LIVER INFLAMMATION EXACERBATES INTRASPINAL TISSUE LOSS AFTER SPINAL CORD INJURY

Anthony N. Alfredo1, Andrew D. Sauerbeck1, Matthew Goodus1, Richard S. Bruno2, Dana M. McTigue1
1Department of Neuroscience, The Ohio State University, Columbus, OH 2Department of Nutrition, The Ohio State University, Columbus, OH

Background
Traumatic spinal cord injury (SCI) is a devastating condition that significantly reduces a patient’s sensory and motor abilities. SCI can cause multiple organ system dysfunction that contributes to chronic health impairments. Prior work from our lab showed that immune system cells called Kupffer Cells (KCs), which are resident macrophages of the liver, initiate a pro-inflammatory response that persists long after SCI. Additionally, some reports suggest that liver inflammation may exacerbate lesion pathology in the spinal cord after SCI, thus this effect has not been directly tested. Therefore we employed a bile duct ligation (BDL) surgical model to induce liver inflammation prior to a thoracic spinal cord contusion to test our hypothesis that inducing liver inflammation before SCI will increase spinal inflammation, lesion pathology, and functional deficits.

Methods
Adult Sprague-Dawley rats received a total BDL and were sacrificed at 1 and 5 days. Fresh liver samples were used to examine pro-inflammatory gene expression. Other rats were given a T8 spinal cord contusion five days after BDL and were sacrificed 28 days post BDL. Control animals received sham BDL surgery followed by T8 contusion. Liver Kupffer cells (KCs) and spinal cord macrophages were examined with OX42 immunohistochemistry. Fresh liver samples were again used to analyze chronic pro-inflammatory gene expression. Lipid accumulation and morphological changes within the liver were examined with Oil Red O and Hematoxylin and Eosin (H&E) staining, respectively. White matter morphological changes within the liver were examined with Eriochrome Cyanine (EC) and Hematoxylin and Eosin (H&E) staining, respectively. Hindlimb motor function was determined using the Basso, Beattie, and Bresnahan (BBB) locomotor scale.

Funding
Funding was provided by NINDS NS-60036192 and P30-NS045758.

Figure 1: RT-PCR of liver tissue samples at 1 and 5 days post-BDL for (A) TNFα, (B) IL-1β, (C) CD68 and (D) CD11b. Expression of all pro-inflammatory genes examined were significantly increased by 5 days. *p < 0.05 vs Control.

Figure 2: Trends of decreased Oil Red O+ staining showing fat deposition (A-C). H & E for morphological changes (D-F) and increased OX42+ Kupffer Cell activation (G4, G) 28 days post BDL and 23 days post SCI.

Figure 3: RT-PCR of liver tissue samples at 23 days post-SCI and 28 days post-BDL for (A) TNFα, (B) IL-1β, (C) CD68 and (D) CD11b. BDL and BDL + SCI induced significant chronic increases in all pro-inflammatory genes in the liver compared to naive animals. *p < 0.05 vs. Naive., *p < 0.05.

Figure 4: (A-C, G) Myelin-axon (ECNF) staining revealed increased lesion pathology and tissue loss in the spinal cord 29 days post-BDL and 23 days post-SCI. (D-F, H) Similarly, OX42 revealed significantly increased macrophage and microglia activation. *p<0.05 vs. SCI., **p<0.01 vs. SCI.

Figure 5: Trend of decreased hindlimb locomotor scores for the BDL + SCI group compared to the SCI group.

Conclusions
Pathological effects of SCI are exacerbated when preceded by induced liver inflammation. Significant findings include:

• Inflammation-induced molecular, cellular and morphological changes in the liver
• Potential changes in SCI lesion size and increased spared tissue