p. 23.

--- --- Oughton 1948, Zoögeogr. study, Ontario, p. 69.

--- --- La Rocque 1953, Cat. Recent Moll. Canada, p. 337.

--- --- Taylor and Hibbard 1955, Okla. Geol. Survey Circ. 37, p. 11.

Type locality.—Joliet, Illinois.

Diagnosis.—Shell small, widely umbilicated, especially for the last 1/3 to 1/2 whorl, quite flat above or with very inconspicuous apex, thin, horn colored to nearly colorless, with rather fine dense membranous ribs, about 30 to 38 on the last whorl, and microscopic intercrossing lines between them; nucleus with fine revolving lines; whorls a little over 3, slightly flattened above and below the periphery, with a deep suture; the last much wider than the penultimate, rather rapidly expanding toward the aperture and descending only at the suture in front; aperture very oblique, tangential and rather inclined, almost circular; ends of margin almost touching; peristome with a rather strong pale-horn-colored lip (modified from Sterki, 1893).

Ecology.—Hibbard and Taylor (1960, their Association P-1) have summarized the habitat of this species as follows: damp protected places or relatively dry exposed habitats. This species is more tolerant of drouth than others, and requires little cover.

Associations.—Living: OHIO-1, 4; ONTARIO-11, 14. Fossil: F-4; S-1, 2, 3, 4, 5, 6.

General distribution (fig. 619).—Ontario west to Manitoba, south to Texas, Iowa, Illinois, Indiana, and Ohio.

Distribution in Ohio (inset, fig. 619).—Sterki (1907a, records it only for Sandusky, Sandusky County, and Put-in-Bay, Erie County. Eggleston (ms. records) did not find it in southern and central Ohio.

Geologic range.—F. C. Baker (1920a, p. 388) gave Yarmouth and "Wabash" for the species. Hibbard and Taylor (1960, p. 138) have extended the record to the late Pliocene.
presence in fossil deposits is evidence of a cooler climate. Jones (1940, Naut. 54, p. 28) listed it in stream drift in Cedar Valley, Utah, from a stream arising in the Oquirrh Mountains. Gregg (1940, Naut. 54, p. 31) found it along Virgin River, at foot of Bridge Mountain, in Grotto Camp Ground, at Saddle Nook, and at other localities in Zion National Park, where it is quite common. Later he (1940, Naut. 54, p. 96) recorded an assemblage of snails in Parawan Mountains, Iron County, Utah, in a rock slide above timberline at an altitude of about 11,000 feet. Later still (1942, Naut. 55, p. 143-144), he recorded it for the head of Mammoth Creek, Garfield County, Utah, at 8,000 feet, under pieces of rotten wood in well-shaded places within a rather restricted area near a creek; and along North Fork of Asay Creek, Garfield County, without further details, but listing the accompanying species of snails.

Associations.—Living: MINNESOTA - 2, 5. Fossil:

FIGURE 619.—Distribution of *Vallonia parvula* in North America; inset, distribution in Ohio.
P-3; K-1, 3, 4, 7, 9, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27; I-3; S-1, 2, 4, 6; W-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 43, 44, 63.

General distribution (fig. 620).—Alberta, Manitoba, and Ontario, south to California, Arizona, and New Mexico. Its range as a fossil is much more extensive.

Distribution in Ohio (inset, fig. 620).—A single record, fossil and rather doubtful, from Butler County (University of Michigan collections).

Geologic range.—F. C. Baker (1920a, p. 388) gave Aftonian, Yarmouth, Sangamon, Peorian, and "Wabash." Aftonian to Recent: Iowa, Kansas, Oklahoma, Texas (Leonard, 1950, p. 33); Blanco deposits to Recent (Leonard, 1952, p. 24); Sidney Cut, early Wisconsin, Shelby County, Ohio (La Rocque and Forsyth, 1957, p. 85 ff.); Bar M local fauna, probably Illinoian, Oklahoma (Taylor and Hibbard, 1955, p. 8). Late Pliocene

FIGURE 620.—Distribution of Vallonia gracilicosta in North America; inset, distribution in Ohio.
to Recent (Hibbard and Taylor, 1960, p. 137). It has been recently recorded from the Jewell Hill deposit, Ohio, by Mowery (1961, p. 12).

Vallonia perspectiva Sterki 1893

Vallonia perspectiva Sterki in Sargent, 1892, *Nautilus*, v. 6, p. 77 (name only; Woodville, Alabama).

FIGURE 621.—*Vallonia perspectiva*, magnified; after Walker (1928, p. 163, fig. 252).

Type locality. —Woodville, Jackson County, Alabama (Pilsbry 1948, p. 1034).

Diagnosis. —Shell small, with widely open umbilicus, widening more in the last half whorl, flat, or a little elevated above, with rather dense, somewhat regularly set, moderately strong membranous ribs, about 35 on the last whorl, and with finer striae between them; nucleus without revolving lines; pale horn to colorless, thin, translucent; whorls 3 1/3, gradually increasing, a little flattened above and below the periphery, with a deep suture, the last rounded, comparatively narrow, little expanding toward the aperture, rather rapidly descending in general; aperture very inclined and oblique, almost tangential, transversely (short) ovoid and oblong; peristome continuous, shortly but not abruptly everted except near the suture, without (or with a very thin) lip (modified from Sterki, 1893).

Ecology. —Grimm (1959, Naut. 73, p. 22) has found this species under dry limestone near a creek, and on a hill in Shenandoah National Park in Maryland.

Associations. —Fossil: P - 1, 3; N - 2; A - 1.

General distribution (fig. 622). —North Dakota, Minnesota, Illinois, West Virginia, and New Jersey, south to Utah, Arizona, New Mexico, Mexico, and Texas; absent from the middle and lower Mississippi Valley; east of the Mississippi it is found south to Alabama, but is not recorded on the coastal plain south of southern New Jersey.

Distribution in Ohio. —No definite record. Its presence in the State is probable since it occurs in Ontario to the north and West Virginia to the southeast.

Remarks. —The distribution of this species is anomalous but this may be due to confusion with other species. The salient anomalies are its absence from the middle and lower Mississippi Valley, and the isolated West Virginia, New Jersey, Ontario, and Minnesota records. These anomalies may be explained by its wanderings in Pleistocene time, of which there is no record to my knowledge, or by the possibility that it is an extreme variant of some other species.

Genus Planogyra Morse 1864

Type. —*Planogyra asteriscus* (Morse).

Diagnosis. —Shell minute, openly umbilicate, nearly flat above, fragile, brown, of about 3½ convex whorls, the periphery rounded at all stages of growth; embryonic 1½ whorls with indistinct microscopic granulations, the rest with widely spaced cuticular laminae parallel to the growth lines; aperture nearly circular except for parietal excision, the peristome either thin or thickened within.

General distribution. —States and provinces bordering on the St. Lawrence and Great Lakes drainage, chiefly in the Canadian zone; New England; British Columbia to Oregon, west of the Cascade Range.

Geologic range. —Unknown.

Remarks. —The discontinuous range of the genus, represented by two distinct species in the east and west, points to considerable antiquity for the genus, at least into the Pleistocene, but geologic distribution, the key to the origin and migrations of the two species, remains unknown.

[Planogyra asteriscus (Morse) 1857]

Planogyra asteriscus Morse 1864, *Portland Soc. Nat. History Jour.*, v. 1, p. 24, figs. 50, 52; pl. 2, fig. 5; pl. 8, fig. 53.

--- Oughton 1948, *Zoogeogr. study, Ontario*,
--- La Rocque 1953, Cat. Recent Moll. Canada, p. 338.

Type locality.—Bethel, Oxford County, Maine.

Diagnosis.—Shell minute, openly umbilicate, fragile, pale brown, imperfectly transparent; spire slightly convex, nearly flat, the first 1½ whorls indistinctly granular, the rest radially lamellose, the last whorl with 18 to 30 thin, sharp, prominent laminae parallel to the lines of growth, their edges somewhat waved or irregular in dry shells; the intervals sharply, minutely striate and faintly marked, chiefly on the base, with very close irregular spiral lines; aperture circular except for the parietal excision; lip generally thin, but in old shells distinctly thickened within basal and columellar

FIGURE 622.—Distribution of Vallonia perspectiva in North America.
margins (modified from Pillsbry, 1948, p. 1039).

Ecology.--Found in very wet, boggy places; in swampy alder thickets; under dead leaves in the strand line, between the water-soaked Sphagnum mats of the arborvitae-spruce bogs, and the fringe of low deciduous trees around their borders; common in damp swales between low fixed sand dunes; it seems to prefer the deeper layers of fallen leaves (Morse, original description, and H. B. Baker, 1928, p. 122 ff.).

This species is characteristic of damp woodlands, especially those of deciduous trees, according to Oughton (1948, p. 94 ff.). H. B. Baker (1928, p. 122) gave the following details from observations at Douglas Lake, Cheboygan County, Michigan: “P. asteriscus is quite common under dead leaves in the strand-line between the water-soaked Sphagnum mats of the arborvitae-spruce bogs and the fringe of low, deciduous trees around their borders. Although it occurs rarely outside of this zone, a very few feet in either direction makes a very remarkable difference in its frequency. Near the shore of Big Stone Bay, Straits of Mackinac (Emmet County), it is also quite common in the damp swales between the low, fixed sand dunes. P. asteriscus and Carychium exile canadense seem to prefer the deeper layers of the fallen leaves and are seldom found crawling on the surface or in the vicinity of logs.”

Associations.--Living: MICHIGAN -2; MINNESOTA-7; ONTARIO-3.

General distribution.--Ontario, Quebec, Prince Edward Island, Newfoundland, and Maine, south to Michigan, Massachusetts, and New York.

Distribution in Ohio.--The species has never been recorded living in Ohio and is not likely to be, unless it should have escaped attention, in the northern parts of the state, because of its very wet habitat and small size. It should be looked for in Pleistocene deposits but so far has not been found in any of those studied from the State.

Geologic range.--Unknown. It is remarkable that this very characteristic northern species should not have been found in any Pleistocene deposit of the northeastern states or Canada. It occurs now in areas that were heavily glaciated and which were certainly denied to it during the glacial advances of the Pleistocene. Its point of origin remains a mystery, unless it was to the east, perhaps in Newfoundland or New England.

Genus Zoögenetes Morse 1864

Zoögenetes Morse 1864, Portland Soc. Nat. History Jour., v. 1, p. 32.

Type.—Helix harpa Say.

Diagnosis.—Shell small, thin and elastic, narrowly umbilicate, ovate-conic, higher than wide, of few rapidly increasing convex whorls, the first two rather smooth, the rest with delicate widely spaced oblique riblets; aperture ovate, oblique, the lip thin and simple, dilated near the columellar insertion, margins remote.

General distribution.—Boreal, Europe, Asia, and North America. In North America the single species, Z. harpa (Say), is widespread in Canada, rarer southward to the 40th parallel in Colorado, much less farther south in the east.

Geologic range.—None recorded.

Zoögenetes harpa (Say) 1824

Helix harpa Say 1824, Long’s Exped., App., v. 2, p. 256, pl. 15, fig. 1.

Zoögenetes harpa Dall 1903, Harriman-Alaska Exped., v. 13, p. 21.

— — — Oughton 1948, Zoögeogr. study, Ontario, p. 72.

— — — La Rocque 1953, Cat. Recent Moll. Canada, p. 338.

Type locality.—“Northwest Territory” (Say).

Diagnosis.—Shell narrowly umbilicate, ovate-conic, thin, somewhat transparent, olive green, rather glossy; early whorls nearly smooth, the last two with sculpture of delicate widely spaced cuticular riblets or laminae in the direction of the growth lines, about 30 on the last whorl, being crowded towards its end; summit obtuse; whorls nearly 4, rounded; aperture oblique, ovate, the lip thin and simple, dilated at the axial termination (modified from Pillsbry, 1948, p. 1043).

Ecology.—A hardy snail, hibernating on “leaves just below the surface or secreted in acorn cups or nut shells, not deeply buried like most other snails” (Morse); it “has a life cycle of a year or thereabouts, is born in the summer or early autumn, matures in summer of the following year, then produces young and dies” (Charles Oldham, quoted by Pillsbry, 1948, p. 1045, from observations near Zermatt, Switzerland). In Ontario, Oughton (1948, p. 94 ff.) recorded this species for damp and drier more open woods or fields in woodlands, especially those of deciduous trees. Lindberg (1949, Naut. 62, p. 130), also in Ontario, found this species under logs, except at one location where a few were collected on tree moss after a rain. In the northern peninsula of Michigan, Ross (1948, Naut. 61,
p. 103-104) listed it from the under surface of a pine board, near the north end of a bridge; and on Isle Royale, under moss, on exposed bedrock surfaces.

Associations.—Living: MICHIGAN-1, 5.

General distribution.—Northern areas of Europe, Asia, and North America. Alaska, Northwest Territories of Canada, Manitoba, Ontario, Quebec, Prince Edward Island, Newfoundland, and Maine, south to Massachusetts, New York, Michigan, Minnesota, and, in mountainous areas of the west, south to Colorado.

Distribution in Ohio.—Not recorded from the State. The nearest known occurrence is in Emmet County, Michigan, so it is not likely to occur, except as an isolated relict colony, within the borders of Ohio. It may eventually be found in Pleistocene deposits.

Geologic range.—None recorded. Its absence from Pleistocene deposits leads to the suspicion that it is a late arrival in North America, possibly after the last glaciation; if so, it has spread over a remarkably large area on this continent.

Family CIONELLIDAE

Cionellidae Kobelt 1880, Illustriertes Conchylienbuch, p. 216.

Cochlicopidae of many authors.

Diagnosis.—Shell resembling that of the Pupillidae, but elongate, imperforate, smooth and glossy, subtranslucent; aperture ovate, longer than wide; lip not expanded, thickened within; parietal wall steeply sloping; columella slightly sinuate or truncate at base; no internal lamellae or tubercles developed; aperture never constricted just behind the lip and never notched behind the outer lip, as in some pupillids.

General distribution.—Palearctic region, with a single Holarctic genus and two other European genera, Azeca and Spelaeoconcha.

Geologic range.—According to Pilsbry (1948, p. 1045) the two genera Cionella and Azeca appear to have been evolved in the Cretaceous, as they are represented in Europe from the Paleocene on. The single American species, Cionella lubrica, is apparently a Pleistocene immigrant, its first known appearance being in the Yarmouth interglacial stage (Pilsbry, 1948; Leonard, 1950, 1952) or Kansan (Wayne, 1954, p. 1320).

Subdivisions.—Represented in Europe by three genera, Azeka, Spelaeoconcha, and Cionella; only the last of these present in North America.

Genus Cionella Jeffreys 1829

Zua Leach, in Turton 1831, Man. land and fresh-water shells British Isles, p. 82.

Chionella Swainson 1840, Malacology, p. 335 (mis-spelling).

Type.—Cionella lubrica (Müller).

Diagnosis.—Shell imperforate, oblong, the spire gradually tapering to an obtuse apex; thin, smooth, yellowish conoeeus, subtransparent and very glossy; whorls 5½ to 6, moderately convex; aperture subvertical, ovate, toothless; outer lip evenly arcuate, obtuse, bordered with yellow or reddish outside, thickened by a narrow, smooth, and continuous callous rib within; columella somewhat straightened, cailoused, generally very indistinctly notched or sinusous at its junction with the basal lip; parietal callus thin, translucent (modified from Pilsbry, 1948, p. 1048).

General distribution.—Holarctic: Europe, Asia, North America. On the last continent, the genus is represented by a single species whose distribution is widespread, from Alaska to Mexico eastward to Labrador and Newfoundland, but with important gaps discussed under distribution of the species.

Geologic range.—Eocene to present (Pilsbry, 1948, p. 1046) in Europe; Pleistocene to present in North America.

Cionella lubrica (Müller) 1774

Fig. 623

Bulimus lubricoides Stimpson 1851, Shells New England, p. 54 (nom. nudum).

Zua lubricoides Morse 1864, Portland Soc. Nat. History Jour., v. 1, p. 30, figs. 79, 81, 84, pl. 10, fig. 82.

Ferussacia subcylindrica Call 1900, Moll. Ind., p. 401, pl. 4, fig. 8.
--- --- Dall 1905, Harriman-Alaska Exped., v. 13, p. 33.
--- --- Dall 1905, Harriman-Alaska Exped., v. 13, p. 33.
--- --- Dall 1905, Harriman-Alaska Exped., v. 13, p. 33.
--- --- Oughton 1948, Zoogeogr. study, Ontario, p. 73.
--- --- Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 47, pl. 4, fig. 9.
--- --- La Rocque and Forsyth 1957, Sidney Cut, p. 85 ff.

FIGURE 623.—Cionella lubrica, magnified; two specimens, showing shell and living animal; after Call (1900, pl. 4, fig. 8).

Type locality.—Denmark.

Diagnosis.—Shell imperforate, oblong, spire gradually tapering to an obtuse apex; thin, smooth, yellowish cornose, subtransparent and very glossy; whorls 5 1/2 to 6, moderately convex; aperture subvertical, ovate, toothless; outer lip evenly arcuate, obtuse, bordered with yellow or reddish outside, by a narrow, smooth, and continuous callous rib within; columella somewhat straightened, calloused, often very distinctly notched or sinuous at its junction with the basal lip; parietal callus thin, translucent (modified from Pilsbry, 1948, p. 1048).

Ecology.—Lives among damp underleaves in densely shaded places; under wood, such as old board sidewalks; in chinks of stone walls and under stones; becomes active in the open six to eight hours before rain; sometimes found congregating in great numbers on stone or concrete walks, possibly for mating (condensed from Pilsbry, 1948, p. 1049).

Oughton (1948, p. 94 ff.) found it occasionally in damp woodlands, especially those of deciduous trees; he also noted it in wetter locations, margins of ponds, streams, and marshes; seeping hillsides, and other wet areas; he found it especially abundant on floodplains of creeks and rivers, but also in forest litter, dried but still alive after more than one week. The combination of floodplain habitat and resistance to desiccation may help account for its wide dispersal. H. B. Baker (1922b) also found it on a floodplain in Dickinson County, Michigan.

Goodrich (1931, p. 4) collected 20 specimens from a single rotten log in Keweenaw County, Michigan. Archer (1934c, p. 139) found it "very abundant in the limestone talus" on Mackinac Island, Michigan. In the Asheville, North Carolina, region, Archer (1935, p. 82) listed it as rather uncommon in leaf mold and under pieces of bark and rotten logs. The local form does not seem to share the tendency to live in cleared territory that is so usual in members of the species in other parts of the world.

Roscoe (1962, Naut. 75, p. 111-115) has summarized information on the habit of aggregation in this species. The individuals gather in large numbers from May or early June to late October, generally after a rain, but also 6 to 8 hours before, alone or in the company of other species. Whether this has anything to do with mating or is merely due to physical factors is not clear. Further details on another aggregation are given by Caesar (1946, Naut. 60, p. 72). Mapes (1951, p. 382-432) and Mapes and Krull (1951, p. 433-444) have given details on the ecology of this species in New York State.

Muchmore (1959, Naut. 72, p. 85-88) found it under stones in various woodland areas in New York State. Lindeborg (1949, Naut. 62, p. 129) collected it from under logs and on a moss bank in Ontario. Grimm (1959, Naut. 72, p. 126) found it in leaf litter along railroad tracks in Maryland. Burch (1955, Naut. 69, p. 66) has shown the relationships of variety morsea to soil factors in eastern Virginia.

In the Columbus area, I have often found it abundantly in disused quarries, hiding in the crevices of limestone and between bedding planes widened by erosion. It is also an abundant snail in stream drift since it inhabits river and creek floodplains.

Ingram (1946, Naut. 59, p. 91-92) reported the following from the Huyck Preserve, New York State:
"This small mollusk was typically found beneath fallen fence rails and discarded lumber piles on the shore of *Myosotis* lake. Careful search around the bases of wild blackberry bushes often revealed numerous individuals. Specimens too were found beneath humus and fallen bark in young maple stands. Clearing of forest areas from the preserve has no doubt numerically increased the population of this species on the preserve. In grass covered fields it was common at the bases of grass roots. It did not extend its range into climax forest stands."

Associations.—Living: MINNESOTA-1, 3, 4, 5, 8; OHIO-43; ONTARIO-3, 7, 8; WISCONSIN-140, 143. Fossil: K-6, 9, 13, 14, 18, 19, 20; Y-1; I-5; S-7; W-5, 6, 9, 24, 43, 44, 45, 46, 59, 64, 65.

General distribution ([fig. 624](#)).—Alaska and British Columbia east to Newfoundland; south in the east to Washington, D.C., in the midwest to southern Missouri,

FIGURE 624.—Distribution of *Cionella lubrica* in North America; *inset*, distribution in Ohio.
in the Missouri Valley to Nebraska, in the Rocky Mountains to Mexico; absent from California.

Distribution in Ohio (inset, fig. 624).—Sterki (1907a, p. 380) gave "over the state." Records are available for many, though not all counties, but it is probable that apparent absence of the species is due more to lack of collecting than to actual limitation of range.

Geologic range.—F. C. Baker (1920a, p. 388) gave Yarmouth, Sangamon, and Peorian. Wayne (1954, p. 1320) has recorded this species for pro-Kansan loess in Putnam County, Indiana. Previously, it was known from Yarmouth to Recent (Leonard, 1950, p. 25; 1952, p. 18). Taylor and Hibbard (1955, p. 8) recorded it for the Illinoian of Oklahoma; more recently, Taylor (1960, p. 77) has identified it from the Pliocene; in Ohio, it occurs in the "Old Forest bed of the Ohio River" (Bil-lups, 1902b, p. 51); in Sangamon, Farmdale? loess, lower and upper pro-Tazewell loess of the Cleveland region (Leonard, 1953, p. 372 ff.); and in the early Wisconsin silts of the Sidney Cut, Shelby County, Ohio (La Rocque and Forsyth, 1957, p. 85 ff.).

Remarks.—The weakly differentiated subspecies C. lubrica morseana is recognized, though somewhat doubtfully, in this report.

Cionella lubrica morseana Doherty 1878

Cionella (Zua) Morseana Doherty 1878, Quart. Jour. Conchology, v. 1, p. 342, pl. 4, fig. 2 (2 figs. and scale cross).

Cochlicopa lubrica morseana Pilsbry 1908, Man. Conchology, v. 19, p. 316, pl. 49, fig. 42.

Cochlicopa lubrica appalachicola Pilsbry 1908, ibid., p. 317, pl. 49, fig. 43.

Cochlicopa lubrica morseana Robertson and Blakeslee 1948, Moll. Niagara Frontier, p. 47.

Type locality.—"Kenton County, Kentucky, and Hamilton Co., Ohio" (Doherty, 1878, p. 342).

Diagnosis.—Shell longer, more slender, more cylindrical, the whorls flatter, the columella straighter, the apex and base more obtuse and the callous rim of the outer lip much thinner and narrower than in typical C. lubrica.

Ecology.—"Found in beds of leaves in woods...; it may be viviparous. In the winter it closes its shell with an opaque, white epiphragm, like that of Helix profunda or H. pomatia" (Doherty, 1878).

General distribution.—Michigan west to New York, south to Alabama and North Carolina.

Distribution in Ohio.—The only published record, to my knowledge, is the original one for Hamilton County.

Geologic range.—Unknown.

Remarks.—This race is recognized here following Pilsbry (1948, p. 1049), but it should be remembered that intergrades between the typical form and this one are hard to place.
SELECTED REFERENCES

In order to keep this list down to manageable proportions, many references to periodicals in the synomynies and ecological summaries have not been included in it. It was felt that the data referred to in these papers could be located easily without formal citation here of author, date, title, and periodical.

Abel, Clarke, 1818, Narrative of journey in the interior of China (Mollusca described by Leach): London, Longman, Hurst, Rees, Orme, and Brown, 420 p.

Adams, Henry, and Adams, Arthur, 1853-1858, The genera of Recent Mollusca; arranged according to their organization: London, 3 v.

1923, Studies of the biology of freshwater mussels. II. The nature and degree of response to certain physical and chemical stimuli: Ohio Jour. Sci., v. 23, p. 59-82.

Anthony, J. G., 1843, List of land and fresh-water shells found chiefly in the vicinity of Cincinnati: Cincinnati, Ohio, 1st ed., no date; 2d ed., 1843.

1911a, The Limnaeidae of North and middle Ameri-
SELECTED REFERENCES

773

cas, Recent and fossil: Chicago Acad. Sci. Spec. Pub. no. 3, xvi + 539 pp., 58 pls., 31 figs.

1918b, The productivity of invertebrate fish food on the bottom of Oneida Lake, with special reference to mollusca: New York State Coll. Forestry, Syracuse Univ., Tech. Pub. 9, p. 11-264, 44 figs., 1 map.

1922b, New species and varieties of Mollusca from Lake Winnebago, Wisconsin, with new records from this State: Nautilus, v. 35, p. 130-133; v. 36, p. 19-21.

1930a, Notes on Professor Shimek’s paper on land snails as indicators of ecological conditions: Ecology, v. 11, p. 789-799.

1931c, Pulmonate Mollusca peculiar to the Pleistocene period, particularly the loess deposits: Jour. Paleontology, v. 5, p. 270-292, pls. 32, 33.

1937b, Mollusca from Prince Albert National Park, Saskatchewan: Nautilus, v. 50, p. 113-117.

1945, The molluscan family Planorbidae (with collection, revision, and additions by Harley Jones Van Cleve): Urbana, Univ. Illinois, xxxvi + 530 p., 141 pls., figs.

1941, Zonitid snails from Pacific Islands. Pt. 3.

Bell, Robert, 1861, List of Recent land and freshwater shells collected around Lakes Superior and Huron in 1859-60: Canadian Naturalist and Geologist, v. 6, p. 42-51, 268-270.

Berry, E. G., and Rue, R. E., 1948, Pomatotripsis lapidaria (Say), an American intermediate host for Schizosoma japonicum: Jour. Parasitology, v. 34, suppl., p. 15.

Billups, A. C., 1902a, Angiurea verrucosa at Lawrenceburg, Indiana: Nuttall, v. 16, p. 72.

_______ 1902b, Fossil land shells of the Old Forest bed of the Ohio River: Nuttall, v. 16, p. 50-52.

_______ 1903, Adaptation of mollusks to changed conditions: Nuttall, v. 16, p. 112-114.

Burns, G. W., 1913, Reptisnag age forests in western Ohio. II. Vegetation and burial conditions: Ohio Jour. Sci., v. 58, no. 4, p. 220-230, 8 figs.

_______ 1895a, Unioniidae of the Ohio River [abs.]: Indiana Acad. Sci. Proc. 1894, p. 139-140.

Chapman, E. J., 1861a, Some notes on the drift deposits of western Canada and on the ancient extension of the lake area of that region: Canadian Jour., n.s., 1861, p. 221-229.

_______ 1861b, Additional note on the occurrence of fresh- water shells in the upper drift deposits of western Canada: Canadian Jour., n.s., 1861, p. 364.

Clarke, W. T., Jr., 1939, Pleistocene mollusks from the Panhandle of Texas: Notulae Natumae, no. 22, 2 p.

— 1915b, A provisional key to the subgenus and species of Lymnaea: Nautilus, v. 38, p. 119-120.

— 1915b, A provisional key to the subgenus and species of Lymnaea: Nautilus, v. 38, p. 119-120.

— 1836, Monograph of the family Unionidae or Naiaides of Lamarck (fresh water bivalve shells) of North America, illustrated by figures drawn on stone from nature: Philadelphia, J. Dobson, 94 p., 50 pls.

Cornejo, John, 1961, Pleistocene molluscan faunas of the Souder Lake deposit, Franklin County, Ohio: Sterkiana, no. 4, p. 35-49, 12 fgs.

— 1919, The Mollusca of the Arctic Coast of America collected by the Canadian Arctic Expedition west from Bootha Inlet with an appended report on the collection of Pleistocene fossil Mollusca: Canadian Arctic Expedition, 1913-18, Rept., v. 8, pt. A, 3A-29A, 3 pls.

Draparnaud, J. P. R., 1801, Tableau des Mollusques terrestres et fluviatiles de la France: Montpellier, 116 p.

D'Urban, W. S. M., 1859, Catalogue of animals and plants, collected and observed in the valley of the River Rouge and the neighbouring townships in the counties of Argenteuil and Ottawa: Canada Geol. Survey Rept. Prog. 1858, p. 226-243.

— 1859-1860, Observations on the natural history of the valley of the Rivière Rouge and surrounding townships in the counties of Argenteuil and Ottawa: Cana-
TERRESTRIAL GASTROPODA

dian Naturalist, v. 4, p. 252-256; v. 5, p. 81-99.
Ellis, A. E., 1926, British snails, a guide to the non-marine
Gastropoda of Great Britain and Ireland, Plioecene to
Evans, G. L., and Meade, G. E., 1945, Quaternary of the
Texas High Plains: Texas Univ. Pub. 4401, p. 485-
407.
Evermann, B. W., and Clark, H. W., 1920, Lake Maxinkuckee,
a physical and biological survey: Indiana Dept. Con-
servation, 2 v., especially p. 41-75.
Eyedam, W. J., 1941, Lymnaea auricularia Linneaeus in
western Washington and Kamchatka: Nautillus, v. 55,
p. 18-19.
Fairbairn, G. E., 1934, Note on the age of land shells in the
main deposits of McKay Lake near Ottawa, Ontario:
Canadian Field-Naturalist, v. 48, p. 119-120.
Féruassac, André de, 1821-1822, Tableaux systématiques
Fischer, P., 1880-1887, Manuel de conchyliologie et de
paléontologie conchyliologique ou histoire naturelle
des mollusques vivants et fossiles suivi d’un appendi-
dice sur les Branchipodes par D. P. Oehlen: Paris,
xix, + 1369 p., 1138 figs., 23 pls.
Fitzpatrick, T. J., 1911, Rafinesque, a sketch of his life
with bibliography: Des Moines, Iowa, Iowa History
Dept., 241 p., 32 pls.
Fleming, J., 1828, A history of British animals, etc.: Edin-
burgh and London, xxiii + 565 p. (Mollusca, p. 227-
460).
Forcart, Lothar, 1957, Taxonomische Revision paläarktis-
Forsthy, J. L., 1961, Dating Ohio’s glaciers: Ohio Geol.
Survey Inf. Circ. 30, 9 p., 7 figs.
Foster, T. D., 1931, Observations on the life history of a
fingernail shell of the genus Sphaerium [abs.]: Illinois
State Acad. Sci. Trans., v. 24, p. 165-166.
[1932, Observations on the life history of a fingernail
53, no. 3, p. 473-497.
[1936, Biology of a land snail, Polygyra thyoides
(Say): Illinois Univ., printed abs., Ph.D. dissert.,
13 p.
Foster, T. D., and Van Deventer, W. C., 1933, A comparative
study of river, pool and pond communities, with spe-
cial reference to the Sphaeriidae [abs.]: Illinois State
Frankel, Larry, 1957, The value of Pleistocene mollusks
as index fossils of Wisconsin sub-ages in Nebraska:
Franzen, D. S., 1947, Living and fossil Pupillidae (Gastrop-
odae) of the Sanborn area, northwestern Kansas: Kan-
sas Acad. Sci. Trans., v. 49, p. 407-419, 2 pls., 1 fig.
Franzen, D. S., and Leonard, A. B., 1942, A preliminary
survey of the Mollusca of Kingman County, Kansas:
Kansas Acad. Sci. Trans., v. 45, p. 334-343, 2 pls.,
1 fig.
[1943, The Mollusca of the Wakarusa River valley:
Kansas Univ. Sci. Bull., v. 29, p. 365-437, pls. 28-32,
6 figs.
[1947, Fossil and living Pupillidae (Gastropoda-
Pulmonata) in Kansas: Kansas Univ. Sci. Bull., v. 31,
pt. 2, no. 15, p. 311-411, pls. 17-22, 15 figs.
Frierson, L. S., 1914, Remarks on classification of the
Unionidae: Nautilus, v. 28, p. 6-8.
[1927, A classified and annotated check list of the
North American Naiaides: Waco, Texas, Baylor Univ.
Press, 111 p.
Frye, J. C., and Hibbard, C. W., 1941, Pliocene and Pleis-
tocene stratigraphy and paleontology of the Meade Basin,
southwestern Kansas: Kansas Geol. Survey Bull. 38,
Frye, J. C., and Leonard, A. B., 1949, Pleistocene strati-
graphic sequence in northeastern Kansas: Am. Jour.
Sci., v. 247, p. 883-899, 1 pl., 3 figs.
[1951, Stratigraphy of the late Pleistocene loesses of
Kansas: Jour. Geology, v. 59, p. 287-305, 2 pls.,
5 figs.
[1952, Pleistocene geology of Kansas: Kansas Geol.
[1954, Significant new exposures of Pleistocene de-
posit at Kirwin, Phillips County, Kansas: Kansas Geol.
[1957, A ecological interpretation of Pliocene and
Am. Middle Nebraskan in the Great Plains region:
[1957b, Studies of Cenozoic geology along eastern
margin of Texas High Plains, Armstrong to Howard
Inv., no. 32, 62 p., 5 pls., 10 figs.
Frye, J. C., Leonard, A. B., and Hibbard, C. W., 1943, West-
ward extension of the Kansas "Equus Beds": Jour.
Frye, J. C., Swineford, Ada, and Leonard, A. B., 1948, Cor-
relation of Pleistocene deposits of the central Great
Plains with the glacial section: Jour. Geology, v. 56,
p. 501-525, 2 pls., 3 figs.
Gamble, E. E., 1958, Descriptions and interpretations of
some Pleistocene sections in Wayne County, Indiana:
terrestres et fluviales (première partie), p. 1-477,
pls. 1-13, 470 figs.; 22 (deuxième partie), p. 479-897,
pls. 14-26, 390 figs.
Getz, L. L., 1959, Notes on the ecology of slugs: Arion
circumscriptus, Deroceras reticulatum, and D. laeve:
Science, v. 130, p. 1139-1140.
Gill, Theodore, 1863, Systematic arrangement of the mollusks
of the family Viviparidae, and others, inhabiting the
1863, p. 33-40.
Goldswait, R. P., 1952, Geological situation of the Orleton
Farms mastodon: Ohio Jour. Sci., v. 52, p. 5-9, 2 figs.
[1958, Wisconsin age forests in western Ohio: Jour.
and glacial events: Ohio Jour. Sci., v. 58, p. 209-219,
1 fig.
Goldswait, R. P., White, G. W., and Forsyth, J. L., 1961,
Inv. Map I-316.
Goodrich, Calvin, 1913, Spring collecting in southwest Vir-
ginia: Nautilus, v. 27, p. 81-82, 91-95.
[1916, A trip to the islands in Lake Erie: Carnegie
Mus. Annals, v. 10, art. XX, p. 527-531.
[1922, The Anculosaee of the Alabama River drainage:
3 pls.
[1929, The pleurocerid fauna of the Falls of the Ohio:
[1931, Mollusks of Keweenaw County, Michigan: Michi-
gan Univ. Mus. Zool. Occas. Papers, no. 233,
9 p., 1 pl.
Univ. Mus. Michigan Handb. Ser., no. 5, 120 p., 7 pls.,
fig.
Goodrich, Calvin, 1939a, Pleuroceridae of the St. Lawrence
no. 404, 4 p.
[1939b, Pleuroceridae of the Mississippi River Basin
exclusive of the Ohio River system: Michigan Univ.
SELECTED REFERENCES

Goodrich, Calvin, 1940a, Mollusks of a Kansas Pleistocene deposit: Nautilus, v. 53, p. 77-79.

1920a, Morphological features of certain mussel shells found in Lake Erie compared with those of the corresponding species found in the drainage of the Upper Ohio: Am. Midland Naturalist, v. 13, p. 145-182.

1920b, Sexual dimorphism and some of its correlations in the shells of certain species of Naiades: Am. Midland Naturalist, v. 6, p. 165-172.

1920c, Variation in nacreous color of certain species of Naiades inhabiting the Upper Ohio drainage and their corresponding ones in Lake Erie: Am. Midland Naturalist, v. 6, p. 211-243.

Harry, H. W., 1952, Carychium exiguum (Say) of Lower Michi-

igan; morphology, ecology, variation and life history (Gastropoda, Pulmonata): Nautilus, v. 66, p. 5-7.

Hart, J. L., 1929, Land molluscs of the Abitibi region: Can-
nadian Field-Naturalist, v. 43, p. 104.

Henderson, Junius, 1931, Molluscan provinces in the west-

er United States: Colorado Univ. Studies, v. 18, no. 4, p. 177-186, 1 fig.

1932, Prolonged aestivation of limnæids: Nautilus, v. 45, p. 140.

1950b, Sphaeriidae of Athabaska and Great Slave Lakes, northwestern Canada: Canadian Field-Naturalist, v. 64, p. 25-32.

Hibbard, C. W., 1944, Stratigraphy and vertebrate paleon-

Hibbard, C. W., and Taylor, D. W., 1960, Two late Pleisto-

Herbert, Leland, 1956, Pleistocene deposits along the Mis-

Hubricht, Leslie, 1953, Carychium exile and Carychium

Jay, J. C., 1839, A catalog of the shells, arranged according to the Lamarckian system; together with descriptions of new and rare species contained in the collection of John C. Jay, M.D.: New York, 3d ed.

Karlin, E. J., 1936, Notes on the ecology of Zonitoides arboresus (Say), Opeas pumilum (Pfeiffer), and Lamellaxis gracilis (Hutton) in greenhouses: Am. Midland Naturalist, v. 55, p. 121-125.

_______, 1936, Land shells of Big Island, Blue Sea Lake, Quebec: Canadian Field-Naturalist, v. 50, p. 51.

_______, 1960b, Molluscan faunas of the Flagstaff formation of central Utah: Geol. Soc. America Mem. 78, 100 p., 4 pls., 2 figs.

La Rocque, Aurèle, and Conley, J. F., 1956, Two Pleistocene molluscan faunas from Hunter's Run, Fairfield County, Ohio: Ohio Jour. Sci., v. 56, p. 325-328, 1 fig.

_______, 1895, Casselman shells: Ottawa Naturalist, v. 9, p. 156.

_______, 1921, Canadian Sphaeriidae: Canadian Field-Naturalist, v. 35, p. 68-70.

_______, 1922, Canadian Sphaeriidae: Canadian Field-Naturalist, v. 36, p. 4-6.

_______, 1925a, Bythinia tentaculata Linn.: Canadian Field-Naturalist, v. 39, p. 41.

_______, 1951, Stratigraphic zonation of the Pecora loess in Kansas: Jour. Geology, v. 59, p. 323-332, 1 pl., 1 fig.

_______, 1953, Molluscan faunules in Wisconsin loess at Cleveland, Ohio: Am. Jour. Sci., v. 251, p. 369-376, 1 pl., 1 fig.

1930, Campeloma decisa Say, a univalve shell in Fumessville blowout dunes of Porter County, Indiana: Am. Midland Naturalist, v. 12, p. 135-137, fig.

1936, Sex organs and reproduction in Campeloma rufum, a freshwater snail: Anuar. Rec., v. 67, no. 1, p. 77.

1940, Two new snails of the genus Campeloma from Ontario: Nautilus, v. 54, p. 12-17, pl. 1, figs. 1-6; figs. 7-14.

Medd, J. T., 1944, On the life cycle and other aspects of the snail Campeloma, in the Speed River: Canadian Jour. Research, v. 18(D), p. 165-172, 2 figs.

Menke, C. T., 1830, Synopsis methodica molluscorum generum omnium et specierum earum, quae in Museo Menkeano adservantur; cum synonymia critica et novarum specierum diagnosibus: Pymonti, H. Gelpeke, xvi + 91 p.

1932b, Studies on the life history of Acilia balde-maui ('Deesh.' Binney): Wis. Acad. Sci., Arts, and Letters Trans., v. 29, p. 397-414, pls. 11, 12, 2 figs.

Morse, E. S., 1864, Observations on the terrestrial Pulmonea of Maine, including a catalogue of all the species of terrestrial and fluvitiae Mollusca known to inhabit the State: Portland Soc. Nat. History Jour., v. 1, no. 1, 65 p., 10 pls.

Mozley, Alan, 1928, Post-glacial fossil Mollusca from a delta deposit at Winnipeg, Manitoba: Geol. Mag., v. 65, p. 267-270, pl. 9.

1934a, Post-glacial fossil Mollusca in western Canada: Geol. Mag., v. 71, p. 370-382.

Müller, O. F., 1774, Vermium terrestrum et fluviatilium seu animalium infusionem helminthiborum et testaceorum, non marinorum, succincta historia: xxi + 214 p.

1912a, Notes upon the families and genera of the Najades: Carnegie Mus. Annals, v. 8, p. 222-365, pls. 18-20, 28 figs.

1945, Great Slave Lake: Nautilus, v. 58, p. 73-79.

Rackett, Thomas, 1821, Descriptions of some shells found in Canada: Linnean Soc. Trans., v. 13, p. 42-43.

1831, Enumeration and account of some remarkable natural objects in the cabinet of Professor Rafinesque, in Philadelphia: 4 p.

Russell, L. S., 1934, Pleistocene and post-Pleistocene molluscan faunas of southern Saskatchewan: Canadian Field-Naturalist, v. 48, p. 34-37, 14 figs.

SELECTED REFERENCES

1824, Narrative of an expedition to the source of the St. Peter's River...under the command of Major Stephen H. Long: v. 2, appendix, p. 256-265; reprint, p. 29-32, 128-131.

1830-1834, American conchology; or, descriptions of the shells of North America (illustrated by colored figures from original drawings executed from nature): New Harmony, Indiana.

1939a, Additional notes on the Naiades (fresh-water mussels) of the Lower Tennessee River: Am. Midland Naturalist, v. 22, p. 452-457, 1 fig.

1939b, Hendersonia occulta (Say), in Michigan; its distribution, ecology, and geological significance: Michigan Univ. Mus. Zoology Occas. Papers, no. 399, 8 p., 1 pl., 1 fig.

1953, Mollusks from an interglacial deposit (Sangamon age) in Meade County, Kansas: Nautilus, v. 66, p. 189-200.

1914, A descriptive catalogue of the Naiades or pearly fresh-water mussels: Detroit, Bryan Walker, 1540 p.

1906a, Notes on list of Ohio Mollusca and a suggestion in regard to local lists: Ohio Naturalist, v. 6, p. 462.

1906b, A few general notes and remarks with respect to the land and fresh water Mollusca: Ohio Naturalist, v. 6, p. 449-450.

1907c, Fossil land and fresh water Mollusca collected in Defiance County, Ohio: Ohio Naturalist, v. 7, p. 110-111.

Stimpson, William, 1851. Shells of New England; a revision of the synonymy of the restaceous mollusks of New England, with notes on their structure and their geographical and bathymetrical distribution, with figures of new species: Boston, Phillips, Sampson, and Co., vi (7)58, (2) p., 2 pls.

Taylor, J. W., 1885, Description of a new species of Planorbis from Manitoba: Jour. Conchology (Leeds), v. 4, p. 351.

Thomas, G. J., 1959, Self-fertilization and production of young in a sphaeridium: Nautilus, v. 72, p. 131-140.

Valencienes, M. A., 1833, Coquilles univalves terrestres et fluviales, etc. Recueil d'observations de zoologie et d'anatomie comparee, etc. II (not seen).

Wayne, W. J., Thornbury, W. D., and Goldsmith, R. P., 1955, Guidebook, Fifth Biennial Pleistocene Field Confer-
ence, September 6-13, 1935 (Wisconsin stratigraphy of northern and eastern Indiana, by Wayne and Thornbury; Pleistocene chronology of southwestern Ohio, by Goldthwait): 72 p., 4 pls., 6 figs.

1948. Notes on the mating of some Zonitoides (Ven

1895a, Recent Mollusca from the headwaters of the Ottawa: Ottawa Naturalist, v. 9, p. 22.

1895b, Notes on Recent Canadian Unionoidae: Canadian Rec. Sci., v. 6, p. 365-366.

1895c, Additional notes on Recent Canadian Unionoidae: Canadian Rec. Sci., v. 6, p. 365-366.

1905a, List of a few species of land and freshwater shells from the immediate vicinity of James Bay, Hudson Bay: Ottawa Naturalist, v. 19, p. 62-64.

1905b, Notes on some fresh water shells from the Yukon Territory: Ottawa Naturalist, v. 19, p. 62.

1905d, List of land and fresh water shells from the district of Keewatin: Canada Geol. Survey Rept., 1905, 6 p.

1907, Notes on some fresh water shells from Mani-
toba: Ottawa Naturalist, v. 20, p. 239-240.

1921, The fossil molluscan faunas of the marl de-
posits of the Ottawa District: Canada Geol. Survey Bull. 33, p. 59-77, pls. 5-8, figs. a, b, 1a-23f.

1922b, Bottom deposits of McKay Lake, Ottawa: Canada Royal Soc. Trans., 3d ser., v. 16, sec. IV, p. 141-156, 2 pls., 1 map.

Woodward, B. B., 1913, Catalogue of the British species of Pisidium (Recent and fossil) in the... British Museum (Natural History)...: British Mus. (Nat. History), ix + 144 p.

Wright, B. H., 1888, Check list of North American Unionoidae and other fresh water bivalves: Portland, Oregon, 8vo, 8 p.

INDEX

787

parulus carinatus, 680
shimeki, 34, 35, 36, 37, 677
Dispersal routes, 6
Distribution records, 9
Diversity of dispersal routes, 5
Diversity of environmental requirements, 5
Diversity of mollusan provinces, 5
Diversity of nonmarine molluscan assemblages, 5
Dixon local fauna, 21
Dollar Lake, Ohio, 86
Doniphan County, Kansas, 34, 35
Dorrance, Russell County, Kansas, 25
Dowagiac Creek, Michigan, 67
Dow's Lake, Ottawa, Ontario, 90
Duck Island, Ottawa River, Ontario, 89
Duck Lake, Wisconsin, 98
Dysmedoma, 601
Dysnomia, 275
Duck Lake, Wisconsin, 98
Dysnomia, 275
Dysnomia, 275
Dysnomia, 275
Eagle River, Wisconsin, 109
East Sister Island, Lake Erie, Ontario, 93
Edentulina, 753
Edwin S. George Reserve, Michigan, 59, 60, 61, 62, 63
Edgellton, H. R., 9
Eldora, 385, 410, 488
Elocharis palustris, 57
Ellard Creek, Quebec, 94
Elliptio, 2, 170
complanatus, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 89, 90, 91, 92, 93, 94, 170, 171
crassidens, 172, 173
dilatatus, 64, 65, 66, 67, 89, 90, 100, 109
dilatatus delicatus, 97, 102, 106, 174, 175, 177, 179
dilatatus gibbosus, 177
dilatatus sterkii, 103, 176, 177
gibbosus, 174
niger, 173
violaceus, 170
(Uinomerus) tetralasmus, 179
(Уinomerus) tetralasmus-camptodon, 180
(Уinomerus) tetralasmus-sayi, 182
Enclosing sediments, 18
Endodontaе, 669, 670
Epigaea repens, 57
Equisetum, 485
arvense, 60
hyemale, 62
Erie County, Ohio, 39, 47, 48
Eubifidaria, 717
Euconulinae, 606
Euconulops, 608
Euconulus, 607, 608
cherchersinus, 39, 57, 58, 59, 60, 61, 62, 63, 610, 611
cherchersinus dentata, 610
cherchersinus polygrarus, 63
cherchersinus pseudopolygrarus, 63, 610, 611, 612, 613
fulvus, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 47, 48, 49, 50, 51, 56, 57, 58, 67, 68, 88, 91, 92, 110, 111, 608, 609
sterkii, 612
trochiformis, 608
Europhela, 676
Eurytina, 263
euelli, 245
iris, 271
recta, 265
(Carunculina) glans, 261
(Eurytina) nasuta, 263
(Eurytina) recta latissima, 265
(Micromya) fabalis, 269
(Micromya) iris, 271
(Micromya) iris novo-eboraci, 271
Euthyneura, 432
Euryphylida, 676
Fagus, 86
Fairview, Ohio, 85, 86
Farmdale loess, 48
Fagus, 86
Found Lake, Wisconsin, 107
Fragaria virginiana, 60, 61
Franklin County, Ohio, 41, 42
Fremont ditch section, Indiana, 50
Freshwater deposits, 12
Fusconaia, 116, 117
ebena, 117
ebena, 116, 117
flava, 65, 66, 67, 89, 97, 100, 102, 103, 106, 107, 109, 118, 125
flava parvula, 119, 120
flava trigonata, 126
kirtlandiana, 123
kirtlandiana, 122, 123
subrotunda, 89, 120, 121, 123
subrotunda kirtlandiana, 89, 122, 123
undata, 123, 124, 126
undata trigonata, 125, 126, 127
undata wagneri, 127
Fusconaia, 117
rubiginosa, 118
subrotunda, 121
undata, 124
Fusconaia, 117
Gahanna, Ohio, 42
Gaul, 437
caperata, 437
carsacapum, 439
dalli, 466
elodes, 446, 452, 453
elodes jolietensis, 446
exilis, 442
galbana, 468, 479
humilis, 469
humilis medicelula, 469, 470
humilis rustica, 473
kirtlandiana, 447
lanceata, 443
obrussa, 476
obrussa decampi, 103, 104, 44, 45, 46, 47, 48, 50, 54, 59, 67, 70, 100, 103, 104, 476, 477
obrussa exigua, 53, 54, 55, 56
parvula, 21, 25, 26, 27, 28, 31, 35, 36, 39, 44, 49, 50, 54, 62, 87, 110, 119, 467, 474, 477, 478, 479
parva sterkii, 56, 478, 480
sayi, 479, 481
umbilicata, 56, 91
Forest beds, 13
Fossil wood, 84
Found Lake, Wisconsin, 107
Fragaria virginiana, 60, 61
Franklin County, Ohio, 41, 42
Fremont ditch section, Indiana, 50
Freshwater deposits, 12
TERRESTRIAL GASTROPODA

Geological setting, 12
Geomene, 605
Geranium maculatum, 60
Gilbaltar Island, Lake Erie, Ohio, 82, 83
Gilmere Creek, Wisconsin, 107
Glacial map of Ohio, 12
Glypha, 757
Giochidium, 113
Glyphonogon, 617
Glyphophylinia, 617
indempta, 617
Glyphysidae, 617
Glyphyalops, 617
Goniospira, 2, 84, 413, 415, 419, 425
brevispira, 419, 425
depygis, 38, 424
eleta, 419, 422
exilis, 419, 425
gibbosa, 419, 427
gracilis, 419, 425
haldemani, 419, 420, 421
infantula, 419, 429
laxeata, 419, 422, 423
lithiodioids, 419, 422
livescens, 39, 72, 73, 74, 75, 76, 77, 78, 80, 81, 89, 90, 91, 419, 422, 424, 429
livescens depygis, 419, 423, 424, 425, 429
livescens gracilis, 89, 419, 425
livescens niagarensis, 423
ohioensis, 419, 425
olivacea, 419
pulchella, 419, 425
seminicarinata, 419, 425, 426
vicina, 419, 429
Goniophidium, 676
Gonophidium, 676
cronkhitei anthonyi, 676, 677
cronkhitei catarikellinesis, 677
maciulhi, 680
perspectivus, 680
Gove County, Kansas, 25
Grand Island, 23
Grand Island-Sappa succession, 29
Grant Lake, Quebec, 94
Great Lakes sediments, 12
Green Bay drainage, Wisconsin, 96, 97
Green Island, Lake Erie, Ohio, 80
Guernsey County, Ohio, 85, 86
Gundlachia, 519, 525
meekiana, 524, 525
Guppya, 607, 612
gundlachi, 612
merki, 612, 615, 616, 619, 640
Gyraulus, 2, 18, 93, 482, 483, 490, 491, 493, 496, 505, 507
album, 39, 491
altissimus, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 70, 491, 492, 493, 494
articulus, 53, 54, 55, 56, 71, 101, 483, 494, 496, 498, 499, 493
circumspirata walkerii, 71, 495, 496
crista, 496
cribus, 496
deflectus, 41, 46, 47, 54, 58, 89, 90, 92, 93, 95, 97, 98, 99, 101, 103, 104, 105, 107, 485, 487, 488, 491, 493
hirsutus, 40, 54, 55, 56, 58, 71, 72, 73, 75, 76, 77, 78, 79, 89, 92, 95, 98, 100, 101, 102, 103, 104, 105, 106, 108, 109, 485, 488, 490
labiatus, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 108, 110, 485, 491, 492, 493, 494
pateronis, 482
similis, 23, 25, 26, 27, 28, 29, 30, 31
umbilicatellus, 512
walkeri, 493
(Armiger) crista, 496
Haldemania, 527
Haldemania, 505
Hamamelis virginiana, 60
Hamilton County, Ohio, 37
Haplopora, 734
Haplorema, 605, 606
concavum, 38, 40, 52, 53, 57, 85, 88, 91, 92, 93, 94, 605, 634, 651
(Geomene) concavum, 605
Haplorematidae, 605
Happy Hollow section, Indiana, 24
Harlan County, Nebraska, 25
Harris Lake, Wisconsin, 95
Harrison County, Iowa, 24
Hartley County, Texas, 29
Harvey Lake, Wisconsin, 99
Hawaii, 636
minuscule, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42, 44, 45, 47, 48, 49, 52, 60, 61, 62, 63, 68, 80, 86, 88, 92, 636, 637, 638, 639, 640
Hebetodiscus, 683
Helen Lake, Wisconsin, 99
Helicella, 615
draparnaldoi, 616
occulta, 555
Helicinae, 555
Helicinidae, 555
Helicodiscinae, 669, 683
Helicodiscus, 2, 44, 483, 669, 683
lineatus, 683
parallelus, 22, 23, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 40, 47, 48, 51, 52, 57, 58, 60, 61, 62, 63, 67, 68, 71, 80, 81, 85, 88, 90, 91, 92, 94, 110, 111, 683, 685
singleyanus, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 88, 684, 686
singleyanus inermis, 686
(Helicotodiscus) singleyanus, 684
Helicoid, undetermined fragments, 44
Helisoma, 2, 69, 73, 498
anceps, 19, 21, 22, 28, 30, 31, 34, 56, 58, 71, 73, 74, 76, 77, 78, 79,
Johnson Lake, Wisconsin, 105
Juniperus depressa, 62
Juncus balticus littoralis, 57
Kentuck Lake, Wisconsin, 105
Kawaguesaga Lake, Wisconsin, 105
Kansan assemblages, 22
Kansan time, 14
Kansas, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37
Kansas: local fauna, 21
Meade formation, Grand Island mem-
ber, 22
Osborne County, list, 23
Sanders local fauna, 22
Katinaka Lake, Wisconsin, 96
Kawaguesaga Lake, Wisconsin, 105
Kelley's Island, Lake Erie, Ohio, 81
Kentuck Lake, Wisconsin, 97
Kickapoo River, Wisconsin, 110, 111
Kladonia rangiferina, 57
Knox County, Nebraska, 25
Koochiching County, Minnesota, 71
Krynickia, 664
Labelling, 8
Laboratory methods, 8
Lac Vieux Desert, Wisconsin, 109
Laevicaepaeina, 519
Laevapex, 521, 527
diapinae, 68, 70, 530
fusca, 69, 78, 79, 84, 104, 527, 531, 532
kirklandi, 34, 39, 527, 531, 533
novangliae, 527
Lafayette County, Missouri, 51
Lake Breeaton, Manitoba, 54
Lake Erie, Ohio, 80, 81, 82, 83, 84
Lake George, Wisconsin, 99
Lake Superior drainage, Wisconsin, 95, 96
Lake Township, Stark County, Ohio, 46
Lake Winnep, Manitoba, 55
Lampsillinae, 212
Lampsilis, 212
alata, 256, 259
alatus, 247
anodontoides, 208, 209, 213, 214, 215
anodontoides fallaciosa, 210, 214, 215
capax, 200, 261
tellacustris, 252
gracilis, 51
higginsi, 219, 220
irs, 274
laevissima, 254
leptodon, 254
ligamentina, 243
ligamentinus, 243
luteola, 224, 225
luteola rosea, 224, 225
luteolus, 242
multiradiata, 216
multiradiatus, 216, 217

nasuta, 263
Novi Eboraci, 271
orbicularis, 213, 217, 219
orbiculata grandis, 219
ovata, 215, 216, 220, 222
ovata canadensis, 219, 222
ovata ventricosa, 217, 218, 220
parva, 263
radiata, 71, 73, 74, 76, 77, 78, 79, 80, 92, 220, 221, 223, 224, 228, 229
radiata borealis, 90, 224
radiata silicioidea, 44, 63, 64, 65, 66, 70, 71, 74, 76, 77, 78, 89, 91, 92, 94, 95, 96, 97, 100, 102, 103, 106, 107, 108, 109, 222, 223, 224, 226, 228, 258
radula, 267
radiata silicioidea rosacea, 55, 56, 69, 98, 99, 101, 102, 103, 104, 105, 106, 108
recta, 265
rectus, 265
tellacustris, 77, 94, 224, 225, 226
silicioidea rosacea, 225, 226, 227
subostracata, 267
ventricosa, 55, 56, 63, 64, 65, 66, 67, 89, 90, 95, 103, 108, 220, 222
ventricosa canadensis, 222
ventricosa lurida, 97, 98, 99, 102, 103
ventricosa occidentis, 71, 97, 100, 102, 103, 106, 107, 108, 109
ventricosa ovata, 220
(Lepidota) leptodon, 254
(Ligumia) recta, 265
(Ligumia) recta latissima, 265
(Ligumia) subostracata, 267
(Propera) alata, 256
(Propera) gracilis, 252
(Venusutaconcha) ellipsiformis, 245
Larix, 555
Laporea canadensis, 573
laricina, 59
La Salle River, Manitoba, 56
Lasimigona, 191
complanata katherinae, 56, 193
compressa, 65, 66, 67, 89, 90, 95, 96, 97, 100, 102, 103, 104, 106, 108, 109, 189, 190, 194, 195
costata, 65, 66, 67, 89, 91, 92, 93, 95, 97, 100, 102, 103, 104, 106, 108, 109, 191, 192, 195
costata eriganensis, 195
costata eriganensis, 193, 196
subviridis, 194
(Platynaias) compressa, 193, 194
(Platynaias) subviridis, 196
(Platynaias) viridis, 193
(Petersyna) complanata, 191
Lastena, 182, 189
lata, 89, 185, 186, 189
Laura Lake, Wisconsin, 99
Lemiox fabalis, 269
Lemna, 69, 70
tricus, 58
Limnura cardiaca, 62
Leptodon, 250, 251
fragilis, 90, 249, 250, 251, 252
fragilis lacustris, 252
laevissima, 252, 253, 254
leptodon, 254
Lespedeza, 62
Leucocilus, 717
armi, 717
contracta, 718
corticaria, 727
fallax, 730, 731
Leucocilus, 717
Liberty Township, Logan County, Ohio, 45
Lick Creek, Indiana, 49
Lick Creek Section, Indiana, 49
Ligumia, 263
ellipsiformis, 245
fasciola, 216
iris novi-eboraci, 271
nausta, 66, 263, 264, 265, 266
recta, 95, 265, 267, 268
recta latissima, 56, 65, 66, 89, 90, 91, 100, 102, 103, 106, 108, 109, 265, 266, 267, 269, 270
subostracata, 20, 267, 271, 272
Limacidae, 661
Limax, 662
campestris, 667
flavus, 663, 664, 665
gracilis, 664
laevis, 664, 667
maximus, 666, 667
reticulatus, 669
Limnaea, 51, 88
acuminata, 457
auricularia, 462
browni, 439
catacospium pinguis, 453
chalybea, 459
columnella, 456
decisa, 374
desidiosa decampi, 476
exilis, 446
ferrisi, 437
fragilis, 51
gracilis, 455
haldemani, 455
intertexta, 439
lanceata, 443
megasoma, 462
navicula, 456
palustris michiganensis, 452
picatula, 467
reflexa attenuata, 446
reflexa distorta, 450
reflexa joliensis, 446
reflexa scalaris, 450
reflexa walkeri, 450
subcarinata, 371
Woodruff, 453
zebra, 442
Limnaea heterostropha, 545
humilis, 469
succiniformis, 456
vivipara, 369
Limneus eioede, 446
elongatus, 453
umbrosus, 446
Limnophila, 433
Limnophysa coperata, 437
obesa, 376
obesus, 377

Menetus, 2, 48, 483, 505, 512, 513, 514
alabamensis, 515
brongniartianus, 515, 517, 518
brongniartiana, 519
cooperi, 515
cooperi mutilinear tus, 514, 515
dilatatus, 39, 515, 516, 519
dilatatus buchanensis, 515, 516, 517
dilatatus pennsylvanicus, 515
exactus, 510
opercularis, 515
opercularis multilinar tus, 41, 515
pearlerei, 23, 24, 25, 26, 28, 29, 30
planulatus, 515
rubellus, 511
sampsoni, 515
uliginosus, 515
(Micromenetus) dilatatus, 515

Menophis, 586
Mesodon, 2, 563, 572, 577, 581, 587, 588
albolabris, 595, 631
appressus, 52, 582, 583, 584
appressus laevior, 583
appressus sculp tior, 583
clausus, 38, 42, 52, 85, 110, 575, 576
dextirostris, 511
elevatus, 38, 52, 80, 581, 582
exoletus, 578
infectus, 38, 52, 80, 81, 85, 86, 88, 92, 93, 586, 587, 606
infectus dentatus, 586
infectus medi us, 586
mitellianus, 38, 88, 575, 577
multilinar tus, 52, 598
pennsylvanicus, 38, 40, 52, 88, 578, 579, 580, 581
profundus, 601
sayanus, 57, 91, 583, 585
sayii, 631
thyriones, 631
thyrichnus, 38, 40, 52, 57, 81, 85, 86, 88, 92, 111, 573, 597
za let us, 38, 52, 80, 81, 92, 93, 578, 579, 597, 599

Mesomphix, 2, 626, 641
cuprea, 631
cupreus, 88, 606, 631, 633
friedis, 631, 632
inornata, 628
inornatus, 85, 92, 627, 628, 629
perlaevis, 629
perlaevis vulgaris, 628
perlaevis vulgaris, 628
subplan us, 628
vulgaris, 627, 628, 629, 630
(Orthalina) cuprea, 631

Mesomphylax, 605
Meraperta megaperta, 259
Miami, Roberts County, Texas, 29
Miami Township, Hamilton County, Ohio, 37
Micropener, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
Micromenetus, 513, 514, 515
Micromphix, 626

Micromyia, 269
fibularis, 269
iris, 229, 45, 271
iris novi-eboricci, 271, 272
Middle Bass Island, Lake Erie, Ohio, 82, 83
Middle Island, Lake Erie, Ontario, 92
Middle Sister Island, Lake Erie, Ontario, 92
Middletown proglacial deposits, 38
Migration routes of Mollusca, 7
Minneapolis, Ottawa County, Kansas, 26
Minneola, Clark County, Kansas, 27
Minnesota, 67, 68, 69, 70
Missouri, 51, 52, 53
Molluscan provinces in North America, 2
Moniteau County, Missouri, 52
Monodonta undulata, 204
Monona County, Iowa, 24
Monroe County, Indiana, 30
Montreal River, Wisconsin, 96
Moraines, end, in Ohio, 12
Morgan County, Indiana, 48
Mouse Island, Lake Erie, Ohio, 80
Mud Lake, Wisconsin, 101
Musculium, 286, 287
contractum, 299
hodgesoni, 299
Jayannum, 298
Jayense, 298
lacustre, 295
parturneium, 299
parturneium globosum, 299
parvum, 291
rosaceum, 295
rychkolti, 298
secure, 291
securis, 290, 291
securis parvum, 291
securis sphaericum, 291
sphaericum, 291
sphaericum succineum, 293
sternii, 314
transversum, 293, 294
truncatum, 299
Mya complanata, 170
radiata, 223
undata, 124
Myosotis, 699, 770
Myrica asplenifolium, 57
Myriophyllum, 69, 86
Mytilus cygnus, 182
Naiaides, 4, 38, 42, 113
Nautilus criista, 496
Navarre, Dickinson County, Kansas, 26
North Carolina, 734
Nebish Lake, Wisconsin, 101
Nebraska, 21, 25
Nebraskan glaciation, 14
Nebraskan or Ahonian assemblages, 21
Nelson Lake, Wisconsin, 101
Neobela, 593, 595
Neoxylostoma, 263
Nephronia ligamentina, 243
Nerita piscinalis, 363
Neritopsis, 701

Nesopupa, 734
Nesovitrea, 20, 624
Nesovitrea, N. binneyana, 38
binneyana, 47, 48, 57, 63, 67, 68, 91, 626, 627
electrina, 20, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 35, 36, 40,
49, 50, 51, 52, 53, 59, 60, 62, 80,
85, 86, 91, 92, 93, 110, 111, 624, 625
(Pergolina) electrina, 624
New Alexandria, Ohio, 85
Newell Lake deposit, Ohio, 44
New York, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80
Niobrara chalk, 25
Nitella, 699
Nitocris, 408, 413, 432
trilineata, 432, 433
Nixon Lake, Wisconsin, 101
Noble County, Indiana, 50
North Harbor Island, Lake Erie, Ontario, 92
North Star Lake, Minnesota, 67, 68, 69,
95, 70, 71
Norton County, Kansas, 36
Norstoc, 703
Nuphar, 525
Nymphæa, 58, 69, 70, 74, 78, 79, 86

Oakhurst deposit, Ohio, 41
Obliquaria, 230
cyphya, 155
cyphus, 117
flexuosa, 275
lateralis, 160, 163
lineolata, 249
reflexa, 226, 227, 230, 231
subulata, 239
tuberculata, 149, 151
verrucosa, 148
(Ellipsaria) fasciolaris, 228
(Plagia) depressa, 249
(Plagia) lineolata, 249
(Quadrula) metanerva, 135
(Quadrula) quadrula, 133, 144
(Quadrula) reflexa, 230
(Roundaria) tuberculata, 150

Obovaria, 234, 240
circula, 239
circular, 240, 241, 242
circular leibei, 240, 241
cordata, 160, 163
epsilon, 234, 240
lateralis, 163
leibii, 241
lebis, 241, 242
olivaria, 90, 230, 231, 234, 240
retusa, 232, 233, 236, 240
subutundus, 66, 89, 234, 235, 239,
240, 241, 242
subutundus leibii, 240, 241
subutundus levis, 240, 241
subutundus levigata, 238, 242
(Pseudoon) olivaria, 234

Oodophium, 572
Odonophalum, 572
Odostomia corticaria, 727
Quadrula, 132
Pyrgulopsis, 2, 397, 398
Pupillidae, 20, 22
Pupillidae, 716, 717
Pupilliniae, 730
Pupoides, 2, 730
alabris, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 38, 40, 51, 52, 53, 61, 62, 88, 111, 730, 732
inornatus, 20, 21, 23
marginata, 730
marginatus, 730, 731
nitidulus, 730
Purpan County, Indiana, 24
Pyramidula, 670
alternata, 671
alternata alba, 671
alternata euriensis, 672
asteriscus, 676
cronkhiene, 676
cronkhiene anthonyi, 676
perspicua, 680
solitaria, 673, 674
solitaria albina, 674
solitaria mynesites, 674
solitaria roseo-apicata, 675
solitaria strongiana, 676
straeella, 676
straeella atkisillensis, 677
Pyrgula nevadensis, 398
Pyrgulopsis, 2, 397, 398
lersoni, 399, 400
scaliformis, 399
Quadricula, 132
aesopus, 155
catilia, 163
ciccacrosica, 152
cocconeae, 164
cocconeae magnalacustris, 166
cocconeae paupercula, 165
cooperiana, 154
cor, 159
cordata-plana, 168
cylindrica, 89, 132, 133, 134
ebena, 117
fragosa, 134, 135
heora, 128
kirtlandiana, 123, 165
lachrymosa, 145
metaneve, 135, 136, 137
metaneve wardii, 89, 136, 137, 138
nodulata, 138, 139, 140
obliqua, 160
obliqua, 170
paupercula, 165
pilarsis, 139, 141, 142
plena, 168
plicata, 132
plicata hippopoea, 132
plicata hippopoea, 132
prasinus, 144
pusulata, 138
pusulosa, 89, 139, 141, 142, 143
pusulosa kieniriana, 141, 145
pusulosa prasina, 143, 146
pusulosa schoolcraftensis, 143
pyramidata, 170
quadrula 34, 134, 144, 145, 146, 147
quadrula-fragosa, 134
rubiginosa, 118
schoolcraftensis, 141, 143
solida, 163
striata, 155
suborbis, 120, 121
trigonis, 126
tuberculare, 148
undata, 124
undulata, 128, 130
undulata form hippopoea, 132
verrucosa, 148, 149
(Luteacarna) striata, 154
(Obliququa) cordata, 161
(Pleurotus) cor, 157
(Tritogonia) verrucosa, 149
Quebec, 93, 94
Quercus, 86
alba, 60
bicolor, 60
borealis maxima, 60
Quickell, 693, 694, 695, 699, 700, 701
vagans, 700
vermica, 699, 700, 701, 703
Quinlan, Woodward County, Oklahoma, 29
Quinter, Gove County, Kansas, 25
Raccoon Creek section, Indiana, 31
Radiocarbon age determinations, 6
Radix, 461, 462
auricularia, 462, 463
Rainbow Rapids, Wisconsin, 109
Rawlins County, Kansas, 37
Razorback Lake, Wisconsin, 108
Red Corral local fauna, 20
Red River, Manitoba, 56
Renfrew County, Ontario, 92
Republic County, Kansas, 35
Rest Lake, Wisconsin, 102
Retinella, 46, 86, 94, 617, 652
binneyana, 626
elecrina, 624, 625
hammonis, 624
indentata, 38, 39, 40, 47, 48, 51, 52, 57, 58, 59, 60, 61, 62, 68, 81, 88, 92, 110, 617, 618, 620, 621
indentata form paucilimita, 85, 620
rhodasi, 32, 40, 57, 621, 622, 623
wheatleyi, 40, 85, 88, 621, 622
(Phylpilops) rhodasi, 621
(Phylphilus) wheatleyi, 621
(Peplana) binneyana, 626
Rexroad local fauna, 20
Rhodacmea, 534
cahawbensis, 534
elaior, 534
filosa, 534
binkleyi, 534
Rhodacmeinae, 534
Rhodoccephala, 534
Rhus glabra, 61, 62
glabra borealis, 57
toxicocephron, 61
typhina, 62
vernix, 59
Rice Creek, Wisconsin, 108
Rideau River, Ottawa, Ontario, 90, 91
River and creek deposits, 12
Roberts County, Texas, 29
Rocky, Washita County, Oklahoma, 29
Ross County, Ohio, 40, 41
Rotundaria, 149
tuberculata, 150
Rubus, 60, 62
idaeus, 57, 61
Rule of relative abundance, 17
Rush County, Indiana, 50
Rush Lake marl, 40
Russell County, Kansas, 25
Russell County, Ontario, 91
St. Germain Lakes, Wisconsin, 108
St. Germain River, Wisconsin, 108
St. Joseph County, Michigan, 66, 67
St. Joseph River, Michigan, 66, 67
St. Louis City, Missouri, 53
St. Louis County, Missouri, 52
Salix, 57, 59, 86
Salvelinus, 349
Sampling sections in the field, 8
Sanborn Formation, 30
Sand Draw local fauna, 21
Sanders local fauna, 22
Sangamon assemblages, 31
Sangamon time, 14
Sannee, Nebraska, 25
Sappa member, 23
Sassafras varifolium, 60
Saw Rock Canyon local fauna, 19
Schalke, Henry van der, 10
Scirpus, 54, 69, 70, 72, 73, 82, 456
americanus, 57
Sediments: smaller lakes and ponds, 12
Seeds, 8
Segmenina armigera, 507
crassilibris, 507
(Planorbabia) armigera, 507
Selenites, 605
dunantii, 605
Selenitidae, 605
Seminolina, 498, 501
Seward County, Kansas, 28
Sheatsley, L. L., 9
Shelby County, Indiana, 50
Shelby County, Ohio, 43
Shoal Lake, Manitoba, 54
Sidney Cut deposit, Ohio, 43, 44
Sieving, 8
Silts, 12
Silver Lake, Wisconsin, 102
Silverton, Briscoe County, Texas, 23, 30
Simpsoniaceous, 202
Simpsonia, 464
Simpsoniachnica, 202
ambigua, 89, 198, 199, 202, 203
Skunk Lake, Wisconsin, 106
Smilacina racemos, 60
TRICARINATA UNICARINATA, 368
UHENSIS, 358
UHENSIS HORTI, 358
VIRENS, 358
WINNEBAGOENSIS, 358
VALVATIDAE, 358
VANCLEAVEA EMAGINATA, 396
VARIABILITY OF LACUSTRINE ASSEMBLAGES, 18
VARIABILITY OF STREAM ENVIRONMENTS, 18
VERBASCUM THAPSIUS, 62
VENTRIDENS, 639, 641
COILLISSELLA, 644, 645, 646
DEMISUS, 85, 647, 648
GULARIS, 644, 645
GULARIS, 56, 88, 647, 649, 651
LAISEDON, 647
LIGERS, 85, 86
SUPPRESSUS, 60, 61, 62, 88, 641, 642, 643
SUPPRESSUS MAGNIDENS, 643
SUPPRESSUS VIRGINICUS, 643
VERTIGINIDAe, 716
VERTIGININAE, 717, 734
VERTIGO, 2, 94, 734, 735
ALPESTRIA, 744
ALPESTRE OUGHTONI, 7, 24, 34, 44, 48, 49, 50, 56, 744, 745, 746, 747
APPROXIMANS, 741
BINNEYANA, 56
BOLLESIANA, 90, 750, 751
CALOSA, 714
COLORADENSIUS, 35
DECORA, 751
ELATOR, 24, 30, 31, 40, 49, 50, 63, 88, 738, 739, 740
GOLDLI, 25, 26, 27, 28, 34, 51, 88, 90, 747, 748, 749
GOLDLII CRISTATA, 751
GOLDLII HANNAI, 24, 50, 749, 750
GOLDLII HUBRICHITI, 48, 49, 749, 750
GOLDLII LAGGANENSIS, 738
GOLDLII LEOSSENSIS, 739
GOLDLII PARADOX, 35, 36, 37, 749, 750, 751
HIBBARDI, 20, 21
MILLII, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 40, 47, 48, 80, 88, 734, 735, 736
MODESTII, 24, 26, 30, 31, 35, 36, 37, 48, 49, 50, 751, 752, 753
MODESTII CARPELENTA, 91
MORSEI, 735
MOSEI, 10, 46, 47, 48, 735, 737
NYLANDERI, 31
OVATA, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 40, 42, 45, 46, 50, 59, 60, 88, 90, 91, 725, 736, 738, 739
PAVULA, 746, 747
PENODON, 723
PUILLLA, 734
PYGMAEA, 34, 48, 741, 742, 743, 753
SIMPLEX, 735
TRIDENTATA, 27, 35, 40, 88, 744, 745
VENTRICOSA, 58, 59, 68, 88, 741, 742
VENTRICOSA VAR. ELATOR, 738
(ISTHMINA) PYGMAEA, 741
(VERTILLA) MILIUM, 734
VERTIGOPSIS, 723
VERTILLARIA, 734
VIBURNUM ALNIFOLIUM, 61
VIGO COUNTY, INDIANA, 49
VILAS COUNTY, WISCONSIN, 94, 95
VILLOSA, 269
FABALIS, 65, 89, 269, 272
IRIS, 64, 65, 66, 67, 74, 76, 89, 270, 271, 274
IRIS NOVI-EBORACI, 271
IRIS NOVI-EBORACI (SIC), 89
VIOLA, 60
VITIS AESTIVALIS, 60, 61
VITREA BINNEYANA, 626
CELLARIA, 615
FERREA, 658
HAMMONIS, 624
INDENTATA, 617
MULTIDENTATA, 634
ROHDSI, 621
WHEATELEY, 621
VITRINA LIMPIDA, 57, 68, 91
VITRINAE, 606
VIVIPARA, 369
CONTECTOIDES, 369
OBESA, 377
VIVIPARIDAE, 22, 358, 369
VIVIPARINAE, 369
VIVIPARUS CONTECTOIDES, 72, 79, 369, 370, 371
INTERTEXTUS, 369
MALLEATUS, 369, 371, 372
SUBPURPUREUS, 369
VORTEX, 498
WALKER LAKE, WISCONSIN, 107
WASHITA COUNTY, OKLAHOMA, 29
WATSON FARM SECTION, INDIANA, 49
WAYNE COUNTY, INDIANA, 50
WEBER LAKE, WISCONSIN, 107
WEST JEFFERSON, OHIO, 41
WEST SISTER ISLAND, OHIO, 80
WHITEFISH LAKE, WISCONSIN, 104
WHITE SAND RIVER, MANITOBA, 56
WHITNEY LAKE WISCONSIN, 104
WILDCAT LAKE, WISCONSIN, 104
WILLOW RIVER, WISCONSIN, 107
WILSON VALLEY, KANSAS, 26
WISCONSIN, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111
WISCONSIN ASSEMBLAGES, 34
WISCONSIN DRAINAGE, WISCONSIN, 107, 108, 109, 110
WISCONSIN RIVER, WISCONSIN, 107, 109, 110
WISCONSIN TIME, 14
WOLF LAKE, WISCONSIN, 104
WOODWARD COUNTY, OKLAHOMA, 29
XOLOZREM, 591
YARMOUTH ASSEMBLAGE, 30
YARMOUTH TIME, 14
ZONIELLUS, 652
ZONITES FRIABILIS, 631
FULIGINOSUS, 631
INOMATUS, 627
INTERTEXTUS, 649
LIGERUS, 648
SINGLEYANUS, 684
SUPPRESSUS, 641
WHEATELEY, 621
(CONULUS) FULVUS, 608
(GASTRODONTA) INTERNUS, 640
(GASTRODONTA) LIGERUS VAR. SAGDINOIDES, 648
(HYALINA) ARBOREUS, 652
(VENTRIDENS) SUPPRESSUS, 641
ZONITIDAE, 606
ZONITINAE, 614, 639
ZONITOIDES, 94, 639, 652
ARBorea, 652
ARBOREUS, 22, 23, 26, 27, 28, 32, 33, 34, 35, 36, 37, 38, 39, 40, 47, 48, 51, 52, 53, 57, 58, 59, 60, 61, 62, 63, 67, 68, 71, 80, 81, 85, 88, 91, 92, 93, 110, 111, 606, 625, 652, 653, 656, 684
ELLIOITI, 641
EXIGUS, 656
LAEVIUSCULA, 684
LAEVIUSCUS, 684, 686
LIMATULUS, 111, 654
MILIUM, 659
MINUSCUS, 637, 638
NITIDA, 654, 655
NITIDUS, 60, 61, 88, 90, 91, 654, 655, 656, 657
SUPPRESSUS VIRGINICUS, 644
VENTRIDENS LIGERUS, 648
(HYALINA) LIMATULUS, 654
(VENTRIDENS) DEMISSUS, 647
(VENTRIDENS) GULARIS, 644
(VENTRIDENS) INTERTEXTUS, 649
ZOOGENETES, 756, 757
HARPA, 767
ZOOGENETES HARPA, 767
ZUA, 768
LUBRICOIDAE, 768
ZURANA, 757
PLATES
15 THROUGH 18
PLATE 15

Shells of *Allogona, Anguispina*, and *Triodopsis* (after Clapp, 1916, pl. XXXII; all shells of recently living animals; all figures approximately natural size)

1. Anguispina kocbi strontiana, type
2. Anguispina kocbi strontiana, most elevated form
3. Anguispina kocbi strontiana, largest specimen
4. Anguispina kocbi roseo-apicata, type
5. Anguispina kocbi roseo-apicata, type
6. Anguispina kocbi roseo-apicata, back view
7. Anguispina kocbi mynesites, type
8. Anguispina kocbi mynesites, type
9. Anguispina alternata eriensis, type
10. Anguispina alternata eriensis, type
11. Anguispina alternata eriensis, a very tall specimen
12. Anguispina alternata eriensis, top view of largest specimen
13. Allogona profunda strontiana, type
14. Allogona profunda strontiana, type
15. Allogona profunda strontiana, showing extreme elevation of spire
16. Triodopsis albolabris goodrichi, type
17. Triodopsis albolabris goodrichi, type
18. Triodopsis albolabris goodrichi, showing extreme height of spire
PLATE 16

Shells of *Hawaiiia, Helicodiscus, Nesovitrea, Promenetus, and Zonitoides* (after Hibbard and Taylor, 1960, pl. XIV; Pleistocene, Kansas)

1. *Helicodiscus parallelus*, X10
2. *Helicodiscus parallelus*, X10
3. *Helicodiscus parallelus*, X10
4. *Hawaiiia minuscula*, X10
5. *Helicodiscus singleyanus*, X10
6. *Promenetus kansasensis*, X20
7. *Hawaiiia minuscula*, X10
8. *Helicodiscus singleyanus*, X10
9. *Promenetus kansasensis*, X20
10. *Hawaiiia minuscula*, X10
11. *Helicodiscus singleyanus*, X10
12. *Zonitoides arbores*, X5
13. *Nesovitrea electrina*, X5
14. *Zonitoides arbores*, X5
15. *Nesovitrea electrina*, X5
16. *Promenetus kansasensis*, X20
17. *Zonitoides arbores*, X5
18. *Nesovitrea electrina*, X5
PLATE 17

Shells of *Gastrocopta*, *Pupilla*, *Pupoides*, *Vallonia*, and *Vertigo* (after Hibbard and Taylor, 1960, pl. XI, Pleistocene, Kansas)

1. *Pupoides albilabris*, X10
2. *Pupoides inornatus*, X10
3. *Vallonia parvula*, X20
4. *Vallonia parvula*, X20
5. *Pupilla blandi*, X10
6. *Pupilla blandi*, X10
7. *Pupilla muscorum*, X10
8. *Vertigo ovata*, X20
9. *Vallonia parvula*, X20
10. *Vertigo gouldi*, X20
11. *Gastrocopta tappaniana*, X20
12. *Gastrocopta tappaniana*, X20
13. *Gastrocopta armifera*, X20
14. *Gastrocopta bolzingeri*, X20
15. *Gastrocopta procera*, X20
16. *Gastrocopta cristata*, X20
PLATE 18

Shells of *Vallonia* (after Hibbard and Taylor, 1960, pl. XII; Pleistocene, Kansas)

1. *Vallonia gracilicosta*, X20
2. *Vallonia gracilicosta*, X20
3. *Vallonia gracilicosta*, X20
4. *Vallonia gracilicosta*, X20
5. *Vallonia gracilicosta*, X20
6. *Vallonia gracilicosta*, X20
7. *Vallonia cyclophorella*, X20
8. *Vallonia cyclophorella*, X20
9. *Vallonia cyclophorella*, X20