Comparison of the storage stability of starch and pectin black raspberry confections

Menghan Shi, Junnan Gu, and Yael Vodovotz

Department of Food Science and Technology at The Ohio State University, 2015 Fyffe Ct., Columbus, OH 43210

Introduction

Black raspberries (BRB) have draw food scientists attention due to their rich source of bioactive phytochemicals and nutrients that have promising anticancer effect, such as anthocyanins and ellagitannins. As reported, they may be involved in inhibiting chronic inflammatory processes which are associated with the initiation and promotion of cancer in various organs. However, due to the instability of these compounds during production process and storage, a suitable food matrix need to be carefully designed so that these bioactives can be stored, delivered and released at desirable rate. Polymer gels formed by starch or pectin have 3-dimensional network that can protect and entrap these bioactives for targeted delivery. Total water content, water activity (Aw), and rheological properties are some of the most important factors in qualifying physicochemical stability of a product. The consistency of these properties may changed during product storage and this can lead to serious safety problem, affect quality acceptability and influence the function of delivery. The objective of this study is to assess the physicochemical stability of two different BRB matrices: Starch and pectin based gummies, under different storage temperature conditions for two months.

Materials & Methods

Total Water Content and Water Activity

A Thermogravimetric Analyzer, TGA Q-5000, was used to determine the total moisture content of each confections. 15-20 mg sample were selected from the middle of each replicates and then analyzed with a heating rate of 10.00 °C/min and a final temperature of 200°C. Lower Aw is one of the factors that contributes to a longer shelf life.

Rheological Consistency

Confections were analyzed with an AR 2000ex Controlled Stress Rheometer with a 20 mm diameter probe. Elasticity (G') was recorded and compared by dynamic frequency sweep (0.1 – 100 Hz) tests carried out at 25°C with 0.1% strain to obtain viscoelastic behavior of confections.

Texture Profile Analysis (TPA)

Confections' texture was characterized by an Instron Texture Analyzer. Hardness, springiness, cohesiveness, gumminess and chewiness were measured and analyzed.