Introduction

Contrast sensitivity function (CSF) provides a comprehensive characterization of spatial vision, has shown promise for monitoring the changes in functional vision that accompany eye disease or its treatment. But long testing times prevent its psychophysical assessment in clinical applications. Recently, Lesmes, et al., (2010) developed the quick CSF method, which uses a Bayesian adaptive procedure (Watson & Pelli 1983) to estimate CSF in a fast and precise way.

Aims

To develop and evaluate metrics for detecting changes in the CSF using quick CSF method.

Methods

A 10-letter identification task was used to assess CSF in three luminance conditions in 112 naïve observers with self-reported normal vision. The reliability of CSF metrics was calculated. In addition, the sensitivity, specificity and accuracy for detecting CSF changes in individuals were evaluated. Finally, we conducted empirical statistical power analyses for detecting CSF changes in groups of observers.

Results

The standard error of the CSFs obtained with the quick CSF was less than 0.1 log unit after 50 trials. The test-retest reliability reached 0.974 with 50 trials. In 50 trials, the quick CSF method can detect area under log CSF (AULCSF) changes caused by a 7.8 and 36.4 fold luminance change with 94.0% and 98.9% accuracy, respectively. A power analysis showed that a very small change (0.025 log unit or 6%) could be detected with the quick CSF method with 112 observers and 50 trials.

Conclusion

The quick CSF is very precise, highly reliable and extremely sensitive in detecting CSF changes at both individual and group levels. These advantages make it plausible to apply the method to monitor the progression of visual diseases or treatment effects on individual patients, and greatly reduce the time, sample size and costs in clinical trials.

Bibliography


Acknowledgements

Supported by EY021553 to Z-LL and by MH093838 to JM and MP. LL and Z-LL have an intellectual property (US 7938538, WO2013170091 A1), and equity interest in Adaptive Sensory Technology, MA. LL holds employment in Adaptive Sensory Technology.