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Abstract 

This project examines sediment samples from IODP Site 1308 in the 

central North Atlantic to reveal details about the history of glacial fluctuations 

from 292 thousand years ago (kya) to 525 kya. The project is based on a 

compositional analysis of 65 sand-fraction samples, taken at a sampling 

interval of ~ 3600 years. The sediment compositions are used to identify 

potential sources, thereby defining the areas of glacial fluctuations on adjacent 

landmasses.  

Samples were examined using a binocular microscope to determine 

sediment composition and component abundances. Sample ages were assigned 

using a published oxygen isotope stratigraphy for Site 1308, and ages were 

then correlated to Marine Isotope Stages (MIS), which catalog alternating warm 

and cool periods in the Earth's paleoclimate, with even-numbered stages 

representing glacial periods and odd-numbered stages representing warm 

interglacial periods.  

 This study reveals that the relative abundance records of ice-rafted 

debris (IRD) and biogenic components (foraminifers) can be subdivided into 4 

intervals, defined by fairly regular variations in the relative abundances of 

these two components. Within the IRD component, variations in the relative 

abundances of quartz and fine-grained mafic rock fragments are consistent 

with the 4 intervals defined by variations in the relative abundance of IRD 

overall. IRD generally is more abundant during glacial stages and during stage 
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transitions. This relationship is illustrated well within MIS 12 and during the 

MIS 12/11 transition. However, IRD is also abundant during some 

interglacials, indicating that IRD supply to this location in the North Atlantic is 

not controlled solely by global climate state. 
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Introduction 

The longest and most complete records of continental glaciation are often 

acquired from stratigraphically intact deep marine sedimentary sequences.  

Ice-rafting is the transport of land-derived sediments by icebergs in mid and 

high latitude marine settings. These icebergs eventually melt and release those 

sediments to the seafloor as they drift into warmer seas (St. John et al, 2004). 

These sediments are known as ice-rafted debris (IRD). IRD abundance is a very 

useful proxy for gaining an understanding of glacial activity, such as glacial 

expansion to sea level, and IRD composition can be used to identify glaciated 

areas.  

IRD records also have some limitations when determining ice sheet 

changes over long periods of time. While continuous marine deposition in deep 

marine settings offers high preservation potential for long term IRD records, 

factors other than ice sheet changes can influence this record (St. John et al, 

2004). The distance from the depositional site is to its possible IRD sources is 

an important factor in determining the possible effects of other sources on the 

IRD record. The increased distance from a possible source allows for the 

chance of more mixing from other sediment sources. Changing surface 

currents may affect the iceberg dispersal patterns, independent of changes in 

the distribution of continental ice. Changes in sea-surface temperature 

patterns can affect the rate and position of IRD melt-out, which can further 

complicate a proxy record that is being interpreted for long-term changes in ice 
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sheet volume and location. The objective of this study is to define and interpret 

the history, sources, and controls on ice-rafting in the central North Atlantic 

during the mid Pleistocene (Marine Isotope Stages 8-13). For this study, IRD is 

defined as the lithic grains in the sand fraction between 150 µm and 2mm in 

diameter.  

 

Geologic Setting 

This study examines the IRD record in samples from IODP Site 1308 

(Figure 1). Site U1308 constitutes a reoccupation of DSDP Site 609 (Figures 2 

& 3), which provided material for very important studies of benthic δ18O, δ13C, 

and CaCO3 records for the Pleistocene (Ruddiman et al., 1989) and late 

Pliocene (Ruddiman et al., 1986; Raymo et al., 1989).  

The importance of Site 609 to the study of IRD was emphasized by the 

early identification of detrital-rich (Heinrich-type) layers based on lithic counts 

(Broecker et al., 1992; Bond et al., 1992). Heinrich events are sediment layers 

rich in IRD and poor in foraminifera. Petrologic characteristics of the IRD at 

Site 609 (Bond and Lotti, 1995) showed that Heinrich events are superimposed 

on another, higher-frequency rhythm of ice-rafting events with detrital sources 

not only in Hudson Strait but also in Greenland, Iceland, and Europe (Snoeckx 

et al., 1999; Grousset et al., 2000).  
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Figure 1. Position of IODP Sites U1302/03, U1304, and U1308 relative to IRD 

accumulation for the last glaciation (modified after Ruddiman [1977]). Arrows 
represent mean paths of distributions of ice-rafted debris during glacial periods 
inferred by Ruddiman (1977). 

 

Studies of material from DSDP Site 609 have played a major role in 

driving some of the most exciting developments in paleoceanographic research 

during the early 21st century, such as the recognition and understanding of 

Heinrich layers (Channell et al., 2004). During Heinrich events, armadas of 

icebergs calved from glaciers and traversed the North Atlantic. The icebergs 

contained rock fragments eroded by the glaciers, and as they melted, these 

fragments were dropped onto the sea floor as IRD. Heinrich events are the 
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climatic events causing at least some of the IRD layers observed in marine 

sediment cores from the North Atlantic (Channell et al. 2004). Some IRD is not 

in Heinrich layers; especially farther back in time, the classic Heinrich-type 

event model may not apply. 

  

Figure 2. Location of Expedition 303 sites (red) and other Deep Sea Drilling 

Project (DSDP) and Ocean Drilling Program (ODP) sites mentioned in the text. 

CGFZ = Charlie Gibbs Fracture Zone. (Expedition 303 Scientists, 2006). 
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Figure 3. Location of Site U1308 lying between the eastern side of the mid-

oceanic ridge (to the southwest) and the Isengard Ridge and Porcupine Abyssal 

Plain (to the northeast). Bathymetry from Smith and Sandwell (1994). Figure 

from Expedition 303 Scientists (2006). 

 

Marine Isotope Stages (MIS) are alternating warm and cool periods in the 

Earth's paleoclimate during the Neogene, deduced from oxygen isotope 

compositions of foraminiferal calcite; these Marine Isotope Stages reflect 
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changes in global ice volume and ocean temperature. Working backwards from 

the present, MIS 1 is the present interglacial; stages with even numbers 

represent cold glacial periods, while the odd-numbered stages represent warm 

interglacial intervals. Other sedimentary records then can be compared with 

the MIS data and can be used to identify other changes in paleoclimates and 

paleoenvironments. 

Many potential sources of IRD are exposed around the North Atlantic; their 

locations and geology have been summarized by a number of investigators (e.g., 

Krissek and St. John, 2002; Peck et al., 2007; Whyte, 2014). Potential sources 

of IRD for this study include silicic igneous and metamorphic basement rocks 

from Canada, central eastern Greenland, and southern Greenland. The basic 

igneous rocks could have been supplied from Iceland and central eastern 

Greenland (Tertiary volcanic province). Krissek and St. John (2002) studied ice 

rafted debris off the coast of southeast Greenland and concluded that the 

source of the basaltic IRD was central east Greenland. St. John et al. (2004) 

studied ice rafted debris off southeast Greenland and concluded that volcanic 

glass found in the IRD originated from Iceland; they also concluded that 

basaltic IRD could have originated from Iceland as well as from Greenland. 

Carbonate rock fragments as IRD are generally attributed to icebergs coming 

from the Hudson Bay region (Whyte 2014). This very distinctive IRD 

composition has been a major reason that the short-duration ice-rafting 

episodes called "Heinrich events" have generally been interpreted to record 

rapid collapses of the Laurentide Ice Sheet. Fe-stained quartz is attributed to 
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Paleozoic sediments also exposed in southern/eastern Canada, or to Mesozoic 

sediments in coastal southeastern Greenland.  

 

Methods 

The studied stratigraphic interval from Site 1308 was 16.2 meters long, 

and extended from 18.74 to 33.94 meters composite depth (MCD). Sixty-five 

samples were analyzed. The average time spacing between samples is 

estimated at 3,600 years. Prior to this study, samples had been sieved at grain 

sizes of 150 µm and 2mm. The present study involved visual inspection of the 

150 µm–2mm size fraction, using a binocular microscope to determine grain 

compositions and abundances. From each sample, a subsample was poured 

into an aluminum weighing boat, and was examined using the binocular 

microscope. Through the microscope 100 grains were counted in each sample, 

and were categorized by composition. Replicate analyses were performed; this 

was done by recounting a few of the early samples in order to determine 

analytical uncertainty. These analyses showed that there was little uncertainty 

in the categorization of grain types from the samples. Multiple counts from the 

same sample were consistent. 

The grain categories identified were as follows: Quartz (Qtz), Iron-stained 

Quartz (Fe-Qtz), Quartzose rock fragments (QRF) (Granites/Gneisses), Coarse 

grained mafic rock fragments (CGM) (Gabbros), Fine grained mafics (FGM) 
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(Basalts), Sedimentary rock fragments (Sed Rocks) (Sandstones & Shales), 

Carbonate rock fragments (Carb Rocks) (Limestones), Light and Dark Volcanic 

Ash (Volc Ash D) (Volc Ash L), Biogenic Silica (Radiolarians), Biogenic 

Carbonate (Foraminifera), Pyritic, and Other (Mudballs).  

Profiles of component abundances vs. sediment age were constructed. 

This was done to illustrate compositional variations with age of the samples. 

Sample ages were determined using an age-depth model constructed by Hodell 

et al. (2008), based on an oxygen isotope stratigraphy. All values of the total 

terrigenous abundances were calculated using the following equation 

(terrigenous grains / terrigenous grains + biogenic silica and carbonates)*100. 

Many of the samples included other grains, primarily balls of mud that had not 

been disaggregated and removed as samples were processed; these additional 

grains were not categorized as IRD and were not included in the calculations of 

the total terrigenous abundances. Profiles of the component abundances vs. 

meters composite depth were constructed (Appendix B).  The percentages of the 

individual IRD grain types were calculated using the following equation: 

(number of IRD grains of type X/total grains in the sample)*100. The 

percentages of the Qtz and FGM in Tables 1 and 2 were calculated using the 

following equation: (number of IRD grains of type X/ (total grains in the 

sample))*100. 
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Data 

Two major grain types dominated the 150 µm–2mm size fraction at Site 

1308: terrigenous grains (IRD) and biogenic carbonate (forams).  The relative 

abundance profile of terrigenous IRD (Fig 4), and illustrates two intervals with 

relatively high IRD abundances and two intervals with relatively low 

abundances (Tables 1 & 2). The intervals with higher abundances occur at 310 

to ~354 kya, and at 413 to 475 kya, whereas the intervals with relatively low 

IRD abundances span 355–413 kya and 475–513 kya (Table 1 & 2). 

 Within the terrigenous grain population, variations in the abundances of 

individual grain types also can be seen. The ice-rafted material is dominated by 

two major components, quartz and fine-grained mafic rock fragments (Figs. 6 & 

7; also see Tables 1, 2, 3, and 4 in the Appendix A). The ice rafted material also 

contains lesser amounts of sedimentary rock fragments and quartzose 

fragments (Figs. 8 & 9).  The quartz population shows significant abundance 

variation throughout the span of this study. The fine-grained mafic rock 

fragment population displays a more consistent record of abundance during 

several intervals lasting 30–70 ky. However, the fine-grained mafics also show 

large abundance variations in other parts of this record, sometimes changing 

from 0% to 100% in adjacent samples (Fig. 6). 

The second major grain type is biogenic material, especially foraminifera 

(Figs. 10 and 11). Biogenic components are very common in deep sea 

sediments. At Site 1308, this population shows several intervals of relatively 
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consistent abundances throughout the studied time period. This population of 

biogenic grains dilutes the IRD component because the biogenic grains are 

relatively common, yet show large changes in their abundance. Extra care 

must be taken to properly distinguish the IRD from the biogenic components.   
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Figure 4. Abundances of total terrigenous grains found in the total sample, 
plotted with respect to age. This plot is subdivided into the 4 major intervals, 
based on relative abundance and variation patterns of the total terrigenous 
fraction.  (Total terrigenous abundance is calculated as: ((the total number of 
terrigenous grains /( the total number of terrigenous + biogenic grains) *100))). 
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Figure 5. Abundances of total terrigenous grains relative to the total grain 

population, plotted with respect to age. This plot is overlaid with the Marine 

Isotope Stages. 
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Figure 6. Abundance of Fine Grained Mafic grains relative to the total IRD 

grain population. The individual IRD grain types were calculated using the 

following equation: (number of IRD grains of type X / total IRD grains in that 

sample)*100.
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Figure 7. Abundance of Quartz grains relative to the total IRD grain 

population. 
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Figure 8. Abundance of Sedimentary Rock fragments relative to total IRD 

grains per sample. 
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Figure 9. Abundance of Quartzose Rock fragments relative to total IRD grains 

per sample. 
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Figure 10. Abundance of biogenic carbonates relative to the total grain 

population. 
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Figure 11. Abundance of biogenic silica relative to the total grain population. 
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Discussion  

The data show that the samples from Site 1308 are dominated by two 

major grain types: terrigenous grains and biogenic grains. The abundance of 

total terrigenous grains is diluted by the variable presence of foraminifers, so 

that the abundance record of total terrigenous grains can be subdivided into 

four intervals with consistent patterns of variability (Fig. 4). The first interval, 

from 305 to 355 kya, averaged 41% total IRD with an average of 14.25% Qtz 

and 9.67% FGM. The second interval, from 355 to 410 kya, averaged only 2% 

IRD with an average of .92% Qtz and .54% FGM. The third interval, from 410 to 

475 kya, averaged 50% IRD with 16.42% Qtz and 11.25% FGM. The fourth 

interval, from 475 to 525 kya, averaged only 10% IRD with 2.73% Qtz and 

4.55% FGM (see Table 5). The percentages of the Qtz and FGM were calculated 

using the following equation: (number of IRD grains of type X /(total grains in 

the sample))*100. The biogenic components, the carbonates and the silica, 

make up the majority of the total grains found in most of the samples (Fig. 4). 

The abundance of total terrigenous grains (i.e., IRD) can vary due to 

changes in controls on the IRD supply. These potential controls include 

changes in the IRD supply due to glacial/interglacial changes and to changes 

in iceberg transport paths and melting locations. Dilution by varying input 

and/or preservation of foraminifers could also affect the abundance record of 

IRD. 
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The total IRD record (Fig. 4) shows variations with some general links to 

the record of Marine Isotope Stages; however, these are not always strong and 

direct links. The warm interglacial periods tend to begin with a significant 

increase in IRD supply, followed by a significant decrease. This is well 

illustrated at the transition from Marine Isotope Stages 10 to 9. This 

relationship appears to be relatively similar to the transition from Stages 12 to 

11. Two of the three interglacials (Stages13 and 11) have relatively consistent 

low total IRD. Even though IRD abundances in Stage 9 are higher, both Stage 

11 and Stage 9 show relatively high IRD abundances at the transition from the 

preceding glacial into that next interglacial. These are patterns that would be 

generally expected: less ice-rafting during warm interglacials, and decreasing 

IRD supply during times of glacial retreat. In both Stages 10 and 12, the IRD 

abundance generally increases as the glacial episode continues (i.e., from the 

base of 12 to the top of 12 and from the base of 10 to the top of 10). This 

pattern would be expected if ice extent increased through each glacial period. 

The second major data set is the abundance of individual terrigenous 

grain types (Figs. 6, 7, 8, 9). Quartz and fine grained rock fragments make up a 

majority of the IRD grains. The other major components of the IRD include the 

quartzose and sedimentary rock fragments, and iron-stained quartz. 

Each IRD grain type exhibits its own pattern of abundance variation over 

the interval studied. The quartz and fine grained rock fragment abundance 

patterns do not match in detail well, but both are generally similar to the 
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abundance pattern for the total IRD (Fig. 4). The quartz abundance record, 

however, generally shows larger and more frequent variations than the fine 

grain mafic rock fragment abundance record (Figs. 6 & 7). Sedimentary rock 

fragments and quartzose rock fragments are present sporadically, although 

QRF are more common when the overall IRD is more abundant (Figs. 8 & 9). A 

comparison of the records of total IRD and quartz suggests that increases in 

the total IRD generally were accompanied by relative increases in quartz 

abundances.  

The two major components of the IRD, quartz and fine grained mafics, 

have several possible sources. The fine grained mafic rock fragments could 

have come from the central eastern Greenland area, which is a Tertiary 

volcanic province, or from Iceland. The quartz may have come from the central 

eastern Greenland province as well, but also may have been supplied from 

basement rocks in southern Greenland. Bedrock exposed in Canada also may 

have supplied quartz. The relatively similar timing of increased input of quartz 

and FGM suggests relatively synchronous ice expansion in multiple source 

areas, such as central eastern Greenland and/or Iceland, along with southern 

Greenland and/or eastern Canada.  This finding is consistent with 

interpretations of an IRD record from Site 919 off southeast Greenland by 

Krissek and St. John (2002).  
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Conclusions 

 The relative abundance records of IRD and biogenic components 

(foraminifers) from 292 to 525 kya at IODP Site 1308 can be subdivided 

into major 4 intervals, defined by relatively consistent patterns of 

variation in the relative abundances of these two components.  

 The relative abundance of IRD is interpreted to have been controlled by 

variations in both the input rate of IRD and dilution by the input of 

foraminifers.   

 Within the IRD component, the relative abundances of quartz and fine-

grained mafic rock fragments are consistent with variations in the 

relative abundance of total IRD overall.  

 The quartz abundance pattern follows the total IRD abundance pattern 

more closely than the FGM pattern does. This suggests that increases in 

total IRD were generally caused by an increase in quartz supply. 

  The increase in quartz abundance may be due to variations in the IRD 

supply from Canada, where quartz does not co-occur with basalts, 

episodically superimposed on a more consistent supply of FGM-rich IRD 

from Iceland and East Greenland.  

 Variations in the relative abundance of IRD do not correlate directly with 

Marine Isotope Stages. IRD generally is more abundant during glacial 
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stages and during stage transitions. This relationship is illustrated well 

within MIS 12 and during the MIS 12/11 transition (Fig. 5).  

Suggestions for future work 

Other studies in this region could include an analysis of older samples 

from Site 1308, a comparison of samples from other north Atlantic sites to 

analyze accuracy and /or large scale IRD activity, and an analysis of 

foraminifera found at Site 1308 could be done to further understand the ages 

of the samples and intervals in this study.   
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Appendix A 

 

Age (Kya)  %Terrig  % Qtz  % FGM  MIS  

305-355  41 14.25 9.67 9 + 10  

355-410  2 0.92 0.54 10 + 11  

410-475  50 16.42 11.25 11 + 12  

475-525  10 2.73 4.55 13 

 

Table 1.  Avg % compositions by 4 intervals. Terrigenous (Terrig) is land-

derived sediments. (Total terrigenous abundance is calculated as: ((the total 

number of terrigenous grains/ (the total number of terrigenous + biogenic 

grains) *100)).The percentages of the Qtz and FGM were calculated using the 

following equation: (number of IRD grains of type X /(total grains in the 

sample))*100.) Marine Isotope Stages (MIS) are identified for each interval. 

 

 

MIS Kya Avg %Terrig Avg % Qtz Avg % FGM 

8 292-301 7.5 0.5 5.75 

9 301-334 35.33 15.33 11.56 

10 334-364 11.67 5.67 2 

11 364-427 11.73 4.07 5.8 

12 427-474 31.88 18.83 6.88 

13 474-524 8.86 2.73 4.55 

 

Table 2 Avg % compositions by Marine Isotope Stages (MIS). Terrigenous 

(Terrig) is land-derived sediments. (Total terrigenous abundance is calculated 

as: ((the total number of terrigenous grains/ (the total number of terrigenous + 

biogenic grains) *100)).The percentages of the Qtz and FGM were calculated 

using the following equation: (number of IRD grains of type X/(total grains in 

the sample))*100.)
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E 2 6 106 108 20.24 310.52 41 4 10               55 33   12 88 63% 

E 2 6 128 130 20.46 313.23 32 3 4   25 18   18     100       100 100% 

C 3 3 6 8 20.67 315.83 37   1   54 2         94     6 94 100% 

C 3 3 28 30 20.89 318.54 7   1   15           23 67   10 90 26% 

C 3 3 56 58 21.17 322.00 2         3   3     8 67 1 24 76 11% 

C 3 3 78 80 21.39 324.72 8 1 1   3           13 20   67 33 39% 

C 3 3 106 108 21.67 334.26 11   1   7 6         25 5   70 30 83% 

C 3 3 128 130 21.89 341.71 6   3   5 3         17 62   21 79 22% 

C 3 4 6 8 22.17 346.71 9   1   3     1 12   26 69   5 95 27% 

C 3 4 28 30 22.39 350.64 18 1 1   4           24 75   1 99 24% 

C 3 4 56 58 22.67 355.64                     0 78   22 78 0% 

C 3 4 78 80 22.89 359.57 1         1         2 84 5 9 91 2% 

C 3 4 106 108 23.17 364.57           1         1 67   32 68 1% 

C 3 4 128 130 23.39 368.50 5       1           6 91   3 97 6% 

C 3 5 6 8 23.67 373.50                     0 80   20 80 0% 

C 3 5 28 30 23.89 377.43         1 1         2 96 2   100 2% 

C 3 5 56 58 24.39 386.36 2       2           4 77 2 17 83 5% 

C 3 5 78 80 24.67 391.36                     0 94 6   100 0% 
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C 3 5 128 130 24.89 394.35 4       1           5 86 6 3 97 5% 

C 3 6 6 8 25.17 398.47                     0 97   3 97 0% 

C 3 6 28 30 25.39 401.71                     0 93   7 93 0% 

C 3 6 56 58 25.67 405.82     1   2 1         4 81 1 14 86 5% 

E 3 2 56 58 25.7 406.26                     0 96 2 2 98 0% 

E 3 2 78 80 25.92 409.50                     0 97 1 2 98 0% 

E 3 2 106 108 26.2 413.62 28 2 2   4           36 6   58 42 86% 

E 3 2 128 130 26.42 416.85 12 2 4   55 1   6     80 10   10 90 89% 

E 3 3 6 8 26.7 420.97 8   1   14           23 4   73 27 85% 

E 3 3 28 30 26.92 424.21 2 1 3   7 3         16 10   74 26 62% 

E 3 3 56 58 27.2 428.32 23       1 6         30 49 2 19 81 37% 

E 3 3 78 80 27.42 431.53 58 2 1   27           88 2   10 90 98% 

E 3 3 128 130 27.92 444.68 3   1   3           7 54   39 61 11% 

E 3 4 6 8 28.2 452.05 8       3 2         13 65   22 78 17% 

E 3 4 28 30 28.42 457.84 7                   7 85 1 7 93 8% 

E 3 4 56 58 28.7 465.21 47 2 1   20 1         71 27   2 98 72% 

E 3 4 78 80 28.92 471.00 1                 36 37 61 2   100 37% 

B 4 2 128 130 28.94 471.53         1     1     2 69   29 71 3% 

E 3 4 106 108 29.2 476.47 2       2           4 92   4 96 4% 

B 4 3 6 8 29.22 476.68         14       1   15 42 2 41 59 25% 

B 4 3 28 30 29.44 479.00     1   3           4 89 3 4 96 4% 

B 4 3 56 58 29.72 481.95         2           2 88 6 4 96 2% 

B 4 3 78 80 29.94 484.26 8 1     1           10 59   31 69 14% 

B 4 3 106 108 30.22 487.21 4   1   4 1         10 69 3 18 82 12% 



29 
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B 4 3 128 130 30.44 489.53         1           1 64 23 12 88 1% 

B 4 4 6 8 30.72 492.47         1           1 96 3   100 1% 

B 4 4 28 30 30.94 494.79         3           3 68 13 16 84 4% 

B 4 4 56 60 31.29 498.47 2                   2 77 18 3 97 2% 

B 4 4 78 80 31.44 500.05 26 5 2   15           48 48 1 3 97 49% 

B 4 4 106 108 31.72 503.00         2           2 50 2 46 54 4% 

B 4 4 128 130 31.94 505.11         6           6 82 7 5 95 6% 

B 4 5 6 8 32.22 508.26           1   1     2 90 3 5 95 2% 

B 4 5 28 30 32.44 510.58         1           1 50   49 51 2% 

B 4 5 56 58 32.72 513.37         8           8 85 2 5 95 8% 

B 4 5 78 80 32.94 515.43           2         2 83 12 3 97 2% 

B 4 5 106 108 33.22 518.05 10       10       4 3 27 48   25 75 36% 

B 4 5 128 130 33.44 520.10     2               2 83 10 5 95 2% 

B 4 6 6 8 33.72 522.72 1       9 1         11 76 8 5 95 12% 

A 4 2 78 80 33.82 523.65 2       8           10 80 4 6 94 11% 

B 4 6 28 30 33.94 524.78 5 1     10 5   2 1   24 67 3 6 94 26% 

 

Table 3. Abundances of individual grain type data. 
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E 2 5 106 108 18.74 292.00 1% 0% 0% 0% 16% 3% 0% 0% 0% 34% 0% 0% 46% 

E 2 5 128 130 18.96 294.72 1% 0% 0% 0% 5% 2% 0% 0% 0% 36% 0% 0% 56% 

E 2 6 6 8 19.24 298.17 0% 0% 0% 0% 0% 0% 0% 0% 0% 97% 1% 0% 2% 

E 2 6 28 30 19.46 300.89 0% 0% 0% 0% 2% 0% 0% 0% 0% 93% 2% 0% 3% 

E 2 6 56 58 19.74 304.35 0% 0% 0% 0% 0% 0% 0% 0% 0% 80% 0% 0% 20% 

E 2 6 78 80 19.96 307.06 0% 0% 0% 0% 0% 0% 0% 0% 0% 96% 4% 0% 0% 

E 2 6 106 108 20.24 310.52 41% 4% 10% 0% 0% 0% 0% 0% 0% 33% 0% 0% 12% 

E 2 6 128 130 20.46 313.23 32% 3% 4% 0% 25% 18% 0% 18% 0% 0% 0% 0% 0% 

C 3 3 6 8 20.67 315.83 37% 0% 1% 0% 54% 2% 0% 0% 0% 0% 0% 0% 6% 

C 3 3 28 30 20.89 318.54 7% 0% 1% 0% 15% 0% 0% 0% 0% 67% 0% 0% 10% 

C 3 3 56 58 21.17 322.00 2% 0% 0% 0% 0% 3% 0% 3% 0% 67% 1% 0% 24% 

C 3 3 78 80 21.39 324.72 8% 1% 1% 0% 3% 0% 0% 0% 0% 20% 0% 0% 67% 

C 3 3 106 108 21.67 334.26 11% 0% 1% 0% 7% 6% 0% 0% 0% 5% 0% 0% 70% 

C 3 3 128 130 21.89 341.71 6% 0% 3% 0% 5% 3% 0% 0% 0% 62% 0% 0% 21% 

C 3 4 6 8 22.17 346.71 9% 0% 1% 0% 3% 0% 0% 1% 12% 69% 0% 0% 5% 

C 3 4 28 30 22.39 350.64 18% 1% 1% 0% 4% 0% 0% 0% 0% 75% 0% 0% 1% 

C 3 4 56 58 22.67 355.64 0% 0% 0% 0% 0% 0% 0% 0% 0% 78% 0% 0% 22% 

C 3 4 78 80 22.89 359.57 1% 0% 0% 0% 0% 1% 0% 0% 0% 84% 5% 0% 9% 

C 3 4 106 108 23.17 364.57 0% 0% 0% 0% 0% 1% 0% 0% 0% 67% 0% 0% 32% 

C 3 4 128 130 23.39 368.50 5% 0% 0% 0% 1% 0% 0% 0% 0% 91% 0% 0% 3% 

C 3 5 6 8 23.67 373.50 0% 0% 0% 0% 0% 0% 0% 0% 0% 80% 0% 0% 20% 

C 3 5 28 30 23.89 377.43 0% 0% 0% 0% 1% 1% 0% 0% 0% 96% 2% 0% 0% 

C 3 5 78 80 24.39 386.36 2% 0% 0% 0% 2% 0% 0% 0% 0% 77% 2% 0% 17% 

C 3 5 106 108 24.67 391.36 0% 0% 0% 0% 0% 0% 0% 0% 0% 94% 6% 0% 0% 

C 3 5 128 130 24.89 394.35 4% 0% 0% 0% 1% 0% 0% 0% 0% 86% 6% 0% 3% 

C 3 6 6 8 25.17 398.47 0% 0% 0% 0% 0% 0% 0% 0% 0% 97% 0% 0% 3% 

C 3 6 28 30 25.39 401.71 0% 0% 0% 0% 0% 0% 0% 0% 0% 93% 0% 0% 7% 

C 3 6 56 58 25.67 405.82 0% 0% 1% 0% 2% 1% 0% 0% 0% 81% 1% 0% 14% 

C 3 2 56 58 25.7 406.26 0% 0% 0% 0% 0% 0% 0% 0% 0% 96% 2% 0% 2% 

C 3 2 78 80 25.92 409.50 0% 0% 0% 0% 0% 0% 0% 0% 0% 97% 1% 0% 2% 

C 3 2 106 108 26.2 413.62 28% 2% 2% 0% 4% 0% 0% 0% 0% 6% 0% 0% 58% 

C 3 3 128 130 26.42 416.85 12% 2% 4% 0% 55% 1% 0% 6% 0% 10% 0% 0% 10% 

C 3 3 6 8 26.7 420.97 8% 0% 1% 0% 14% 0% 0% 0% 0% 4% 0% 0% 73% 

C 3 3 28 30 26.92 424.21 2% 1% 3% 0% 7% 3% 0% 0% 0% 10% 0% 0% 74% 

C 3 3 56 58 27.2 428.32 23% 0% 0% 0% 1% 6% 0% 0% 0% 49% 2% 0% 19% 

C 3 3 78 80 27.42 431.53 58% 2% 1% 0% 27% 0% 0% 0% 0% 2% 0% 0% 10% 
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E 3 3 128 130 27.92 444.68 3% 0% 1% 0% 3% 0% 0% 0% 0% 54% 0% 0% 39% 

E 3 4 6 8 28.2 452.05 8% 0% 0% 0% 3% 2% 0% 0% 0% 65% 0% 0% 22% 

E 3 4 28 30 28.42 457.84 7% 0% 0% 0% 0% 0% 0% 0% 0% 85% 1% 0% 7% 

E 3 4 56 58 28.7 465.21 47% 2% 1% 0% 20% 1% 0% 0% 0% 27% 0% 0% 2% 

E 3 4 78 80 28.92 471.00 1% 0% 0% 0% 0% 0% 0% 0% 0% 61% 2% 36% 0% 

B 4 2 128 130 28.94 471.53 0% 0% 0% 0% 1% 0% 0% 1% 0% 69% 0% 0% 29% 

E 3 4 106 108 29.2 476.47 2% 0% 0% 0% 2% 0% 0% 0% 0% 92% 0% 0% 4% 

B 4 3 6 8 29.22 476.68 0% 0% 0% 0% 14% 0% 0% 0% 1% 42% 2% 0% 41% 

B 4 3 28 30 29.44 479.00 0% 0% 1% 0% 3% 0% 0% 0% 0% 89% 3% 0% 4% 

B 4 3 56 58 29.72 481.95 0% 0% 0% 0% 2% 0% 0% 0% 0% 88% 6% 0% 4% 

B 4 3 78 80 29.94 484.26 8% 1% 0% 0% 1% 0% 0% 0% 0% 59% 0% 0% 31% 

B 4 3 106 108 30.22 487.21 4% 0% 1% 0% 4% 1% 0% 0% 0% 69% 3% 0% 18% 

B 4 3 128 130 30.44 489.53 0% 0% 0% 0% 1% 0% 0% 0% 0% 64% 23% 0% 12% 

B 4 4 6 8 30.72 492.47 0% 0% 0% 0% 1% 0% 0% 0% 0% 96% 3% 0% 0% 

B 4 4 28 30 30.94 494.79 0% 0% 0% 0% 3% 0% 0% 0% 0% 68% 13% 0% 16% 

B 4 4 58 68 31.29 498.47 2% 0% 0% 0% 0% 0% 0% 0% 0% 77% 18% 0% 3% 

B 4 4 78 80 31.44 500.05 26% 5% 2% 0% 15% 0% 0% 0% 0% 48% 1% 0% 3% 

B 4 4 106 108 31.72 503.00 0% 0% 0% 0% 2% 0% 0% 0% 0% 50% 2% 0% 46% 

B 4 4 128 130 31.94 505.11 0% 0% 0% 0% 6% 0% 0% 0% 0% 82% 7% 0% 5% 

B 4 5 6 8 32.22 508.26 0% 0% 0% 0% 0% 1% 0% 1% 0% 90% 3% 0% 5% 

B 4 5 28 30 32.44 510.58 0% 0% 0% 0% 1% 0% 0% 0% 0% 50% 0% 0% 49% 

B 4 5 56 58 32.72 513.37 0% 0% 0% 0% 8% 0% 0% 0% 0% 85% 2% 0% 5% 

B 4 5 78 80 32.94 515.43 0% 0% 0% 0% 0% 2% 0% 0% 0% 83% 12% 0% 3% 

B 4 5 106 108 33.22 518.05 10% 0% 0% 0% 10% 0% 0% 0% 4% 48% 0% 3% 25% 

B 4 5 128 130 33.44 520.10 0% 0% 2% 0% 0% 0% 0% 0% 0% 83% 10% 0% 5% 

B 4 6 6 8 33.72 522.72 1% 0% 0% 0% 9% 1% 0% 0% 0% 76% 8% 0% 5% 

A 4 2 75 80 33.82 523.65 2% 0% 0% 0% 8% 0% 0% 0% 0% 80% 4% 0% 6% 

B 4 6 28 30 33.94 524.78 5% 1% 0% 0% 10% 5% 0% 2% 1% 67% 3% 0% 6% 

 

Table 4. % Abundances of individual grain types.  
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18.74 292.00 1         16   3         20   34   46 54 37% 

18.96 294.72 1         5   2         8   36   56 44 18% 

19.24 298.17           0             0   97 1 2 98 0% 

19.46 300.89 0         2             2   93 2 3 97 2% 

19.74 304.35 0         0             0   80   20 80 0% 

19.96 307.06 0         0             0   96 4   100 0% 

20.24 310.52 41   4 10   0             55   33   12 88 63% 

20.46 313.23 32   3 4   25   18   18     100         100 100% 

20.67 315.83 37     1   54   2         94       6 94 100% 

20.89 318.54 7     1   15             23   67   10 90 26% 

21.17 322.00 2         0   3   3     8   67 1 24 76 11% 

21.39 324.72 8   1 1   3             13   20   67 33 39% 

21.67 334.26 11     1   7   6         25   5   70 30 83% 

21.89 341.71 6     3   5   3         17   62   21 79 22% 

22.17 346.71 9     1   3       1 12   26   69   5 95 27% 

22.39 350.64 18   1 1   4             24   75   1 99 24% 

22.67 355.64 0 14.25       0 9.67           0 41.20 78   22 78 0% 

22.89 359.57 1         0   1         2   84 5 9 91 2% 

23.17 364.57 0         0   1         1   67   32 68 1% 

23.39 368.50 5         1             6   91   3 97 6% 

23.67 373.50 0         0             0   80   20 80 0% 

23.89 377.43 0         1   1         2   96 2   100 2% 

24.39 386.36 2         2             4   77 2 17 83 5% 

24.67 391.36 0         0             0   94 6   100 0% 

24.89 394.35 4         1             5   86 6 3 97 5% 

25.17 398.47 0         0             0   97   3 97 0% 

25.39 401.71 0         0             0   93   7 93 0% 

25.67 405.82 0     1   2   1         4   81 1 14 86 5% 

25.7 406.26 0         0             0   96 2 2 98 0% 

25.92 409.50 0 0.92       0 0.54           0 2.04 97 1 2 98 0% 

26.2 413.62 28   2 2   4             36   6   58 42 86% 

26.42 416.85 12   2 4   55   1   6     80   10   10 90 89% 

26.7 420.97 8     1   14             23   4   73 27 85% 

26.92 424.21 2   1 3   7   3         16   10   74 26 62% 

27.2 428.32 23         1   6         30   49 2 19 81 37% 
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27.42 431.53 58   2 1   27             88   2   10 90 98% 

27.92 444.68 3     1   3             7   54   39 61 11% 

28.2 452.05 8         3   2         13   65   22 78 17% 

28.42 457.84 7         0             7   85 1 7 93 8% 

28.7 465.21 47   2 1   20   1         71   27   2 98 72% 

28.92 471.00 1         0           36 37   61 2   100 37% 

28.94 471.53 0 16.42 
 

    1 11.25      1     2 50.45 69   29 72 4% 

29.2 476.47 2         2             4   92   4 96 4% 

29.22 476.68 0         14         1   15   42 2 41 59 25% 

29.44 479.00 0     1   3             4   89 3 4 96 4% 

29.72 481.95 0         2             2   88 6 4 96 2% 

29.94 484.26 8 
 

1     1             10   59   31 69 14% 

30.22 487.21 4     1   4   1         10   69 3 18 82 12% 

30.44 489.53 0         1             1   64 23 12 88 1% 

30.72 492.47 0         1             1   96 3   100 1% 

30.94 494.79 0         3             3   68 13 16 84 4% 

31.29 498.47 2         0             2   77 18 3 97 2% 

31.44 500.05 26   5 2   15             48   48 1 3 97 49% 

31.72 503.00 0         2             2   50 2 46 54 4% 

31.92 505.11 0         6             6   82 7 5 95 6% 

32.22 508.26 0         0   1   1     2   90 3 5 95 2% 

32.44 510.58 0         1             1   50   49 51 2% 

32.72 513.37 0         8             8   85 2 5 95 8% 

32.94 515.43 0         0   2         2   83 12 3 97 2% 

33.22 518.05 10         10         4 3 27   48   25 75 36% 

33.44 520.10 0     2   0             2   83 10 5 95 2% 

33.72 522.72 1         9   1         11   76 8 5 95 12% 

33.82 523.65 2         8             10   80 4 6 94 11% 

33.94 524.78 5 2.94 1     10 4.59 5   2 1   24 9.41 67 3 6 94 26% 

 

Table 5. Avg % composition data by 4 intervals (shown in purple). 
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Appendix B 

 

Figure 12. Plot showing the abundance of Terrigenous grains vs. MCD subdivided by the 

four major intervals.   



35 

 

Figure 13. Abundance of Fe-Qtz vs. MCD, relative to total IRD grains per sample.  
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Figure 14. Abundance of Qtzose vs. MCD, relative to total IRD grains per sample. 
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Figure 15.  Biogenic Carbonates vs. All Grains. 
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Figure 16.  Biogenic Silica vs. All Grains. 
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