

ABSTRACT

Synucleinopathies are neurodegenerative diseases characterized by the abnormal accumulation of α-synuclein protein aggregates in the brain. Parkinson’s Disease, the leading movement disorder and synucleinopathy, encompasses roughly 9 million people worldwide and costs the United States alone total $25 billion yearly. However, there are no standard diagnostic tests for a biological marker of Parkinson’s, such as a blood test or imaging scan. Difficulty in designing an imaging agent stems from the challenges of crossing the blood brain barrier, binding selectively to α-synuclein and remaining low risk for human patients. This study aims to create an imaging agent that can detect and stage α-synuclein distribution in vivo (live in the patient) via positron emission tomography. Using immunohistochemical methods, human tissue was stained using a commercially available polyclonal anti-α-synuclein antibody and imaged using a con-focal microscope. Tissue stained with our small molecules tagged with a fluorescent ligand recapitulated the images of synuclein. Successful completion of this project will provide an objective diagnostic tool for PD.

RESULTS (continued)

2. Tissue sections prepared from the substantia nigra region of authentic PD brain demonstrate Lewy bodies (Fig. 5AB).

3. A fluorescent candidate small-molecule successfully stained Lewy bodies (Fig. 5C).

4. A fluorescent candidate small-molecule did not stain tau lesions (Fig. 6D).

DISCUSSION

- α-synuclein aggregates are a tractable target for small-molecule radiotracer development
- Binds recombinant α-synuclein selectively over tau and Aβ
- Binds authentic Lewy bodies in PD tissue
- Appropriate clogP, tPSA, and PK values suggest the scaffold class may have utility in vivo
- FUTURE STUDIES
 - Structure activity relationship analysis to identify lead molecule
 - Preparation of radiolabeled compounds for advanced preclinical investigation
 - Direct binding experiments
 - Distribution, metabolism, and pharmacokinetics

ACKNOWLEDGEMENTS

We thank the Wright Center for their guidance and help with this project. Confocal microscope access was provided by the Ohio State Neuroscience Center Core grant (P30-NS045758).

REFERENCES

