
 

 

 

 

 

 

 

The Effect of Anode Surface Structures on Microbial Fuel Cells 

 

 

Undergraduate Honors Thesis 

 

 

Presented in Partial Fulfillment of the Requirements for Graduation with 

Honors Research Distinction in the Department of Mechanical Engineering 

at The Ohio State University 

 

 

By 

Clare Y. Cui 

 

 

 

 

Advisor: Dr. Shaurya Prakash 

 

 



ii 

 

 

 

 

 

 

 

Copyright by 

Clare Y. Cui 

2016  



iii 

 

Abstract 

Wastewater treatment uses 3-4% of all electrical energy (approximately 820 million to 1.1 billion 

kWh) in the United States annually and is a promising source for energy and nutrient reclamation 

through microbial fuel cells (MFCs). MFCs are bio-electrochemical devices that use specific 

species of electrochemically-active bacteria as transporters of electrons for electrical power 

generation. The current maximum MFC power density of 3.32 kWm-3 is low compared to its 

theoretical maximum of 53 kWm-3, leaving much room for improvement. In this honors thesis, we 

hypothesized adding surface structures to the anode would tune shear rates at the anode surface 

independently of inlet flow rates, generating a more robust biofilm and, therefore, higher power 

output. The objective of this project was to design a continuous-flow MFC with structured anodes 

and determine the effect of anode surface structures on power output. A single chamber MFC was 

designed with three anode types: flat, patterned cylinders, and patterned cones. Designs were tested 

first in batch and then in continuous-flow at three flow rates: 0.12 mLmin-1, 0.21 mLmin-1, and 

0.73 mLmin-1. In batch, the cones and cylinders designs had thirteen and four times the peak power 

output of the flat design (0.27 mWm-2) with 3.44 mW∙m-2 and 1.19 mW∙m-2, respectively. In 

continuous-flow, maximum attainable power density (MAPD) was highest for the cones design at 

all flow rates (3.75 mWm-2, 3.23 mWm-2, and 3.69 mWm-2 from low to high flow rates) and was 

significantly larger than the MAPD of the cylinders (1.48 mWm-2, 0.65 mWm-2, 0.86 mWm-2) and 

flat (1.09 mWm-2, 1.31 mWm-2, 1.15 mWm-2) anode designs. From this research, it was determined 

that anode geometry does affect power output. The patterned cone design was selected as a 

potential design feature for future MFCs to increase overall power output while the patterned 

cylinders design was rejected. Overall, this work motivates further investigation into unique anode 

geometries as a design aspect for microbial fuel cells as a method of increasing power output.   
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Chapter 1: Introduction 

1.1 Need for Microbial Fuel Cells 

When considering the long term future of our global society, developing infrastructure for 

sustainable energy is of pressing concern now more than ever before. Sustainable energy is energy 

that is derived from a source that, used in the present day, will not compromise access to energy 

in the future [1]. According to the International Energy Agency, the world demand for electricity 

will increase by more than 70% from 2015 to 2040 [2][2], and Figure 1 shows this clear trend 

starting from 1980 projected to 2040. Currently, 86% of global energy is generated through fossil 

fuels [3]. Oil and gas, which contribute to 63% of total energy generated, are expected to be 

depleted by 2068 based on total estimated reserves in 2015 [3]. Due to this fossil fuel consumption, 

29 Gt of carbon dioxide are produced each year, where 10.2 Gt are released into the atmosphere, 

contributing to greenhouse gas effects, and, subsequently, global warming and climate change [[3], 

[4]]. Since fossil fuels are a finite resource and their consumption for energy have a largely 

detrimental effect on the environment, investigating sustainable, carbon-neutral sources of energy 

for the future and methods of implementing them is of great importance. 

 
Figure 1: Primary energy consumption by fuel in the United States from 1980 projected to 2040 

in quadrillion Btu [6].  
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 Alongside our concerns for our dependence on fossil fuels, water and its sustainability is 

also a point of focus for the health of our society, both now and later. Freshwater is a valuable 

resource, where approximately 306 billion gallons were used each day in the United States in 2010, 

with 90% being surface water withdrawals [7]. However, when surface water is not available, 

groundwater must be used [8]. In 2011, California entered a four year drought where surface water 

became much scarcer, resulting in a water supply composed of 60% groundwater as opposed to 

the more typical 30-40% [8],[9]. These situations can lead to negative long-term effects such as 

land subsidence, aquifer infrastructure damage, and seawater intrusion which could compromise 

groundwater quality [9]. Furthermore, shrinking freshwater sources such as the Ogallala Aquifer, 

which reaches from South Dakota to Texas, are putting approximately one-fifth of the United 

States’ cattle, corn, cotton, and wheat at risk [[10], [12]]. As of 2012, approximately 40% of the 

aquifer was reported to be depleted with a continuing state of steady decline from intensive 

agricultural use and slow recharge rates, essentially meaning that the water in the aquifer is a non-

renewable resource [[12], [10]]. In order to fulfill the increasing need for freshwater resources, it 

is imperative that infrastructure is investigated and developed to keep freshwater readily available 

and from further burdening the natural landscape.  

Wastewater treatment may be a potential direct source for obtaining freshwater. It is 

estimated that 99.9% of all wastewater is water and is recyclable [11]. Typically, water is drawn 

from lakes, rivers, aquifers, and groundwater for use, with a majority of wastewater returned back 

to the environment after being treated [12],[14]. Public and municipal users return 75-85% and 

industrial users return 80-90% of withdrawn water [14], [16].  Water reuse systems, which treat 

and convert wastewater to freshwater on-site, have been shown to be as safe and potable as water 

brought through the conventional environmental buffer, such as lakes and rivers [[13], [11],[14]]. 
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The high return and success of advanced wastewater treatment proves there is a ready source that 

would benefit from immediate treatment at the point of use, and doing so would reduce energy and 

monetary costs in pumping and storage. Despite this, water reuse systems are still more expensive 

than drawing from freshwater sources, with costs varying depending on a variety of conditions, 

such as location, treatment methods used, water quality standards, and more factors [13]. 

Therefore, there is still much room to make these processes more energy efficient so that water 

reuse and advanced treatment of wastewater become a mainstream method of treating water.  

The demands for energy in wastewater treatment in the present day are considerable. The 

most used process in wastewater treatment is activated sludge treatment [11] which purifies 

wastewater by exposing organic waste matter and microorganisms to oxygen via aeration, causing 

microbes to breakdown organic matter, releasing carbon dioxide, water, and energy in the process 

[15]. Unfortunately, this process has a high energy cost of 0.5 kWh-1m-3 due to the aerobic 

processes involved [11][12]. Currently, electrical energy used for wastewater treatment comprises 

3-4% of the energy consumed in the United States each year, which equated to  approximately 8.2 

× 108 to 1.1 × 109 kWh in the year 2015 [[16], [17]]. While it takes energy to treat water, it is also 

feasible to reclaim energy from the treatment process. Domestic wastewater has the potential to 

yield up to 2.2 kWh-1m-3 in aeration [11]. To take advantage of this energy potential, microbial 

fuel cells can be used, which have been shown to be able to use wastewater to generate electricity 

[[11], [12]]. 

1.2 The Microbial Fuel Cell and Application in Wastewater Treatment 

Microbial fuel cells are bio-electrochemical devices that use microorganisms to convert 

chemical energy in organic compounds into electricity [18]. In the anode chamber of a microbial 

fuel cell, bacteria oxidize substrates, producing electrons, protons, and CO2 [18]. Substrates are 
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either replenished intermittently, referring to batch-fed mode, or constantly in a fluid flowing into 

and out of the anode chamber, which refers to continuous-flow mode.  

Bacteria exist in the anode chamber either suspended in the fluid or in a biofilm on the 

anode itself [19]. For the majority of the existence of microbial fuel cells, mediators such as 

thionine, methyl viologen, and others were used to shuttle electrons between the bacteria and 

electrode [20]. However, in 1999, it was discovered that Shewanella putrefaciens was capable of 

directly transferring electrons due to electron carriers on the cell surface, resulting in the mediator-

less MFC [21], with the bacteria themselves being known as exoelectrogens or electrochemically-

active bacteria [21]. Electrons, therefore, can be transferred to the anode through a variety of 

methods, including electron mediators, direct bacteria membrane transfer, or by conductive 

nanowires produced by bacteria [[22], [23], [24]]. Direct interspecies electron transfer has also 

been shown to be another way for current production, although it is not well understood yet [32]. 

However, it is preferable to use mediator-less MFCs since synthetic mediators are toxic and 

unstable, which would be unsuitable in an application setting such as wastewater treatment [18].  

Once transferred, electrons travel through an external circuit to the cathode. Protons in the 

anode chamber cross a proton exchange membrane (PEM), where they combine with oxygen and 

electrons in a reduction half-reaction to form water. Bacteria in the anode must be kept in an 

anaerobic environment in order to prevent electrons from reaching any other end acceptor besides 

the anode itself [18]. Figure 2 shows the operations of an air-cathode MFC with chemical half-cell 

reactions at the anode and cathode. 



5 

 

 

Figure 2: Schematic for an air-cathode MFC in operation showing the oxidation reduction 

reactions and transfer of electrons leading to generation of an electric potential that can be 

harvested at an external load [25]. 

 

These chemical reactions compose the two halves of a reduction-oxidation reaction and 

allow for the generation of an electric current. At the anode, a reduction half-cell reaction occurs, 

and, at the cathode, an oxidation half-cell reaction occurs [25].  These reactions are given below 

using acetate. Acetate is a common electron donor used with anaerobic bacteria and is a 

predominant fuel source for MFCs [[26], [27]]. Thus, the chemical equation (Equation 1) for the 

oxidation half-reaction at the anode using acetate [18] is given as: 

       CH3COO– + 2H2O → 2CO2
– + 7H+ + 8e–          (1) 

At the cathode, the reduction half-reaction equation (Equation 2) [18] is given as: 

       O2 + 4H+ + 4e– → 2 H2O                  (2)  

Microbial fuel cells have clear benefits for the current wastewater treatment system in place of the 

energy-intensive activated sludge treatment. Their implementation could simultaneously degrade 

waste and reclaim energy for further use at the plant. It has been shown that, using wastewater as 

the anode effluent, MFCs can degrade 50-90% of the organic waste [[28], [29], [30]]. Additionally, 

MFCs have the added advantage of being carbon-neutral, with the CO2 that is released in the 

oxidation reaction originating from biomass that used photosynthesis to obtain it from the 
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atmosphere [18]. Since electrochemically-active bacteria is already abundant in wastewater 

treatment centers [31], it is clear that MFCs would be a worthy installment in this application by 

simultaneously increasing energy efficiency and keeping the functionality of the original system 

intact. 

1.3 Causes of Low Power Output 

Despite the widespread benefits of implementation of microbial fuel cells in a wastewater 

treatment plant, application of MFCs have been stalled by low power output. The theoretical 

maximum for MFCs with a surface area to volume ratio (SA/V) of 103 m-1 that is limited by the 

cathode surface area is approximately 53 kWm-3 [32]. The current maximum power density 

achieved thus far is 3.32 kWm-3, with an actual power output of 4.15 × 10-5 W, where the MFC 

was miniaturized with a working anode volume of 0.0125 cm3 [33]. With more than one order of 

magnitude of power density in difference, MFC technology still has much more room for 

improvement. 

Microbial fuel cells lose voltage for a variety of reasons. Air-cathode MFCs using acetate 

have a maximum MFC voltage, or electromotive force (EMF) voltage, of 1.1 V, which is the 

difference between the electrode potential, where Ecell = Ecat – Ean [[32], [25]]. However, due to 

overpotentials at the anode and cathode as well as ohmic losses, the emf voltage can never be 

obtained. The actual cell voltage is the emf voltage subtracted by overpotentials and the ohmic 

losses [34]. Activation losses and mass transport losses, which are contributors to electrode 

overpotential, as well as ohmic losses are the most relevant to this thesis [34]. 

 Ohmic losses are due to resistance to the electrons through the electrodes and internal 

connections as well as resistance of the protons through the anolyte solution and PEM [32]. These 

losses are some of the most important ones to overcome in order to create the optimal MFC design. 
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Improvements can be made by decreasing electrode spacing, using a PEM with low resistivity, 

ensuring good contact, and increasing solution conductivity [34]Error! Reference source not found.. 

Activation losses arise when there is a transfer of electrons at the anode surface, either due to a 

compound reacting at the bacterial surface, at a mediator, or at the final electron acceptor at the 

cathode and are apparent at low current densities, as can be seen in Figure 3 [32]. These losses can 

be mitigated by increasing electrode surface area, increasing the internal temperature of the MFC, 

creating an enriched biofilm on the anode, and by improving electrode catalysis [34]. Mass 

transport losses occur at high current densities (refer to Figure 3), where there is a limited mass 

transfer of reactants to the electrode and, therefore, low substrate flux, resulting in a limited rate 

of reaction [32]. This type of loss can sufficiently be avoided by operating the MFC in continuous-

flow mode [32]. In order to create a successful MFC device, these overpotential and ohmic losses 

should be taken into consideration at both the design and operation stages in order to reduce power 

loss and obtain the best efficiency possible. 

 

Figure 3: Example (a) polarization and (b) power curves for MFCs, Maximal Attainable Power 

Density (MAPD) is show by Pmax, which corresponds with optimal voltage (Vopt) and optimal 

current (iopt). Short circuit current isc is reached at zero external resistance [11].  
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1.4 Possible Factors Affecting Biofilm Development 

A biofilm is a community of microbes that attaches irreversibly to surfaces and is enclosed 

in a primarily polysaccharide material that forms a polymeric matrix [35]. It is essential to have a 

stable, enriched biofilm for increased power output between the bacteria and anode, and this state 

is reached when a sustained current generation is established [36]. The biofilm is a ‘micro’-

ecosystem where a mixed culture of microbial species work together to protect themselves against 

stresses in the environment and more efficiently distribute nutrients [37]Error! Reference source 

not found.. The stability of a biofilm is directly linked to the adhesion strength of the bacteria, 

where surface proteins such as pili and flagella make contact with the electrode and adhere through 

oxidation, hydration, and other chemical reactions [38], [39]. Surface properties of anodes also 

have an impact on adhesion, where, for example, it was shown that graphite foam electrodes having 

the same geometric surface area as graphite rods had a higher concentration of cells by a factor of 

2.7 [40]. 

The hydrodynamic shear rate of a fluid flowing over the biofilm also plays a role in 

bacterial adhesion [38]. When under continuous-flow conditions, there is a possibility for localized 

biofilm detachment if high shear stresses exceed the tensile adhesion strength of the biofilm 

[Error! Reference source not found.[38], [41]]. However, it has also been shown that a larger 

hydrodynamic shear rate results in shear stress to the biofilm, causing it to grow denser and to 

generate greater power output. In one study done by Pham, a low shear rate of 80 s-1 resulted in a 

power density of 50 Wm-3 while a high shear rate of 120 s-1 had a power density of 160 Wm-3 [41]. 

In terms of scaling factors, the high shear rate, which was 1.5 times the low shear rate, resulted in 

a power density that was 3.2 times the low shear rate power density [41]. In addition to this power 

difference, confocal laser scanning microscopy and scanning electron microscopy were used to 
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determine biofilm density, which doubled from 0.73 µm3 of biomass per µm2 of anode surface to 

1.52 µm3 of biomass per µm2 of anode surface, showing that an increase in shear rate could create 

a denser biofilm that had a greater adhesion to the MFC anode [41]. 

One approach that could potentially further enrich the biofilm is to look at nature for 

inspiration. In sea coral and bovine rumen, high bacterial concentrations can be found. For sea 

coral, this ranges from 105 to 106 cells·mL-1 [42]Error! Reference source not found. and, for 

bovine rumen, this ranges from 109 to 1010 cells·mL-1 [43]. One commonality shared between these 

biological entities is that both have unique structures that enable the capture and retaining of 

bacteria. Both are composed of complex geometries that project outwards into their environment 

(Figure 4a and 4b). Since MFCs are also exposed to similar hydrodynamic shearing forces like 

corals and algae, it was natural to take inspiration from these structures and implement them into 

MFCs. 

            
    (a)     (b) 

Figure 4: (a) Halocynthia roretzi sea coral [44] and (b) bovine rumen [45] lining have high 

bacterial concentrations that serve as bio-inspiration for MFC anode surface design. 

   

1.5 Previous Work from Our Group 

Previous work and collaboration with Matthew Gerber (MS, 2014 Mechanical 

Engineering, Ohio State) resulted in three anode surface structure designs as well as a complete 

set of MFC testing results against which this study could be compared. There were two aspects of 



10 

 

the previous project, with one being a numerical analysis conducted on various structure 

geometries and an experimental analysis of actual surface structures being implemented in the 

anode of the MFC. The numerical and experimental results conflicted with each other 

unexpectedly, which was partially responsible for motivating this thesis work. 

In the numerical analysis, 40 structural designs were initially analyzed in COMSOL 

Multiphysics v.4.3b in order to determine the effects of geometry on surface shear rates. Each 

design was tested with one structure set inside a simple rectangular channel with three different 

Reynolds numbers of 10-3, 0.1, and 10. A dimensionless surface shear rate magnitude that was 

averaged over selected surfaces was used as the quantitative metric for the comparisons. From this, 

the five structures with the highest shear rate magnitudes were chosen to be modeled in 4 × 4 

arrays. Based on this, the cylinder and cone designs were chosen for their more simplistic designs 

due to their machinability as well as the ability to distinguish between their average shear rate 

magnitudes. The flat design was also chosen to use as a baseline comparison against the other 

designs. Finally, all three of the selected anode designs were modeled with the MFC anode 

chamber geometry as 4 × 4 arrays (Figure 5). It was found that the flat anode base surface had a 

higher shear rate magnitude than either of the bases of the patterned cylinder and patterned cone 

designs since it was not obstructed by structures. The top facets of the cylinders exhibited the 

greatest values of shear rate magnitude although those values were also higher for the cone at its 

top facets. In general, it was expected that the biofilm would be the densest and thinnest on the 

surface structures themselves as opposed to their base and that there would be no locational 

preference for bacteria colonizing on the flat anode.  
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Figure 5: Numerical analysis and flow simulation  for three anode designs situated in the designed 

MFC. From left to right, flat, patterned cylinders, and patterned cones [25]. 

 

Upon finishing the numerical analysis, the MFC was designed and constructed with the 

selected surface structures in mind. Per design, measurements in batch-fed mode were measured 

for one day prior to 50 hours of continuous-flow mode, with a resistance sweep (see Section 3.4) 

conducted at the end of continuous-flow testing. External resistances used ranged from 80–8000 

Ω. In batch-fed, where there was no surface shearing, the results were exactly as expected, based 

on electrode spacing and wetted surface area, in which a smaller electrode spacing and larger 

surface area would have both increased power output. The flat anode had the lowest power output 

at 9.1 × 10-5 mW, followed by the cone with 3.0 × 10-4 mW, and the cylinder had the largest power 

output at 1.3 × 10-3 mW. In continuous-flow mode, however, these results did not match with the 

theory as well. The flat anode was seen to obtain the highest average power output at 7.46 × 10-3 

mW, followed by the cylinder design at 2.68 × 10-3 mW, with the lowest average power output at 

7.12 × 10-4 mW by the cone design. These trends did not follow the same theory that worked for 

the batch-fed feeding mode, in which electrode spacing and surface area were not determining 

factors for power output. Additionally, the shear rate magnitude did not appear to scale, where the 

shear rate magnitude of the flat anode was just 1.08 times that of the cone design, but the power 

output was 10.58 times that of the cone.  
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Table 1: Summarized results from previous work by Matthew Gerber. Contains all pertinent 

information characterizing the MFC system based on anode design, shear rate magnitude, 

batch-fed and continuous-flow results [25].  

 Metric Flat Cylinder Cone 

S
y
st

em
 

Anode Wetted Surface Area [cm2] 8.81 13.9 10.4 

HRT [h] 2.00 1.95 1.98 

Chamber Volume [mL] 16.8 16.4 16.6 

Electrode Spacing [mm] 19.05 18.75 18.75 

γ s
  

Entire Wetted Surface of Anode 1.73 × 10-6 1.62 × 10-6 1.60 × 10-6 

Only Flat Anode Base 1.73 × 10-6 0.78 × 10-6 1.11 × 10-6 

Only Structural Elements n/a 2.72 × 10-6 2.91 × 10-6 

B
at

ch
-

fe
d

 

Peak Output Power [mW] 9.1 × 10-5 1.3 × 10-3 3.0 × 10-4 

Peak Power Density [mW/m2] 0.10 0.93 0.29 

Peak Power Density [mW/m3] 5.43 78.6 18.0 

C
o
n
ti

n
u
o
u
s-

fl
o
w

 

Average Power Output [mW] 
7.46 × 10-3 ±  

(2.07 × 10-4) 

2.68 × 10-3 ±  

(1.7 × 10-5) 

7.12 × 10-4 ±  

(1.7 × 10-5) 

Average Power Density [mW/m2] 
8.63 ±  

(1.7 × 10-3) 

1.97 ±  

(2.1 × 10-4) 

0.70 ±  

(7.8 × 10-4) 

Average Power Density [mW/m3] 
452.7 ±  

(8.9 × 10-2) 

166.7 ±  

(1.8 × 10-2) 

43.7 ±  

(4.9 × 10-2) 

MAPD [mW/m2] 9.05 2.69 1.45 

Rex at MAPD [kΩ] 0.98 1.76 3.85 

Internal Resistance, Rint [kΩ] 1.02 1.96 4.10 

OCV [mV] 187.5 173.5 156.0 

     

Abbreviations: HRT = Hydraulic retention time, γs = Dimensionless shear rate magnitude 

averaged of a surface of interest, OCV = Open-circuit voltage, MAPD = maximum attainable 

power density 

 

These results can be explained through some of the theoretical observations as well as in 

other aspects of the experiment. A primary factor might have been that, despite the continuous-

flow regime, there were still areas that were diffusion-limited. Due to the surface structures, there 

were recirculation regions where the substrate was never able to be replenished, which is 

represented with black spiraling lines and enclosed contours in the areas near the inlet and outlet 

in Figure 6. With no fresh substrate, bacteria would be less likely to form a survivable biofilm in 
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these zones, therefore decreasing power output for the anode designs with surface structures. Based 

on these inconclusive continuous-flow results, it was necessary to re-test this previous work for 

verification that the results obtained were true or as previously expected. 

 
(a) (b) (c) 

Figure 6: Velocity plots of (a) flat, (b) cylinder, and (c) cone designs in a 2D cross section showing 

the side profile of the MFCs. Streamlines are indicated with black lines for the x and y components 

of velocity, which is non-dimensionalized [25]. 

 

1.6 Thesis Statement 

 Based on the interaction between the biofilm that grows on the anode in an MFC and 

hydrodynamic shearing forces that occur within a continuous-flow environment, there is 

reasonable cause to investigate how to enable the biofilm to handle higher shearing stresses 

inherently through MFC design. From nature, there are successful examples of biological 

structures such as sea coral and bovine rumen lining that have high concentrations of bacteria that 

are constantly subjected to fluid flow. In this thesis, we are interested in investigating the 

manipulation of anode surface geometry to mimic nature in order to produce improved power 

output. 



14 

 

The objective of this project is twofold. The first goal is to design a microbial fuel cell 

capable of operation in batch-fed and continuous-flow feeding modes that is modular and allows 

different anodes to be used with varying surface geometrical designs. The second goal is to 

determine the effect of geometrical alterations to the anode on the power output of the designed 

microbial fuel cell at varying flow rates. 
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Chapter 2: Design of the Microbial Fuel Cell 

There were several design and material decisions to be made when designing the MFC for 

this project. The H-design, two-chamber, and single chamber designs are the most common types 

of MFCs and can be seen in Figure 7. H-design MFCs (Figure 7A) are inexpensive, quick-build 

designs that consist of two bottles connected with a salt bridge or other PEM [34]. They are 

commonly used in a laboratory setting for basic parameter research, and have low power densities 

due to high internal resistance [34]. Since H-design fuel cells are fed in batch, they were unsuitable 

for this project, which required feeding by continuous-flow.  

The two-chamber MFC and single-chamber MFC (Figure 7B and Figure 7C) designs differ 

primarily in that the two-chamber MFC has a separate cathode chamber containing a catholyte 

solution that has an electron acceptor, which is typically dissolved oxygen or ferricyanide [46]. 

The two-chamber MFC design is also very closely related to an H-design, where most are fed in 

batch, although there have been MFCs developed that allow for continuous-flow and the two-

chamber MFCs typically have higher power output as a result [47]. However, there are some 

drawbacks to the two-chamber design. Although using a ferricyanide catholyte solution can 

increase cell voltage, it is not sustainable as ferricyanide must be externally regenerated when 

exhausted [46]. Oxygen also must be continuously replaced in the cathode chamber by bubbling, 

thereby using more energy [46]. 
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Figure 7: Different design schematics for MFCs. (A) H-design, (B) Two-chamber block design, 

and (C) single-chamber block designs are shown [25]. 

Single-chamber or air-cathode MFCs have been shown to have even larger power densities 

than two-chamber MFCs due to lower internal resistance [34], [46]. These MFC types can be 

operated in both batch-fed and continuous-flow modes and are exposed to atmospheric oxygen, 

which also contributes to a higher power output since there are no issues with mass transfer rates 

of oxygen to the cathode [25]. Drawbacks to this design include difficulties in scale-up, where 

expanding the distance between electrodes would make power generation impossible and stacking 

these MFCs would require constant cathode exposure to air, possibly creating complicated, bulky 

MFC systems [25]. 

For the purpose of this experiment, a single-chamber MFC design was selected. In order 

to properly observe the effects that shear rate as on anode surface structures and resultant power 

output, it was necessary to have a continuous-flow environment. Implementing a single-chamber 

design also decreased costs and created a more simplistic design, as it was not necessary to develop 

a catholyte solution and use more time and resources to create a cathode chamber.  

(A)       (B)    (C) 



17 

 

The design of the MFC was a block design originally designed in Solidworks 2012 (Figure 

8), and all of the machined parts besides the patterned cylinders and patterned cones anodes were 

created by machinists at the Mechanical & Aerospace Engineering Machine Shop in Scott 

Laboratory according to design specifications which can be found in Appendix C. The patterned 

anodes were fabricated with a CNC mill in the Machine Shop of the Physics Department at The 

Ohio State University.  

 

Figure 8: Microbial fuel cell design, created in Solidworks 2012. Design consists of (A) acrylic 

anode end plate, (B) graphite anode, (C) Two (2) butyl rubber gaskets, (D) acrylic anode chamber, 

(E) Ultrex CMI-7000 proton exchange membrane, (F) graphite cathode, (G) four (4) nylon 10-32 

screws and corresponding (H) four (4) hex nuts.  

 

The anodes were made from stock graphite plate, which was chosen for its defined surface 

area, machinability, good electrical conductivity, and relatively low material costs [48]. The 

cathode was also machined from the same graphite plate with no catalyst applied and had a 

thickness of 0.64 cm and a cross-sectional area of 24.29 cm2. It is worth noting that, because of 

the thickness of the cathode plate, oxygen had low mass diffusivity through the graphite, estimated 
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to be between the orders of 10-9 to 10-16 cm2/s [[48], [49]]. This caused the MFC to have an 

increased internal resistance that decreased overall power output. However, since the objective of 

this thesis was to determine how structural anode geometries affected power output amongst their 

own designs and not to increase MFC power to its optimal output, we did not seek improvements 

to this limitation and continued with the original design. The anode end plate and anode chamber 

were made from optically-clear cast acrylic, and the proton exchange membrane used was the 

Ultrex CMI-7000 (Membranes International, Ringwood, NJ). The MFC assembly was kept sealed 

and leak-proof with two butyl rubber gaskets placed in between the anode end plate and the anode 

chamber and the anode chamber and PEM. Nylon 10-32 screws and hex nuts held the entire 

assembly together; nylon was chosen so that no short circuits occurred between the anode and the 

cathode. 

 

Once machined, the following procedure was conducted to clean the anodes [51]. They 

were first bathed in 5% nitric acid and boiled for one hour at a hot plate temperature of 300°C. 

Afterwards, they were soaked in DI water for 15 minutes and dried on a hot plate at 110°C for 

approximately 8 hours. CW2400 silver-based conductive epoxy (Chemtronics®, Kennesaw, GA) 

Figure 9: Assembled MFC with connections to external resistance and digital multimeter (not 

shown).  
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was used to connect a platinum wire to the anode to create an electrical connection for the alligator 

clips to the external resistor and DMM. The epoxy was cured by setting the anode on a hot plate 

at 150°C for 10 minutes and then curing it at room temperature for approximately 18 hours 

afterwards. The anodes were then adhered to the acrylic anode end plates using Double/Bubble® 

Orange epoxy (Royal Adhesives and Sealants, South Bend, IN), where they were set into the end 

plate pockets to prevent leakage. The anode assemblies were heated on a hot plate at 150°C for 10 

minutes and cured at 25°C overnight. Table 2 shows relevant information concerning the three 

anode designs and their physical volumes and surface areas. 

Table 2: Shown are anode designs for MFC. The cylinders design had the highest volume and 

surface area, followed by the cones design, and, lastly, the flat anode design. The wetted surface 

area is the area that comes into contact with the bacteria and substrate feed inside the anode 

chamber [25].  

Design Image 

Anode 

Volume 

[cm3] 

Total Surface 

Area [cm2] 

Wetted Surface 

Area [cm2] 

Flat 

 

8.66 29.0 8.81 

Cylinders 

 

9.07 34.1 13.9 

Cones 

 

8.80 30.6 10.4 
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Chapter 3: Methodology 

3.1 Bacteria, Nutrient Feed, and Reducing Agent 

Bacteria were obtained from the rumen of a fistulated Jersey cow at the Waterman Dairy 

Farm, a research farm at The Ohio State University. To prepare the bacteria, rumen fluid and 

partially digested feed was squeezed through two layers of cheese cloth prior to being transported 

in cap-screw containers maintained in warm water at 40 ºC, which is the body temperature of a 

cow. The centrifuge was spun at 5000 g for 10 minutes to separate the pellet from the supernatant, 

with the supernatant used as the microbial inoculum for the MFC. Unused rumen fluid was stored 

at -78 ºC with 8% DMSO to preserve the bacteria in the Ruminant Nutrition Laboratory under Dr. 

Jeffrey Firkins at Ohio State University. This bacteria was chosen since it had been previously 

shown to be electro-chemically active [19]. Inoculation into the MFC occurred at 1% v/v with 

respect to the substrate feed. This concentration was selected based off of concentrations of 

ingredients in the nutrient feed formula, both of which were derived from the Wang study in 2014 

[52].  

 

The nutrient feed used consisted of a simple salt solution, deionized water, and sodium 

acetate. Deionized water served as a solvent, and the acetate in the sodium acetate was the electron 

donor or substrate to be oxidized by the bacteria. The salt solution consisted of monopotassium 

Figure 10: Retrieving rumen fluid from a fistulated cow at the Ohio State University Research 

Farm. 
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phosphate, ammonium chloride, sodium chloride, and magnesium sulfate, which were all used to 

support bacterial growth and provide essential nutrients. This formula was derived from Dr. Ann 

Christy’s laboratory and can be seen in Table 3 [19]. 

Table 3: 1L formula of nutrient feed with DI water as a solvent, various salts for bacterial growth, 

and sodium acetate as the substrate [25]. 

Component Formula Amount Concentration Function/Role 

DI water H2O 1000 mL — Solvent 

Sodium acetate C2H3NaO2 5 g 61.0 mM Electron donor 

Monopotassium phosphate KH2PO4 0.9 g 6.61 mM Salt for growth 

Ammonium chloride NH4Cl 0.73 g 13.6 mM Salt for growth 

Sodium chloride NaCl 0.9 g 15.4 mM Salt for growth 

Magnesium sulfate MgSO4 0.09 g 0.75 mM Salt for growth 

 A reducing agent was necessary in order to eliminate any excess oxygen inside the MFC. 

The reducing agent formula consisted of 0.4 M sodium hydroxide as the solvent, cysteine-

hydrochloride as an oxygen scavenger, and aqueous sodium sulfide as another oxygen scavenger. 

The full formula can be seen in Table 4. When creating the continuous-flow feed formula, reducing 

agent was always added as 5% v/v of the nutrient feed. Therefore, for every 1L of nutrient feed 

created, 50 mL of reducing agent was added.  

Table 4: 50 mL formula for reducing agent, which includes sodium hydroxide as a solvent and 

cysteine-hydrochloride and sodium sulfide as oxygen scavengers [25]. 

Component Formula Amount Function/Role 

0.4 M Sodium hydroxide NaOH 30 mL Solvent 

Cysteine-Hydrochloride Cys-HCl 1.35 g Oxygen scavenger 

Aqueous 3% sodium sulfide Na2S 20 mL Oxygen scavenger 

 

3.2 Batch-fed Methodology 

Initially, the MFC was fed in batch a minimum of three days to allow colonization of the 

anode and anode chamber. The MFC was situated on top of a hot plate set at 55 ºC in order to 
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maintain an internal temperature of 40 ºC [25] and was covered in insulation. Platinum and gold 

wires on the anode and cathode, respectively, were connected to a decade box with a resistance 

at 1000 Ω. A Keithley Digital Multimeter (DMM) measured the voltage in parallel with the 

external resistance. This testing set up can be found in           (a)  

                   (b) 

Figure 11. 

 

          (a)                     (b) 

Figure 11: MFC operating in batch-fed mode. (a) shows a front-view of the experimental set up 

and (b) shows a top view of the MFC and decade box. The (A) DMM was connected in parallel 

with the (B) external resistance set to 1 kΩ which connected the anode and cathode of the (C) 

MFC using alligator clips. The MFC was set on a hot plate set to a temperature of 55 °C 

The MFC was fed approximately once every 24 hours. Each time the MFC was fed, 20% 

of the chamber volume was replaced with substrate feed, along with an additional 5% v/v of 

reducing agent to account for any oxygen that had been reduced in the substrate feed while it was 

not being used. Prior to feeding, a syringe containing the nutrient feed and reducing agent was 

placed on the hot plate to warm to the internal temperature of the MFC for 10 minutes. Once at an 

approximate temperature of 40ºC, the syringe was attached to the inlet tubing of the MFC via a 

Luer-lock connector, the MFC was tilted such that the outlet port was facing up vertically, and the 

syringe was slowly emptied into the MFC, allowing any accumulated bubbles to escape. 
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Instructions for making the substrate feed and reducing agent may be found in the Safety and 

Procedures Protocol in Appendix B. 

3.3 Continuous-flow Methodology 

 The continuous-flow set up consisted of several components. In congruence with the batch-

fed mode, the MFC was set on top of a hot plate set at 55 ºC such that the internal temperature of 

the MFC could be maintained at 40 ºC. An external resistance was applied via a decade box, and 

voltage measurements were taken in parallel with the resistance using a Keithley Digital 

Multimeter. A 1L reservoir with nutrient feed and reducing agent added was placed upside down 

in a stand to allow feed to be pumped through the MFC using a low flow peristaltic pump (Cole-

Parmer). The entire continuous flow set up is shown in Figure 12. 

      
Figure 12: Continuous flow set up, including (A) Keithley Digital Multimeter, (B) Decade box, 

(C) 1L nutrient feed reservoir, (D) Microbial fuel cell, (E) Hot plate, (F) Peristaltic pump. 

Insulation is not pictured 

 

For each set of continuous flow measurements, a fresh 1L batch of nutrient feed was 

created. Prior to taking data for polarization curves, the MFC was set up in continuous-flow mode 

for a minimum of 6 hours to allow for settling into steady-state. The tested flow rates were 0.12 

mLmin-1, 0.21 mLmin-1, and 0.73 mLmin-1 and classified as low, medium, and high flow rates. In 
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order to obtain an idea of the inertial forces compared to the viscous forces in the MFC, the 

Reynolds numbers were calculated for the fuel cell using Equation 3, where it was found that, in 

each of the three cases, the flow was laminar:  

𝑅𝑒 =
𝜌𝐿𝑐

𝜐
      (3) 

where ρ is density of the fluid in kgm-3, Lc is the characteristic length of the anode in m, and υ is 

dynamic viscosity of the fluid in Nsm-2. Characteristic length was determined by Equation 4:  

𝐿𝑒 =
𝑉𝑎𝑛

𝐴𝑤𝑠
      (4) 

where Le is the characteristic length in m, Van is the volume of the anode in m3, and Aws is the 

wetted surface area in m2. Another metric that is useful for comparing different MFC designs in 

continuous flow is Hydraulic Retention Time (HRT), which is an approximate measurement of the 

average amount of time that a fluid remains in a specific volume; in this case, it was how long the 

substrate feed stayed inside the anode chamber, in contact with the bacteria. HRT is calculated by 

Equation 5: 

𝐻𝑅𝑇 =
𝑉𝑎𝑛

𝑄
      (5) 

where Van is the volume of the anode chamber in mL, and Q is the flow rate in mLmin-1. Flow 

rates, calculated Reynolds numbers, and HRT values by anode design are shown in Table 5. It 

should be noted that flow rates, and, therefore, Reynolds numbers are not greatly different due to 

limitations of the peristaltic pump. It was found that using large tube diameters or increasing the 

speed for extended periods quickly wore out the motor, requiring frequent pump replacement. 
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Table 5: Flow rates, Reynolds numbers, and Hydraulic Retention Time of substrate feed in the 

MFC for all three designs.  

Anode Design Q [mLmin-1] Re HRT [min] HRT [h] 

Flat 

Qlow 0.12 0.65 140.0 2.3 

Qmed 0.21 1.13 80.0 1.3 

Qhigh 0.73 3.94 23.0 0.4 

Cones 

Qlow 0.12 0.56 138.3 2.3 

Qmed 0.21 0.97 79.0 1.3 

Qhigh 0.73 3.39 22.7 0.4 

Cylinders 

Qlow 0.12 0.43 136.7 2.3 

Qmed 0.21 0.75 78.1 1.3 

Qhigh 0.73 2.61 22.5 0.4 

 

3.4 Equations used for MFC Performance Analysis 

 Power output is a primary measure of MFC performance and is found by measuring the 

potential drop between the anode and the cathode of the fuel cell with an external load connected. 

It is given in Equation 6: 

 𝑃 =
𝐸𝑀𝐹𝐶
2

𝑅𝑒𝑥𝑡
      (6) 

where P is the power in W, EMFC is the potential drop in V, and Rext is the external resistance in 

ohms.  

Power is commonly normalized to understand the efficiency with which the power is 

generated with the specific MFC architecture. Normalization is usually made with respect to the 

anode, since the anode surface area available for the biofilm to develop affects power output. 

Power density with normalization to the anode surface area is given in Equation 7: 

𝑃𝑎𝑛 =
𝐸𝑀𝐹𝐶
2

𝑅𝑒𝑥𝑡𝐴𝑎𝑛
      (7) 

where Pan is the power output normalized to the anode for a power density in Wm-2 and Aan is the 

area of the wetted surface of the anode in m2.  
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 Since the practical function of MFCs lies in wastewater treatment, the physical size of the 

fuel cell is important to note when being designed to the application. Therefore, it is useful to know 

the power output with respect to the reactor volume, resulting in another form of normalization. 

Typically, the total chamber volume of the MFC would be accounted for, meaning both the anode 

and the cathode. However, the design of the MFC in this case was a single chamber air-cathode 

design, so only the anode chamber was used in calculating volumetric power, which is given in 

Equation 8: 

𝑃𝑣 =
𝐸𝑀𝐹𝐶
2

𝑉𝑎𝑛𝑅𝑒𝑥𝑡
      (8) 

Where Pv is the power output normalized to the anode chamber volume for a volumetric power of 

Wm-3 and Van is the volume of the anode main chamber (2.28 × 10-5 m3) subtracting out the volume 

of the anode projected into it; values were shown in Table 2. 
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Chapter 4: Results and Discussion 

4.1 Batch-fed Comparison 

Before the MFC was set up in continuous-flow mode, batch-fed tests were conducted. The 

MFC was in batch-fed for a minimum of 3 days before switching to continuous-flow, with feeding 

occurring approximately once every 24 hours. In all cases, external resistance (Rext) was at 1000 

Ω and connected in parallel with the DMM, with voltage readings taken every 1 minute. Power 

was calculated using Equation 4. Figure 13 shows the results from batch-fed testing for the feeding 

period with the highest peak power output obtained out of all batch-feeding periods for each anode 

design. Measurements were all within 95% of peak power output. 

 

Figure 13: Batch-fed mode data for the anode designs. Measurements were all within 95% of 

peak power output.  

In each batch-fed cycle, there was a linear increase to a peak output voltage and a linear 

decrease succeeding it. This can be best distinguished with the cones design in Figure 13. The 

initial positively sloped line in the power output represented the substrate conversion rate to 

electricity by the bacteria and the negatively sloped line represented the decreasing conversion rate 

[25]. Due to an initial conversion rate, peak power output was only achieved after a certain time 
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delay where the delays were 1.5 h for the flat design, 1.3 h for the cones design, and 2.0 h for the 

cylinders design. The slopes of these power outputs can be seen in Table 6 along with peak power 

output. Si
+ corresponds with positive slope values, where i refers to an anode design; 1 for flat, 2 

for cones, and 3 for cylinders design.  

Table 6: Positive and negative slopes for one batch-fed cycle for all anode designs with 

corresponding R2 values. Data was taken from the batch cycle that had the highest peak power 

output. 

Anode 

Design 

Peak Power 

Output 

[mW] 

Positive Slope 

[mWh-1] 
R2 

Negative Slope 

[mWh-1] 
R2 

Time to 

Peak 

Power 

[h] 

Flat 1.8 × 10-4 S1
+ = 1.03 × 10-2 0.83 S1

- = -1.25 × 10-2 0.98 1.5 

Cones 3.6 × 10-3 S2
+ = 0.50 0.85 S2

- = -1.17 × 10-1 0.99 1.3 

Cylinders 1.7 × 10-3 S3
+ = 5.30 × 10-2 0.93 S3

- = -3.36  × 10-2 0.98 2.0 

 

It has been shown that steeper slopes directly correlate with larger anode sizes and greater 

bacteria colonization on the anode [25]. While the flat anode, which had the lowest surface area of 

8.81 cm2 did definitively have the lowest slope magnitudes compared to the other designs, the 

slopes obtained during this set of batch-fed experiments did not follow this trend of conversion 

rate and anode surface area precisely. The cones design had the largest magnitudes for both the 

positive and negative slopes at 0.50 mWh-1 and -1.17 × 10-1 mWh-1, but had a smaller surface area 

(10.4 cm2) compared to the cylinders design (13.9 cm2). R2 values were highest for the negative 

slopes, showing the strongest linear correlation was after the MFC had reached peak voltage. This 

was likely due to the fact that the insulation had to be removed to feed the MFC, which affected 

the initial conversion rates of the substrate by changing the operating temperature of the MFC [25]. 
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The negative conversion rates did not have the same affectation as the MFC had reached steady-

state temperature by that time and was not disturbed for the length of substrate depletion. 

When looking at the power output in terms of density, similar trends to the slopes were 

seen. The peak power output from the cones design was the highest at 3.6 × 10-3 mW compared to 

the cylinders and flat design, which had peak outputs of 1.7 × 10-3 mW and 1.8 × 10-4 mW, 

respectively. When normalized to the anode surface area and the anode volume, the same trends 

persisted, where the cones design had the largest power output, followed by the cylinders, and, 

lastly the flat anode design. It was reasonable that the cones and cylinder designs had larger power 

outputs than the flat design due to their larger surface area and closer electrode spacing (18.75 mm 

compared to 19.05 mm for the flat anode), although the differences here did not scale to the power 

output seen. The cones anode had a surface are that was 1.18 times the size of the flat anode, yet 

its power was 20 times greater. When comparing against the cylinders anode, the cones anode had 

a surface area that was smaller by a factor of 0.75 but actually had a power output 2.1 times greater 

than the cylinders design.  
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Table 7 shows a summarization of all the results from the batch-fed mode.  A possible 

reason for this was that the biofilm had not remained in batch-fed mode for long enough using the 

cylinders anode, which did not allow for proper enrichment of the bacteria and the development 

of a stable biofilm on the anode. This idea is explored further in Section 4.2, where this condition 

would also apply.  
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Table 7: Batch-fed mode statistics for anode designs. Peak power densities were normalized to 

the wetted anode surface area and the volume of the anode chamber, respectively. Electrode 

space was from the top-most point of the anode. For the cones design, this was the apex of the 

cone.  

Anode 

Design 

Peak Output 

Power [mW] 

Peak Power 

Density 

[mW/m2] 

Peak Power 

Density 

[mW/m3] 

Anode 

Surface 

Area [cm2] 

Electrode 

Spacing 

[mm] 

Flat 1.8 × 10-4 0.27 10.8 8.81 19.05 

Cones 3.6 × 10-3 3.44 218.2 10.4 18.75* 

Cylinders 1.7 × 10-3 1.19 101.3 13.9 18.75 

 

4.2 Continuous-flow Comparison 

Continuous-flow was followed immediately after batch-fed mode, where the MFC was 

initially allowed to become acclimated for a minimum of 14 hours at the lowest flow rate. As 

mentioned before, the flow rates used with the MFC were Qlow = 0.12 mLmin-1, Qmed = 0.21 

mLmin-1, and Qhigh = 0.73 mLmin-1 and were tested consecutively in this order. It should be noted 

that the same effluent was used for all of the flow rates, meaning the substrate feed and bacteria 

were not replaced when a new flow rate was tested. This could have potentially changed the mixed 

culture composition of the MFC at each new flow rate over time, therefore affecting power output.  

To compare the batch-fed results to the continuous-flow results, power output of all designs 

is shown in Table 8 for an external resistance set at 1000 Ω. Batch-fed peak power output values 

were used, and the continuous-flow power outputs were averaged from results obtained during the 

resistance sweep, which is discussed later. For the flat anode, it was found that the continuous-

flow conditions resulted in higher power output in all flow cases, with Qmed resulting in the highest 

power output of 1.04 × 10-3 mW, a factor of 5.7 larger than the batch-fed power output. Qlow and 

Qhigh had power outputs that were factors of 4.5 and 4.6 larger than the batch-fed power output. 

Overall, these results were expected since the advection of substrate ions to the anode and protons 
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to the cathode, along with the removal of waste products, is increased when the MFC is in 

continuous-flow mode. However, these same trends were not necessarily observed for the cones 

and cylinders designs. In the cones design, Qhigh had the highest power output of 3.84 × 10-3 mW, 

which was a factor of 1.07 larger than the batch-fed power output of 3.58 × 10-3 mW. Qlow and 

Qmed were shown to have power outputs that were both lower than the batch-fed power by factors 

of 0.95 and 0.86, respectively. In the cylinders design, this trend continued, where the highest 

output of 1.60 × 10-3 mW, occurring at Qlow, was less than the batch-fed output of 1.66 × 10 -3 mW 

by a factor of 0.96. Qmed and Qhigh had power outputs that were lower than the batch-fed case by 

factors of 0.32 and 0.51, respectively.  

Table 8: Batch-fed and continuous-flow power output comparison between anode designs. 

Power was taken at Rext = 1000 Ω. Batch-fed power was pulled from the peak power output and 

continuous-flow averages were taken during a resistance sweep. 

Anode 

Design 

Batch-fed 

Power [mW] 

Continuous-flow Power [mW] 

0.12 mLmin-1 0.21 mLmin-1 0.73 mLmin-1 

Flat 1.82 × 10-4 8.26 × 10-4 1.04 × 10-3 8.31 × 10-4 

Cones 3.58 × 10-3 3.40 × 10-3 3.09 × 10-3 3.84 × 10-3 

Cylinders 1.66 × 10-3 1.60 × 10-3 5.23 × 10-4 8.45 × 10-4 

 

A possible reason for this unexpected result was that the bacteria was not enriched for long 

enough in batch-fed or in continuous-flow. While there is no precise enrichment or start-up period 

for the biofilm, a Rismani-Yazdi study in 2007 that used bovine rumen bacteria found that an 

average time period of 12.5 days was required for enrichment from a fresh inoculum state [19] and 

another study by Chen in 2008 that used wastewater had a start-up period of two months [53]. For 

the Pham study in 2008 that compared shear rate with power output, enrichment occurred using 

an empirically-determined optimal shear rate over the course of 10 days [41]. Although enrichment 

periods vary greatly, it is likely that the enrichment period in this study was not for a long enough 
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period of time, and this was due to time constraints. Therefore, there would not have been enough 

biofilm build up nor attachment to the anode to realize the true power output capabilities of the 

MFC in either batch-fed or continuous-flow mode. Regardless, a measurable power output was 

obtained, but future testing of this device should allow ample time for enrichment or source the 

bacteria from a pre-enriched inoculum to shorten the start-up period, which has also been shown 

to be effective [19]. 

4.2.1 Polarization and Power Curves 

In order to fully characterize the MFC performance in continuous-flow mode, polarization 

and power density curves are used [32]. The polarization curves capture the voltage across the 

anode and the cathode compared to the current density, where normalization is against the wetted 

surface area of the anode. A linear regression curve was fitted to the polarization curve, where the 

cell voltage was a linear function of the current and is expressed in Equation 9: 

𝐸𝑐𝑒𝑙𝑙 = 𝑂𝐶𝑉 − 𝐼𝑅𝑖𝑛𝑡      (9) 

where Ecell is the output voltage in V, OCV is the y-intercept and is the open circuit voltage in V, 

I is the current in A, and Rint is the internal resistance in Ω and is the slope.  

To generate the polarization curve, measurements were taken for varying resistances from 

60 Ω to 25,000 Ω every 10 seconds for 10 minutes at pseudo steady-state. Pseudo steady-state was 

determined as the point where percent deviation between measurements taken from start to stop 

was less than 5%. Measurements started at 1000 Ω, were stepped up 25,000 Ω, went back down 

to 60 Ω, and finally came back up to1000 Ω. This was done to account for hysteresis in the data. 

The voltages were averaged at each resistance and used in the polarization curve.  

The power curves capture the power density compared to the current density. From this 

curve, the Maximum Attainable Power Density (MAPD) is taken, which is a common metric used 
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to compare MFCs against each other [32] and will be used to compare the anode designs here. 

Additionally, the external resistance at the MAPD is approximately equivalent to the internal 

resistance of the MFC [32], and this was also recorded.  

4.2.2 Design Comparisons for Variable Flow Rates 

In order to compare the results in a manner that aligns with the intent of this thesis, the 

three anode designs are first compared at each flow rate. In Section 4.2.2., flow rates are compared 

for each design and are given in a more abridged version since the same set of data is presented 

but in a different format. A summary table of all results from the polarization curve can be seen in 

Table 9, and the summary table for the power curve results can be seen in  

 

 

 

 

 

Table 10.  

The first flow rate tested was the low flow rate (Qlow) at 0.12 mL∙min-1. Polarization and 

power curves are shown in Figures 9 and 10, respectively. The cones design had the highest OCV 

at 187 mV. Open circuit voltage of the flat design was second highest at 127 mV the cylinders 

design had the lowest OCV of 146 mV. In terms of internal resistance determined by the slope of 

the fitted linear regression curve, the cones had the lowest Rint at 2.29 kΩ, followed by the flat 

design at 3.17 kΩ, and, lastly, the cylinders design at 3.69 kΩ. Linear-regression curves were 

considered to be good fits, as all R2 values were 0.95 or above. 
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Figure 14: Polarization curve of anode designs at Qlow = 0.12 mL·min-1. Lines of best fit are 

shown. Standard error bars are shown but are too small to be viewed with respect to the size of 

the plotted points. 

Corresponding to the polarization curve (Figure 1Figure 15), the cones design had the 

highest MAPD out of the three designs at 3.75 mWm-2. Compared to the flat design of 1.09 mWm-

2 and the cylinders design MAPD of 1.48 mWm-2, the cones design MAPD was larger by factors 

of 3.44 and 2.53, respectively. From high to low, the order of MAPD output based on design was 

cones, cylinders, and, lastly, flat design.  This also correlated with the internal resistance as 

expected, whereby a lower resistance resulted in higher power output. As mentioned in Section 

4.3, the internal resistance of the fuel cell is equivalent to the external resistance at MAPD. Based 

on the resistance sweep, the cones design was found to have an experimental internal resistance of 

1759 Ω, Rint of the cylinders design was 2656 Ω, and Rint of the flat design was 3798 Ω. It was 

observed that the experimental Rint for each case had large deviations from the calculated Rint, 

ranging from 19.9% to 28.1% in difference. Since the MFC experienced large internal resistances, 

a higher resolution of tested resistances would be required in order to obtain closer resistances to 

what was calculated. 

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

V
o
lt

ag
e 

[m
V

]

Current Density [mA∙m-2]

Flat

Cones

Cylinders



36 

 

 

Figure 15: Power curve of anode designs at Qlow = 0.12 mL·min-1. Standard error bars are 

shown but are too small to be viewed with respect to the size of the plotted points. 

 The next flow rate tested was at 0.21 mLmin-1, and the polarization curve can be seen in 

Figure 16. In this stage, the cones design still had the highest OCV at 183 mV, followed by the 

flat design OCV of 117 mV, and finally the cylinder design OCV of 145 mV. Internal resistances 

were comparable to those obtained at Qlow for the cones design, which was calculated to be 2.32 

kΩ. The flat anode had a slightly lower internal resistance than at Qlow of 2.42 kΩ. However, the 

cylinders anode internal resistance was more than twice what was obtained previously, resulting 

in an internal resistance of 7.71 kΩ. This limited the power output, as is observed in the power 

curve (Figure 17). Similar to the polarization curve at Qlow, high R2 values of 0.98 or greater meant 

that the OCV and Rint , or the y-intercept and slope of the line, were a good linear fit to the 

experimental data.  
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Figure 16: Polarization curve of anode designs at Qmed = 0.21 mL·min-1. Lines of best fit are 

shown. Standard error bars are shown. 

 In observing the power curve (Figure 17), the differences between power outputs at Qlow 

and Qmed became more apparent. While the cones anode still held the highest MAPD at  

3.23 mWm-2, the flat anode had the second highest output at 1.31 mWm-2, with the cylinders anode 

at the lowest MAPD of 0.65 mWm-2
. Compared to the flat and cylinders anodes, the cones MAPD 

was higher by a factor of 2.47 and 4.97, respectively. Between Qlow and Qmed, the scaling factor 

between the cones and cylinders designs doubled, primarily due to the cylinders design having a 

lower MAPD that did not scale with the increased flow rate. Possible reasons for this are discussed 

in Section 4.2.3, where all flow rates are evaluated for each anode design. Observing the 

experimental internal resistances, the cones design had the lowest at 2656 Ω while the flat and 

cylinders designs had values of 3798 Ω.  
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Figure 17: Power curve of anode designs at Qmed = 0.21 mL·min-1. Standard error bars are 

shown but are too small to be viewed with respect to the size of the plotted points. 

 The high flow rate of 73 mLmin-1 had similar trends to that of the medium flow rate. Again, 

the cones design had the highest OCV at 153 mV, which was followed by the cylinders design 

OCV of 146 mV, and, lastly, the flat design OCV of 108 mV. The cones anode again had the 

lowest internal resistance at 1.48 kΩ. The flat anode followed next with Rint calculated to be 2.37 

kΩ. The cylinders anode again had the highest internal resistance, calculated to be 5.83 kΩ. Like 

the previous two flow rates, the R2 values were high at 0.98 or greater, meaning that these obtained 

values were a good linear fit to the experimental voltages obtained from the resistance sweep. The 

polarization curve can be seen in Figure 18. 
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Figure 18: Polarization curve of anode designs at Qhigh = 0.73 mL·min-1. Lines of best fit are 

shown. Standard error bars are shown but are too small to be viewed with respect to the size of 

the plotted points. 

Figure 19 shows the power curve for the high flow rate of 0.73 mLmin-1. The cones design 

had the highest MAPD at 3.69 mWm-2
, followed by the flat design at 1.15 mWm-2

, and, lastly, the 

cylinders design at 0.86 mWm-2
. This meant that the cones had an MAPD with a factor of 3.21 

greater than the flat anode and a factor of 4.29 greater than the cylinders anode. While the scaling 

factor for the flat anode at the high flow rate was comparable to the scaling factor at Qlow (factor 

of 3.44), the cylinders scaling factor remained high at 1.70 times greater than the low flow scaling 

factor. This further supported the idea that the cylinders power output did not scale with the 

increasing flow rate. Experimental internal resistance was lowest for the cones design at 1000 Ω, 

while the flat and cylinders designs were again both at 3798 Ω, and 3798 Ω, respectively.  
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Figure 19: Power curve of anode designs at Qhigh = 0.73 mL·min-1. Standard error bars are 

shown but are too small to be viewed with respect to the size of the plotted points. 

 To summarize, several trends were observed when comparing anode designs at each 

individual flow rate. R2 values were high for all polarization curves, indicating a close fit of the 

linear-regression curve to the experimental data. However, calculated internal resistances from the 

slopes of the regression curves did not correlate well with the experimentally-determined internal 

resistances that were found at MAPD, where percent deviation from the calculated Rint ranged 

from 14.4% to as much as 60.6%. This was due to the internal resistance of the MFC being very 

large, such that a finer resolution of tested resistances would be needed to determine a more 

accurate Rint. As a result of these high internal resistances, power output of the MFC in this study 

was low in comparison to other MFCs found in literature, and power densities using different 

anode geometries are only comparable relative  

  It was observed that the highest MAPD and lowest internal resistance was found for the 

cone design at all flow rates. Based on this, the cylinders design should be selected for future 

design considerations in microbial fuel cells. Observing the other designs, at Qlow, the cylinders 
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design had a higher MAPD than the flat design, but the flat design overtook the cylinders design 

and achieved higher MAPDs at Qmed and Qhigh. This suggests that, despite the fact that the cylinder 

had a larger surface area than the flat anode, its surface geometry may have, in fact, interfered with 

its ability to produce a higher output than the flat anode. This idea will be explored further in 

Section 4.2.3, where anode designs are individually analyzed under the three flow rate conditions. 

Quantified summaries of all three designs and all relevant data from the polarization and power 

curve plots can be found in Table 9 and  

 

 

 

 

 

Table 10, respectively.  

Table 9: Summarization of polarization curve data for all anode designs. Internal resistance (Rint) 

and open current voltage (OCV) were determined from a linear regression curve fitted to the data. 

Anode 

Design 

Flow Rate 

[mL∙min-1] 

Slope, 
R2 OCV [mV] 

Rint [kΩ] 

Flat 

0.12 3.17 0.95 127 

0.21 2.42 0.99 117 

0.73 2.37 0.99 108 

Cones 

0.12 2.29 0.99 189 

0.21 2.32 0.98 183 

0.73 1.48 0.99 153 

Cylinders 

0.12 3.69 0.99 152 

0.21 7.71 0.99 145 

0.73 5.83 0.98 146 
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Table 10: Summarization of power curve data for all anode designs. Percent difference was 

taken between the experimentally-determined internal resistance and the calculated internal 

resistance based on the slope of the polarization curve. 

Anode 

Design 

Flow Rate 

[mL∙min-1] 

MAPD 

[mW/m2] 

Rex at 

MAPD 

[kΩ] 

Power Density 

at Rex = 1 kΩ 

[mW/m2] 

Rint 

[kΩ] 

Percent 

Difference 

[%] 

Flat 

0.12 1.09 3798 0.944 3168 19.9% 

0.21 1.31 3798 1.18 2422 56.8% 

0.73 1.15 3798 0.943 2365 60.6% 

Cones 

0.12 3.75 1759 3.22 2288 23.1% 

0.21 3.23 2656 2.97 2321 14.4% 

0.73 3.69 1000 3.69 1481 32.5% 

Cylinders 

0.12 1.48 2656 1.17 3693 28.1% 

0.21 0.65 3798 0.376 7713 50.8% 

0.73 0.86 3798 0.608 5836 34.9% 

 

4.2.3 Flow Rate Comparisons 

Since separate polarization and power curves were already plotted comparing designs in 

the previous section, polarization and power curves are plotted here on the same graph for brevity. 

Additionally, a summary table showing scaling factors between max MAPD and other MAPD 

values is shown in Table #. For the baseline flat design, comparison amongst the three flow rates 

showed the lowest MAPD collected was 1.09 mWm-2 at Qlow. Immediately following that, the 

highest MAPD value was obtained at Qmed at 1.31 mWm-2. At Qmed, the MAPD dropped down to 

1.15 mWm-2. From this, it could be deduced that there exists some threshold where some optimal 

flow rate exists for a maximum power output. While this is a possible conclusion, this would also 

need to be consolidated with previous work that has shown that an increase in shear rate results in 

higher power output [41]. Further testing at flow rates both in between Qmed and Qhigh as well as 
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higher flow rates would be necessary in order to draw a firm conclusion on this. The polarization 

and power curves can both be seen in Figure 20.  

There were also some noticeable inconsistencies with the power curve, where the inverted 

parabola did not follow a smooth parabolic shape and, instead, had some “waviness” to it. As 

subsequent power curves for the cylinder and cone designs do not experience this same issue, it is 

more likely that there was some error in data collection, where the voltage dataset captured was 

not all within the pseudo steady-state condition. This appeared to be particularly true for the data 

points plotted at 26 mAm-2. However, because standard error bars for power density did not 

intersect at MAPD for any of the tested flow rates, the differences here were still considered 

statistically significant. A repeated test for this trial with ample time allowed for settling into 

pseudo steady-state would be necessary in order to generate smoother polarization and power 

curves. 
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Figure 20: Polarization and polar curves of the flat design at the low, medium, and high flow 

rates. Standard error bars are plotted but are too small with respect to the plotted points.  

For the cones design, maximum MAPD occurred at the lowest flow rate at a value of 3.75 

mWm-2.  However, this was larger than the next highest MAPD (3.69 mWm-2) by just a factor of 

1.02, which occurred at the highest flow rate. The max MAPD was larger than the lowest MAPD 

(3.23 mWm-2) by a factor of 1.16. Since the two highest MAPD values were very similar to each 

other and occurred at the lowest and highest tested flow rates in this experiment, no conclusive 

trend could be discerned from the plotted curves (Figure 21). Due to the fact that the cones design 

had the highest power output, it would be worthwhile to test higher flow rates for future work and 

determine an optimal shear rate, such that this could be compared to a flat anode at its optimal 

power output. The flow rates in this study resulted in Reynolds numbers less than 4, so it is likely 

that, while the low inertia, highly viscous flow was able to provide a constant stream of fresh 
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substrate and nutrients to the bacteria, it did not allow the MFC to perform at its full capabilities. 

Table 11 reproduces the Reynolds numbers for all anode designs at each flow rate for convenience. 

Figure 21 shows the polarization and power curves for the cones anode design. 

Table 11: Anode designs at all flow rates with corresponding Reynolds numbers. 

Anode Design Q [mLmin-1] Re 

Flat 

Qlow 0.12 0.65 

Qmed 0.21 1.13 

Qhigh 0.73 3.94 

Cones 

Qlow 0.12 0.56 

Qmed 0.21 0.97 

Qhigh 0.73 3.39 

Cylinders 

Qlow 0.12 0.43 

Qmed 0.21 0.75 

Qhigh 0.73 2.61 

 

Figure 21: Polarization and polar curves of the cone design at the low, medium, and high flow 

rates. Standard error bars are plotted but are too small with respect to the plotted points. 

For the cylinders design, the low flow rate had undoubtedly the largest MAPD and overall 

power output at 1.48 mWm-2. The largest MAPD scaled the next highest and lowest MAPD’s by 

1.72 and 2.28, respectively, which were very large compared to previous designs. The second 
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highest MAPD (0.86 mWm-2) occurred at Qhigh while the lowest MAPD (0.65 mWm-2) occurred 

at Qmed. To explain these trends, Reynolds numbers may again be examined. At Qlow, the Re value 

was only 0.43. Since it was so low, it is possible that, although substrates were being effectively 

delivered to the anode and oxidized by the bacteria, this was not a high enough flow rate to cause 

shearing at the anode. Thus, during this stage of testing, the biofilm may have only accrued some 

mass. Furthermore, without a proper enrichment time length, the larger flow rates of Qmed and Qhigh 

could have sheared off fragments of biofilm, thus decreasing power output.  

 

Figure 22: Polarization and polar curves of the cylinder design at the low, medium, and high 

flow rates. Standard error bars are plotted but are too small with respect to the plotted points. 

Another possible limitation that could explain the decrease in power output for the 

cylinders design would be the velocity gradients and streamlines that developed according to the 

anode geometry. As was mentioned in the previous work with this MFC, it is possible that 

recirculation regions that existed in the anode chamber limited the diffusion regime of substrate 

and vital nutrients, therefore limiting power output. For convenience, Figure 6, which shows the 
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velocity gradient and streamlines, is reproduced here as Figure 23. Recirculation would have 

simultaneously prevented waste products and hydrogen ions from being removed while also 

keeping fresh substrate from reaching the bacteria to be oxidized. While all three designs exhibited 

these regions near the inlet and outlet, the cylinders design exhibited these between almost every 

single structure. As a result, a biofilm would have only been able to form on or near the top facets 

of the cylinder structures, resulting in a surface area reduction to approximately 9% of the original. 

This would have severely limited the power output in the cylinder design and is a possible 

explanation for the power drop at higher flow rates.  

 In summary, the power densities collected at variable flow rates resulted in different trend 

observations for all anode designs. For the flat anode, the highest MAPD occurred at the medium 

flow rate followed by the lowest MAPD at the high flow rate, indicating the possible existence of 

a threshold for flow rate between Qmed and Qhigh, which, upon reaching, would result in the largest 

MAPD achievable for the flat anode. This would require further testing at flow rates in between 

Qmed and Qhigh. For the cones anode, there was no conclusive trend as the low and high flow rates 

Figure 23: Velocity plots of (a) flat, (b) cylinder, and (c) cone designs in a 2D cross section 

showing the side profile of the MFCs. Streamlines are indicated with black lines for the x 

and y components of velocity, which is non-dimensionalized [25]. 
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had similar MAPDs with the minimum MAPD occurring at the medium flow rate, so it would be 

recommended to test this anode design at higher flow rates to determine a conclusive trend. The 

cylinders anode had its highest MAPD at the low flow rate with a steep drop off at the medium 

and high flow rates. This was attributed to recirculation areas that might have developed more 

fully at the medium and high flow rates. Summaries of the MAPD results with respect to the flow 

rate can be found in Figure 24 and a table quantifying the highest MAPD relative to the lower 

MAPDs can be seen in Table 12. 

 

Figure 24: Anode design maximum attainable power densities as a function of flow rate.  

Table 12: Summary table of flow rate comparisons for each anode design. Q1
 is the flow rate at 

which the highest MAPD was found, and subsequent scaling factors are calculated based off of 

the MAPD at Q1.   

Anode 

Design 

Max 

MAPD 

[mWm-2] 

Q1 

[mLmin-1] 

𝑀𝐴𝑃𝐷𝑄1
𝑀𝐴𝑃𝐷𝑄2

 
𝑀𝐴𝑃𝐷𝑄1
𝑀𝐴𝑃𝐷𝑄3

 

Flat 1.31 Med 
High Low 

1.14 1.2 

Cones 3.75 Low High Med 
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1.02 1.16 

Cylinders 1.48 Low 
High Med 

1.72 2.28 

 

4.3 Error Mitigation 

Although some of the low power output from the MFC can be explained based on fluid 

dynamics and physics theory, a larger potential influence on the continuous-flow mode resulted in 

issues with the experiment. During the cones and cylinders continuous-flow testing, both MFCs 

leaked. This was likely due to cyclic loading wearing down on the graphite anode when 

compressed together with the rest of the MFC assembly using the nylon screws and nuts. This 

primarily occurred for one or two days after start up, and retightening the nuts on new, unused 

bolts was the solution for this issue. Applying heat to the acrylic anode chamber and anode end 

plate while compressing them may have also caused these parts to distort, further increasing the 

likelihood of MFC leakage. As a result, there is a possibility that oxygen leaked into the anode 

chamber, which would have decreased overall power output. Although it is also possible that the 

reducing agent was able to eliminate this oxygen, a more detailed analysis would need to be 

conducted to see if it was expended entirely. Due to time limitations, these experiments were 

unable to be performed with newly machined MFC parts. In the future and as general best practice, 

it would be recommended to have several MFC spare parts at hand in case another part fails.  
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Chapter 5: Summary and Conclusions 

5.1 Contributions to the MFC Field 

 Through this thesis work, a single chamber, air-cathode microbial fuel cell that was capable 

of implementing three different anode types (flat, patterned cones, and patterned cylinders) was 

fabricated and characterized. Safety protocol and testing methodology was also developed for the 

experiment, which can be found in Appendix B.  

 For all designs, the MFC was first tested in batch-fed mode, which was followed by 

continuous-flow mode at three different flow rates: Qlow was 0.12 mLmin-1; Qmed was 0.21 mLmin-

1; and Qhigh was 0.73 mLmin-1. It was observed that, in batch-fed, the cones design had the highest 

peak power density at 3.44 mWm-2. Since the cones design had a smaller surface area compared 

to the cylinders design, it was likely that the enrichment period for the bacteria was not long 

enough. In a quiescent fluid, power output should have been primarily dependent on surface area. 

Transitioning between batch-fed to continuous-flow, it was found that the flat anode was the only 

design to achieve higher power output at the continuous-flow feeding mode. From Section 4.3, it 

was determined that a probable cause for this was due to the fact that the MFC leaked with the 

cones and cylinders designs as a result of wear and fatigue from repeated cyclic loadings on the 

MFC parts. This would have introduced oxygen into the anode chamber of the MFC, decreasing 

power output.  

 In continuous-flow mode, despite the early leakage, the cones design still had the highest 

power density output at all flow rates. While the cylinders design had the second highest MAPD 

at Qlow, the flat anode overtook the cylinders design in MAPD output at Qmed and Qhigh. This was 

likely due to a combination of a short biofilm enrichment period of less than five days as well as 

recirculation that developed in the anode chamber with the cylinders design [25]. Due to this, the 
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cylinders design should be rejected from further considerations for an anode design. Moving 

forward, the cones design should be considered for future MFC designs as its increased surface 

area and structural geometry allow it to generate higher power relative to a flat anode made from 

the same graphite material. In testing the patterned 4 × 4 array of cones, it would also be helpful 

to continue using a flat anode as a baseline comparison until this geometry and resulting power 

output are well-understood at a large range of flow rates. 

5.2 Future Work 

Although the patterned cylinders anode is the apparent choice anode design, additional 

studies must be conducted to make a more informed decision. On the subject of flow rates, it is 

necessary to test additional flow rates between Qmed and Qhigh; the reason for this is because it 

appeared as though the flat anode had some optimal shear rate that would allow for an absolute 

maximum MAPD. Flow rates above Qhigh should also be tested in the future, as the cones design 

did not have conclusive trends based on the highly viscous flow rates that were selected for this 

study. 

Future work would also involve taking a more detailed look into the microbial community 

of the MFC. When testing different flow rates, new bacteria was not inoculated into the MFC in 

between different flow rates. Therefore, it is possible that the bacterial composition and density of 

the MFC changed over time as a function of both surface area and surface geometry. To determine 

if this is true, a denaturing gradient gel electrophoresis (DGGE) study should be conducted to 

observe the existing bacterial species within the fuel cell. Along these same lines, it would be 

useful to understand how thick the biofilm becomes under different flow rate conditions as well as 

where it is thickest. Anodes should be analyzed with scanning electron microscopy, and this would 
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likely help explain some of the loss of power seen when the cylinders design was implemented in 

the MFC.  

In order to make this study more comparable to other MFC designs, it would be useful to 

have greater power output. One easily implemented method would be to increase the bacteria 

concentration within the MFC, since a concentration of just 1% v/v was used for inoculation in 

this study. A higher concentration of bacteria might result in better extracellular electron-

transferring abilities and a thicker biofilm early on. Another means of increasing power output 

would be to lower the cathode over-potential. As mentioned in Chapter 2, the thick graphite plate 

led to low mass diffusivity of oxygen, which increased MFC internal resistance. If a thinner 

material were chosen with a greater surface area in contact with oxygen, power output would likely 

be improved. 

 While the future of MFCs is bright, there are still several shortcomings in the field. 

Problems such as understanding the interactions of a mixed culture inoculum in direct interspecies 

electron transfer, reducing internal loss through electrode material and geometry design decisions, 

and engineering the internal fluid flow dynamics all must be well-understood– first at a research 

laboratory scale, and, eventually, at a scale worthy of practical application, where MFCs would 

ideally be implemented in wastewater treatment centers. Although the path may be long, 

optimizing this carbon-neutral form of alternative energy is a step in the right direction and could 

serve to benefit society on a global scale.  
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Appendix A: Parts, Materials, and Equipment List [25] 

 

Chemicals  

 Ammonium Chloride (09725-25G), Sigma-Aldrich  

 500 mL 3% Sodium Sulfide (757016), Fisher Scientific  

 Sodium acetate (W302406), Sigma-Aldrich  

 Dipotassium phosphate (59937), Sigma-Aldrich 

 Sodium chloride (S7653), Sigma-Aldrich  

 Magnesium sulfate (M7506), Sigma-Aldrich  

 

Physical Fuel Cell Components  

 Optically Clear Cast Acrylic Sheet 1/4" Thick, 6" x 6" McMaster-Carr #8560k358 

 Nafion 117 10.0 × 10.0 cm Fuel Cells Etc. 

 Nylon 6/6 Hex Nut Off-White, 10- 32 Thread Size, 3/8" Width, 9/64" Height McMaster-

Carr #94812a415 

 Optically Clear Cast Acrylic Sheet 1" Thick, 6" × 6" McMaster-Carr #8560k329 

 10-32 x 2 Binder Head Slotted Machine Screws Nylon Fastener-Express 

 Watts® SVGEΩ¼-inch (8 mm) OD, 0.170-inch (5 mm) ID, Part #: HSVEB20 clear vinyl 

tubing 

 McMaster-Carr® Nylon 6/6 hex nut, 10-32 thread size (Part #: 94812A415) 

 Platinum wire, 0.404 mm, annealed, 99.9% ≈ 2.7 g/m (CAS: 7440-06-4, EINECS: 231-

116-1), Alfa Aesar  

 FDA Luer Lock Polycarbonate Stop Cock (7033T11), McMaster-Carr  

 Double/Bubble® Orange High Peel Strength Epoxy Adhesive (04007) 
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 Silver-based conductive epoxy, Chemtronics® (CW2400) 

 Type 316 Stainless Steel Barbed Hose Fitting, Adapter for 1/8” Hose ID × 1/8” NPT 

Male Pipe, MaMaster-Carr (Part #: 535065K61) 

 

Operational Equipment and Materials  

 32 oz. Spray bottle with attachment (41101 and 41102), OSU Stores 

 Keithley 2100 Digital Multimeter  

 1 L Solvent reservoir with cap (9301-1421), Agilient Technologies 

 Cole-Parmer, Low-flow Peristaltic Pump (SP100V1.016CP) 

 

Computer Software 

 Keithley KI-Link Excel Add-In version 2.03; Keithley Instruments, Inc. 
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Appendix B: Safety Protocol and Procedures  

 

Overview: 
This document is the protocol for the Microbial Fuel Cell Project in MNSL in Scott W491.  

 

Project members: 

 

Matt Gerber (Lead)  gerber.117@osu.edu  614-447-8504 

Clare Cui    cui.163@osu.edu  513-375-9407 

Dr. Shaurya Prakash  prakash.31@osu.edu  217-390-5683 

 

General Guidelines: 

 

Personal Protection Equipment (PPE)  
 

To be worn at all times during experiment operation: 

1. Lab coat 

2. Goggles 

3. Gloves 

 

Standard Microbiological Practices 

1. Access to the lab is restricted at Dr. Prakash’s discretion when work with bacteria 

cultures is in progress 

2. No eating, drinking, smoking, handling contact lenses, applying cosmetics, or storing 

of food inside the lab 

3. Mouth pipetting prohibited 

4. Throughout this document, the key term “DEDICATED” refers to: (1) a storage 

container, (2) a physical workspace, or (3) a piece of equipment that is solely for use in 

this experiment. That is, no other materials may be stored in DEDICATED storage 

containers, no other work/experiments may occur within DEDICATED workspaces, and 

no piece of DEDICATED equipment may be used for purposes other than those 

specifically outlined in this document. 

5. If a storage container, workspace, or piece of equipment listed in this document is not 

labeled as DEDICATED, then it is assumed to be a shared, laboratory storage container, 

workspace, or piece of equipment and should follow all safety and cleaning procedures 

associated with it. 

6. DEDICATED storage and work spaces must clearly be labelled at all times with special, 

bright, ORANGE TAPE.  

7. ORANGE TAPE is for the sole purpose of this experiment and should not be used for 

other reasons 

8. Within this document, EXPERIMENT INFORMATION refers to the following, where 

applicable: 

 The text “MFC Experiment” 

 Contents 

 Creation date 

 Expiration date 

 Experimenter name(s) 

mailto:gerber.117@osu.edu
mailto:cui.163@osu.edu
mailto:prakash.31@osu.edu
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9. Work surfaces decontaminated after any spill 

10. When running, MFC and associated tubing must be contained within incubator 

11. All bacteria not in use is stored in DEDICATED sealed storage container located within 

shared, laboratory refrigerator 

 

 

I. Storage 

 
Equipment 

1. Refrigerator  

2. DEDICATED sealed storage container 

3. Celsius thermometer 

4. DEDICATED sealed vials/containers marked with ORANGE TAPE 

 

Procedure 
1. Refrigerator to remain at 4°C at all times 

2. Each vial/container labeled with experiment information and ORANGE TAPE 

3. Thermometer will remain in refrigerator and will be checked weekly to ensure consistent 

temperature is maintained  

4. Vials/containers to remain inside DEDICATED storage container within refrigerator and 

are to remain sealed and labeled with experiment information unless in use  

 

 

II. PEM Preparation 

 

Equipment 

1. DI water 

2. Tweezers 

3. Hot plate 

4. Two 200 mL beakers 

 

Procedure 

1. Disinfect tweezers with 10% bleach solution 

2. Pour 150 mL DI water into 200 mL beaker 

3. Place beaker on hot plate and bring to a gentle boil at 110°C 

4. Place PEM in beaker using tweezers and allow to boil for 1 hour 

5. Add DI water as needed to maintain consistent volume 

6. After 1 hour, turn off hot plate and allow to cool 

7. Fill second 200 mL beaker with DI water and transfer PEM with tweezers to the second 

beaker 

8. If using PEM immediately, transfer to MFC while assembling  

9. If PEM is to be stored for future use, cover beaker with parafilm and store on storage 

rack; label with contents and date prepared  

 

III. Preparation of Chemicals 

 

Procedure 1: Creation of 0.4 M NaOH Solution 

 

1. Crush ~40 pellets (~5 g) of NaOH in mortar and pestle 
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2. Add 4 g NaOH powder to 250 mL glass storage jar (brown) 

3. Add 250 mL DI water and stir with stirring rod until completely dissolved—this is 0.4 M 

NaOH 

4. Seal jar, label with contents and creation date; store along with other bases 

5. Shelf life is approximately 1 year 

 

 

Procedure 2: Creation of 50 mL Reducing Agent (RA) 
Steps 2–6 must be performed within the fume hood! 

 

 

Figure 1: Creation of the reducing agent.  

 

1. Add 25 mL of 0.4 M NaOH to small storage vial with rubber stopper 

2. Inside the fume hood, use chemistry ring stand to secure N2 gas line into the vial and 

begin aerating the NaOH 

3. Add 1.35 g Cysteine-HCl to the vial, ensuring all solid grains are mixed into the liquid; 

Aerate with N2 gas for 5 minutes (set a timer)  

4. To the vial, add 20 mL of 3% w/v Na2S while continuing to aerate with N2 gas 

5. To the vial, add 5 mL of DI water while continuing to aerate with N2 gas  

6. Continue to aerate an additional 10 minutes with N2 (set a timer) 

7. Seal and store at room temperature; Indicate contents and expiration date on bottle 

8. Reasonable shelf-life is 1 week and should be used within this time frame 

 

Procedure 3: Creation of 1 L of Substrate Feed  

1. Clean container for storing substrate (hereafter called “reservoir”); See Part V 
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2. Fill reservoir with 1 L of DI water  

3. Add parafilm to reservoir top (to protect the contents from particles in the air) 

4. Ensure 50 mL of reducing agent has been created; keep it accessible nearby 

5. Place reservoir on magnetic stirrer, add stir bar, set to 400 rpm; Ensure a nice “tornado” 

spiral forms in the center of the reservoir 

6. Weight and add 5 g of Sodium acetate and start a timer (Sodium acetate requires 10 

minutes to dissolve) 

7. Next, weigh and add the following compounds in the order below to the reservoir: 

 

Component Formula Amount 

Dipotassium phosphate K2HPO4 0.9 g 

Ammonium chloride NH4Cl 0.73 g 

Sodium chloride NaCl 0.9 g 

Magnesium sulfate MgSO4 0.09 g 

 

8. These components should dissolve immediately; Allow timer to reach at least 10 minutes 

then check if any undissolved particles remain. If so, allow to stir until no particles 

remain. 

9. Reapply parafilm to reservoir top and transfer to chemistry ring stand inside the fume 

hood 

10. Insert N2 gas tube into reservoir and bubble gas through for 10 minutes, turning the 

reservoir 180° every minute or so 

11. While the N2 is bubbling through the reservoir, towards the end of the 10 min, add the 50 

mL of reducing agent. Do this slowly and ensure no air bubbles are being mixed in. 

12. Calibrate pH meter and insert probe into substrate feed. Add 0.1 M HCl until pH is 6.8. 

13. At this point, there is 1 L of substrate feed in the reservoir and it is ready to be used in the 

continuous flow setup.  

14. For 1 L of substrate feed in a storage jar, simply repeat the above procedures using a 1 L 

storage jar 

15. Use HCl and NaOH to change the pH to 6.8 
 

IV. Assembling MFC 
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Figure 2: All components for MFC: (a) main chamber, (b) cathode, (c) anode end cap, (d) tubing, 

(e) valves, (f) rubber gaskets, (g) brass ports, (h) hex nuts, and (i) bolts.  

 

 

   

(a) 

 

(b) 

 

(c) 

 

   

(d) 

 

(e) 

 

(f) 

 

   

(g) (h)  

 

 

Figure 3: Assembly process for MFC. 
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Equipment 

1. All physical MFC components (Figure 1) 

2. Wrench 

3. Flathead screwdriver (larger the better) 

4. Teflon tape 

 

Procedure 

1. Gather all physical MFC components. Components are: 

a. Main chamber 

b. Pre-assembled anode component 

c. Graphite cathode  

d. Four nylon 10-32 bolts 

e. Four nylon 10-32 hex nuts 

f. Two (2) silicone rubber gaskets 

g. PEM 

2. Add Teflon tape to brass ports (Figure 3a) 

3. Screw ports into main chamber (Figure 3b) 

4. Fit one rubber gasket over anode (Figure32c) 

5. Fit anode with gasket into main chamber, hold together with fingers (Figure 3d) 

6. Add PEM and second rubber gasket to cathode, with PEM sandwiched between the 

cathode and the gasket (Figure 3e) 

7. Add result of Step 6 to main chamber (Figure 3f), lining up the holes 

8. Fit 4 nylon bolts through each hole; the head of the bolt should be on the cathode side 

(the nuts should go on the anode side—important!) 

9. Secure nuts with fingers and once tight, tighten further with wrench and screwdriver. 

Result should look like Figure 3g 

10. Add about 1 inch of tubing to each port 

11. Add valve to each bit of tubing (Figure 3h) 

12. At this point, MFC should be fully sealed and open to air only through the ports 

 

V. Setting Up Continuous Flow Mode 
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Figure 4: Schematic for continuous flow setup.  

 

Equipment 

1. Assembled MFC 

2. Six luer-lock valves 

3. 1 L substrate reservoir (filled) 

4. 1 L storage jar of substrate (filled) 

5. Various lengths of tubing  

6. Peristaltic pump 

7. Reservoir cap with attached inner tubing (short and long) 

8. Hot plate 

9. Insulation box 

10. 10 mL disposable syringe 

 

Procedure 

1. Attach 2-cm length of tubing to brass fittings on MFC 

2. Onto both pieces of tubing, attach  luer-lock valves 

3. Using 10 mL syringe, fill MFC with substrate, ensuring no bubbles remain in the main 

chamber. To do so, open both valves, fill the syringe with substrate, attach syringe to one 

valve, then physically hold the MFC so that the other valve is pointed towards the ceiling. 

Squeeze the syringe, filling the main chamber with 10 mL of substrate. With syringe still 

attached, close both valves then remove syringe. Fill syringe with substrate, attach to 

valve, hold the other valve towards the ceiling, open both valves, and continue to fill.  

4. Repeat previous step until no bubbles are in the main chamber, then close both valves and 

place MFC onto hotplate at 50°C. 

5. Using tubing, connect outlet valve to Peristaltic pump using an additional luer-lock valve. 

To do so, secure the empty tubing the syringe, use it to suck up substrate (filling the 

tubing), then attach the tubing to the luer-lock valve. Ensure the valve is closed, then 

remove the syringe. A full piece of tubing should be attached to the valve. Connect this to 

another luer-lock valve and secure this valve to the pump. This process should be used 

for all other tubing connections in this procedure.  



B8 

 

6. Top off reservoir with substrate from the storage jar and then add reservoir cap to 

reservoir 

7. Connect Peristaltic pump outlet to a luer-lock valve and tubing to the inlet of the 

reservoir (if reservoir inlet/outlet not labeled, the inlet is the port connected to the smaller 

inner tube).  

8. Connect reservoir outlet to a luer-lock, which itself is connected to the luer-lock already 

attached to the inlet of the MFC 

9. Place insulation box on top of hot plate and over MFC 

10. With all valves closed and the pump off, the MFC is on batch-fed mode. 

11. For continuous-flow operation, open all valves before turning on the pump 

 

 

VI. Electronics 

 

Equipment 

1. MFC in continuous-flow setup, from Part V 

2. 1 kΩ resistor 

3. Two alligator-clip leads 

4. DMM with alligator clip banana plug leads 

5. Faraday cage with banana plug grounding lead 

6. Ferrite beads, assorted sizes 

 

Procedure 

1. Using alligator clip leads, connect resistor to anode and cathode in series 

2. Connect DMM in parallel to the resistor 

3. Place Faraday cage over entire setup, excluding the DMM, and ground the cage to the 

DMM 

4. If possible, place ferrite beads on the ends of all leads 

5. Ensure there is an electrical connection between the ground and the Faraday cage 

 

 

VII. Cleaning and Emptying  

 

Part 1: Creating 10% Bleach Solution 

 

Equipment 

1. Bottle of commercially available Clorox bleach 

2. Tap water 

3. Bleach solution bottle. 

 

Part 1 Procedure 

1. Fill bleach solution bottle to line indicated “10% fill line” with Clorox blean 

2. Fill bleach solution bottle to line indicated “Fill line” with tap water 

3. Seal bottle and store beneath sink 

Part 2: MFC Disassembly and Cleaning 

 

Equipment 

1. One (1) 1000 mL beaker 

2. 10% bleach solution from Procedure 1 

3. DEDICATED liquid contaminated waste container 
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4. Paper towels 

5. DEDICATED solid waste container 

 

Part 2 Procedure 

1. Turn off electronics, unplug, and detach MFC from leads 

2. Ensure all valves are closed  

3. Disconnect all valves and tubes and place into 1000 mL beaker 

4. Remove reservoir cap and dump reservoir into liquid contaminated waste container along 

with 1 L of 10% bleach solution 

5. Remove MFC from hot plate and empty into 1000 mL beaker 

6. Dissemble MFC, placing each component into the 1000 mL beaker 

7. Fill beaker with 10% bleach solution and allow to soak for 10 minutes 

8. Empty contents into contaminated waste container 

9. Rinse components with tap water 3–4 times, then clean each with soap, rinse again 3–4 

times with tap water 

10. Finally, fill beaker with DI water, allow to sit for 5 minutes, then remove components and 

dry with paper towels 

11. For the reservoir, rinse with 10% bleach solution, dump into contaminated waste 

container 

12. Wash inside with soap, ensuring all particles are removed from the inside.  

13. Rinse with tap water 3–4 times, rinse with acetone, rinse again with tap water 3–4 times, 

then finally rinse with DI water before air drying (do NOT dry inside with paper towel) 

 

Part 3: Comprehensive List of Equipment Cleaning  

 

Cleaning Equipment for all Lists 

1. 10% bleach solution from Step 1 

2. DEDICATED liquid contaminated waste container 

3. DEDICATED solid waste container 

4. Paper towels 

 

List 1: Glass Equipment 

1. DEDICATED beakers, various sizes 

2. DEDICATED graduated cylinders, various sizes 

3. DEDICATED glass stirring rod 

4. DEDICATED 20 mL scintillation vials 

5. DEDICATED 10 mL test tubes 

 

List 1 Cleaning Process 

1. Rinse all surfaces with 10% bleach solution 

2. Wash with soap and water 

3. Rinse 3–4 times with tap water, then with acetone, then 3–4 with tap water, then finally 

with DI water 

4. Set out paper towels and place cleaned equipment on to dry 

5. Once equipment is dry, can be reused or thrown away 

6. Dispose of used paper towels in DEDICATED solid waste container 

 

List 2: Non-glass Equipment 

1. Tweezers 

2. DEDICATED rubber stopper for flasks 
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List 2 Cleaning Process 

1. To 500 mL beaker, add component  

2. Fill beaker with 10% bleach solution, ensuring components/equipment are fully 

immersed 

3. Allow beaker to sit for 10 minutes 

4. Empty liquid components of beaker into DEDICATED liquid contaminated waste container 

5. Wash component with soap and water, rinse with water 3–4 times, then rinse with DI 

water 

6. Set out paper towels and place cleaned components/equipment on to dry 

7. Clean empty beaker according to laboratory procedures for non-contaminated materials 

8. Once components/equipment is dry, can be reused or thrown away 

9. Dispose of used paper towels in DEDICATED solid waste container 

 

List 3: Storage and Work Spaces 

1. Laboratory refrigerator 

2. Sealed, storage container 

3. Tabletop workspace 

4. Workspace within fume hood  

5. Incubator 

 

List 3 Cleaning Process 

1. Wipe down surface with paper towels 

2. Dispose of paper towels in DEDICATED solid waste container 

3. Soak DEDICATED sponge with 10% bleach solution 

4. Scrub surface with sponge  

5. Dispose of sponge in DEDICATED solid waste container 

6. Dry surface with paper towels 

7. Dispose of paper towels in DEDICATED solid waste container 

 

V. Disposal 

 

Disposal Resources 

1. Sharps container 

2. DEDICATED liquid contaminated waste container 

3. DEDICATED solid waste container 

 

When a piece of equipment breaks, is no longer required, or has otherwise been rendered 

unusable, follow these disposal procedures. Disposal procedures are unique to each piece of 

equipment used. 

 

Solid materials: 

1. MFC Main chamber 

a. Wipe down with sponge and bleach solution 

b. Place in solid waste container 

2. MFC Anode component 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

3. MFC Cathode end plate 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 
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b. Place in solid waste container 

4. MFC Cathode graphite 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

5. MFC Bolts, Washers, and Nuts 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

6. MFC 1/8 in. tubing 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

7. MFC 1/8 in. valves 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

8. MFC rubber gaskets 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

9. 150 × 15 mm plastic Petri dishes 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

10. Paper towels 

a. Place in solid waste container 

11. Sponges 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

12. Disposable pipettes 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

13. Glass scintillation vials 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

14. Cleaning tray 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

15. Syringes and needles 

a. Place in sharps container; do not recap 

16. Incubator 

a. Dispose in solid waste container large outdoor trash receptacle 

17. Glass beakers 

a. Place in solid waste container 

18. Glass Erlenmeyer flasks 

a. Place in solid waste container 

19. Pump 

a. Attach tubing to outlet and inlet of pump 

b. Fill a 250 mL beaker with 200 mL bleach solution and place inlet tubing in 

solution 

c. Take an empty 250 mL beaker and place outlet tubing inside 

d. Allow pump to run until all bleach solution has reached the empty beaker 

20. Glove bag 

a. Compress bag 

b. Dispose in solid waste container 
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21. Rubber stoppers 

a. Decontaminate in a 250 mL beaker with 200 mL bleach solution for 10 minutes 

b. Place in solid waste container 

22. Thermometers 

a. Place in solid waste container 

b. If broken, dispose of in sharps container 

 

Liquid materials: 

1. Substrate feed solution  

a. Can be poured down the sink drain with faucet on 

2. Bacteria solution 

a. Mix in bleach solution at a 1:1 ratio 

b. Pour liquid into liquid contaminated waste container 

 

General Procedure 

1. All surfaces, containers, and components exposed to cultures must be decontaminated 

with bleach solution prior to disposal 

2. Bleach solution must remain in contact with materials for 10 minutes when 

decontaminating 

3. Do not re-cap, bend, break, or remove needles prior to disposal; needles must be disposed 

of in laboratory sharps container 

4. Dispose of bleach solution by rinsing with water into sink drain 

 

VI. Accidents/Spills 

 

Equipment 

1. Paper towels 

2. 10% bleach solution 

3. DEDICATED sponges 

 

List of Contingency Plans 

1. If refrigerator breaks and 4°C is not maintained (bacteria may be unusable) and vials 

must be thrown out 

a. Empty vials into liquid contaminated waste container 

b. Dispose of vials in solid waste container 

2. Mysterious storage vial appears (someone forgot to label it); the contents cannot be 

confirmed/known 

a. Empty vial into liquid contaminated waste container 

b. Dispose of vial in solid waste container 

3. DEDICATED sealed storage container within laboratory refrigerator breaks (is no longer 

air-tight or sealed) 

a. Check to see if any scintillation vials have broken 

b. If no, replace storage container with another that can be sealed and dispose of old 

in solid waste container 

c. If yes, empty refrigerator shelf that container was stored on, including any other 

chemicals 

d. Wipe down shelf and other items with paper towel soaked in bleach solution 

e. Wipe down glass scintillation vials with bleach solution 

f. Replace broken storage container with working sealed container and place vials 

back inside 
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4. Someone forgot to reseal the storage container within laboratory refrigerator 

a. Remove storage container and check refrigerator for any spills 

b. If spillage occurred, remove contents and wipe down area with bleach solution 

and paper towels 

c. Wipe down contents with bleach solution and paper towels, including storage 

container 

d. Seal storage container 

e. Replace everything back into refrigerator 

5. Sodium acetate contaminates laboratory analytical scale 

a. Dust off sodium acetate into a paper towel and dispose of in solid waste container 

b. Wipe with paper towel soaked in bleach solution 

c. Dispose of all paper towels in solid waste container 

6. Sodium acetate falls onto laboratory floor 

a. Wipe up sodium acetate with a wet paper towel soaked in water 

b. Wipe area with paper towel soaked in bleach solution 

c. Dispose of all paper towels in solid waste container 

7. Substrate feed escapes workspace spilltray and contaminates desktop surface or floor 

a. Wipe up substrate feed with a wet paper towel soaked in water 

b. Wipe area with paper towel soaked in bleach solution 

c. Dispose of all paper towels in solid waste container 

8. HCl escapes workspace spilltray and contaminates desktop surface or floor 

a. Spread a neutralizing powder onto contaminated area 

b. Collect powder and dispose of in solid waste container 

c. Wipe over area with paper towels soaked in bleach solution 

d. Dispose of paper towels in solid waste container 

9. NaOH escapes workspace spilltray and contaminates desktop surface or floor 

a. Spread sand, earth, or a similar material onto contaminated area 

b. Collect material and dispose of in solid waste container 

c. Wipe over area with paper towels soaked in bleach solution 

d. Dispose of paper towels in solid waste container 

10. Beaker/flask containing bacteria and broth falls to floor and breaks 

a. Use a dustpan and paper towels to sweep broken pieces and soak up broth 

b. Throw paper towels into solid waste container 

11. Needle punctures someone’s skin 

a. Throw away needle into sharps container 

b. Clean skin with alcohol pads from first aid kit 

c. Bandage affected area 

12. Flask leaks inside incubator 

a. Turn off incubator 

b. Remove flask from incubator 

c. Pour liquid inside flask into another flask with no cracks 

d. Wipe inside of incubator with paper towels and bleach solution 

e. Place flask back inside and turn on incubator once more 

13. Syringe filled with bacteria solution punctures someone’s skin 

a. Contact others for help immediately 

b. Empty syringe contents into liquid contaminated waste container 

c. Throw away needle and barrel into sharps container 

d. Clean skin with alcohol pads from first aid kit 

e. Bandage affected area 

14. Scintillation vial falls to floor and breaks 
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a. Use a dustpan and paper towels to sweep broken pieces and soak up broth 

b. Throw paper towels into solid waste container 

15. MFC is not fully sealed and air-tight and begins to leak during construction phase 

a. Finish construction completely; MFC is expected to leak a small amount during 

construction 

b. After construction, take out MFC and wipe down with dry paper towel 

c. Pour excess fluid from catch tray into liquid contaminated waste container 

d. Wash catch tray with sponge and bleach solution 

16. MFC leaks into Petri dish, or otherwise cannot retain fluid and leaks inside incubator 

a. Deconstruct MFC inside catch tray 

b. Wash MFC and reconstruct as in Part III 

c. Pour fluid in catch tray into liquid contaminated waste container 

d. Wash and dry catch tray with bleach solution and paper towels 

17. We drop the fully sealed MFC onto the floor and it breaks open, damaging some parts 

a. Deconstruct MFC inside a catch tray and determine which parts are broken 

b. Dispose of broken parts into solid waste container 

c. Clean up any liquid on floor with paper towels 

d. Sanitize with bleach solution and then wipe dry with paper towels 

e. Dispose of paper towels into solid waste container 

18. Bottle of concentrated bleach spills onto floor or into workspace 

a. Remove all equipment from area to a dry location 

b. Wipe up spill with paper towels 

c. Soak paper towels in water and wipe over spill area twice 

 

General Clean-Up Guidelines 

The above list is not assumed to be comprehensive. The following is a list of clean-up guidelines 

for general accidents and spills. 

1. Remove all associated equipment from contaminated area and place in sink 

2. If equipment is broken and needs to be disposed, refer to Part V for proper disposal 

method 

3. Wipe down equipment with paper towels soaked in bleach solution 

4. Soak up spill with paper towels 

5. Clean contaminated surface with bleach solution 

6. Leave bleach in contact with surface for 10 minutes 

7. Wipe up bleach with paper towels 

8. Paper towels disposed of in contaminated waste container 
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Appendix C: Engineering Drawings for MFC 

 

 

Figure C 1: Engineering drawing for flat anode. 

 

Figure C 2: Engineering drawing for patterned cones design. 
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Figure C 3: Engineering drawing for patterned cylinders design. 

 

Figure C 4: Engineering drawing for anode end plate 
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Figure C 5: Engineering drawing for graphite cathode. 

 

  

Figure C 6: Engineering drawing for anode chamber. 


