MULTIVARIATE MODELS UTILIZE ACCELEROMETERS TO ESTIMATE PEAK VERTICAL GROUND REACTION FORCE

HONORS UNDERGRADUATE RESEARCH THESIS

Presented in fulfillment of the requirements for a Bachelor of Science with Honors Research Distinction in Biomedical Engineering from The Ohio State University

Constantine P. Nicozokakes
Department of Biomedical Engineering

The Ohio State University
May 2015

Committee:
Timothy E. Hewett, Advisor
Keith J. Gooch
Abstract

Three-dimensional (3-D) motion capture is a valid method to quantify human motion, yet requires expensive equipment and a specialized laboratory not available in a clinical or athletics environment. Tri-axial accelerometers pose a portable, cost-effective solution to analyze human motion. Previous research indicates that accelerometers can predict peak vertical ground reaction forces (vGRF) during low-impact tasks, but these units have not been validated for dynamic, high-impact landings. The objective of this study was to develop a multivariate model that utilized anthropometric measures and peak accelerations to estimate peak vGRF during dynamic jumping tasks. Ten healthy subjects were recruited for the study. Activity monitors were secured bilaterally to the foot, medial tibial surface, lateral femoral epicondyle, and midpoint between the right and left anterior superior iliac spine. Subjects performed 10 drop vertical jump tasks and 10 bilateral single leg drop tasks off a 31cm tall box onto two floor embedded force plates. All tasks were performed during continuous collection of 3-D motion capture data and tri-axial accelerations. Peak vGRF was extracted from motion capture data for each DVJ and SLD trial. Peak acceleration was extracted from tri-axial acceleration data. Multivariate linear regression models that incorporated anthropometric data and peak acceleration magnitudes were separately developed to predict peak vGRF for DVJ and SLD trials. Height, weight, peak waist acceleration, and peak thigh acceleration were significant predictors of vGRF during a DVJ task. Peak waist, thigh, and shoe
accelerations were significant predictors of vGRF during a SLD task. The correlations between recorded vGRF and predicted vGRF for both DVJ and SLD trials were significant (DVJ: \(R^2 = 0.7451 \); SLD: \(R^2 = 0.7266 \)). Models that utilize anthropometric data and activity monitors to accurately predict vGRF provide a cost-effective method to collect human motion data. This study is the first to our knowledge to utilize multiple activity monitors to produce these results during dynamic, high-impact landing tasks. Future work will attempt to validate activity monitors to measure lower extremity kinetics and kinematics during multiple dynamic tasks.
Acknowledgements

The author acknowledges funding support from the National Institutes of Health / National Institute of Arthritis and Musculoskeletal and Skin Diseases grants R01-AR049735 and R01-AR056259 (TEH) and the OSU Sports Medicine Sports Health and Performance Institute. The author would like to thank OSU Sports Medicine and the Mayo Clinic research staffs.
Vita

2011 .. Wooster High School

2012-2014 .. Kettering Scholarship Recipient

2014 ... TBDBITL Scholarship Recipient

2014 .. Undergraduate Research Scholarship Recipient

2014 Biomedical Engineering Outstanding Junior Academic Scholar

2015 B.S. Biomedical Engineering, The Ohio State University

Fields of Study

Major Field: Biomedical Engineering

Minor Field: Music
Table of Contents

Abstract .. ii

Acknowledgements ... iv

Vita .. v

List Of Tables ... vii

List Of Figures ... viii

Introduction ... 1

Methods .. 2

Results ... 4

Discussion ... 4

Conclusion ... 8

Figures and Tables ... 9

References ... 12
List of Tables

Table 1. Multivariate regression results ... 9
List of Figures

Figure 1. Drop vertical jump task...9

Figure 2. Activity monitor placement on subjects...10

Figure 3. Fit vGRF vs measured vGRF using multivariate linear regression parameters – DVJ..11

Figure 4. Fit vGRF vs measured vGRF using multivariate linear regression parameters – SLD..11
INTRODUCTION

Three-dimensional motion capture (3-D MOCAP) is a valid method to quantify human motion. 3-D MOCAP incorporates both infrared cameras to track the trajectories of retro-reflective markers placed at anatomic and tracking landmarks on the body and floor embedded force plates to record ground reaction forces throughout each collection. From these data, inverse dynamics is employed to calculate segmental kinetics and kinematics to study human movement strategies. One application of 3-D MOCAP is to study and measure risk of anterior cruciate ligament (ACL) injury.6, 11 ACL tears account for significant time lost from athletic participation, and over 30\% of athletes never return to active participation in their sport.1, 26 In order to return to sport following ACL reconstruction, athletes must complete rigorous post-surgery physical therapy. However, functional and strength impairments can persist after treatment, which can increase the risk of a secondary injury.23 Therefore, it is critical to identify risk factors in order to prevent the long-term, deleterious consequences of repeated ACL injury.

While 3-D MOCAP effectively identifies those at elevated risk for non-contact ACL injury, these techniques require expensive equipment, a specialized laboratory, and regular maintenance that are not available in a clinical setting. Alternative portable methods are desired to quantify similar human motion in a clinical or athletics environment for personnel that cannot afford or employ 3-D MOCAP techniques. Tri-axial accelerometers pose a portable, low-cost solution to analyze human motion; thus, these devices have been targeted as an effective method to study biomechanics in a
clinical setting. Previous research indicates that accelerometers can predict peak vGRF during low-impact tasks, such as gait and running, but the use of these units to model ground reaction forces in more dynamic tasks is largely unvalidated.

The objective of this study was to develop a multivariate model that utilized anthropometric measures and peak accelerations to estimate peak vGRF during dynamic jumping tasks. We hypothesized that a model created with significant anthropometric and peak acceleration predictors from a multivariate linear regression would significantly correlate to peak vGRF collected with 3-D MOCAP techniques.

METHODS

Subjects

Ten athletic subjects (males = 6, females = 4; age: 21.1 ± 1.1 years; height: 1.72 ± 0.10 m; mass: 68.83 ± 14.09 kg; BMI: 23.09 ± 3.27 kg/m²) were recruited for this study. All subjects perform greater than 50 hours of athletic activity a year. All subjects provided informed consent approved by The Ohio State University Institutional Review Board before participating in the study.

Procedures

Each subject was instrumented with 55 retro-reflective markers. Activity monitors developed at Mayo Clinic (Rochester, MN) were secured bilaterally to the foot, medial tibial surface (shank), lateral femoral epicondyle (thigh), and midpoint between the right and left anterior superior iliac spine (waist) (Figure 1). Accelerometer position
was randomly matched with an accelerometer before each subject trial. Each monitor incorporated a tri-axial MEMS accelerometer (±16g, 100Hz, Analog Devices).

Subjects performed 10 drop vertical jump (DVJ) tasks and 10 bilateral single leg drop (SLD) tasks off a 31cm tall box onto two floor embedded force plates that recorded ground reaction forces at 1200Hz. Subjects performed two practice trials before each task. To perform a successful DVJ trial, the athlete stood on top to the box, dropped off the box, landed on both feet, and immediately performed a maximum vertical jump (Figure 2). Each DVJ trial utilized an overhead target beyond the reach of the athlete. For the SLD, the athlete stood on one foot on top of the box, hopped forward, landed on the same limb, and regained balance prior to completion of the task. All tasks were performed during continuous collection of 3-D MOCAP data and tri-axial accelerations. 3-D MOCAP consisted of 12 cameras collecting at 240Hz (Raptor cameras, Motion Analysis Corporation, Santa Rosa, CA) connected through an Ethernet hub to a Dell desktop computer (Dell Computers, Los Angeles, CA).

Data Analysis

Peak vGRF from initial contact was normalized to subject body mass and was extracted from motion capture data for each DVJ and SLD trial. Tri-axial acceleration data were extracted from each accelerometer. Acceleration data were filtered through a median filter to smooth data and remove noise as well as a low pass filter to remove the gravitational acceleration component. Extraction and filtering were completed using MATLAB software (MathWorks, Natick, MA). Continuous acceleration magnitude was
calculated from tri-axial acceleration data. The peak acceleration at initial impact was manually extracted for each DVJ and SLD trial from the continuous acceleration magnitude data. Individual trials that did not have continuous vGRF data or acceleration data from all seven activity monitors throughout the task were excluded from the study.

Multivariate linear regression models that incorporated anthropometric data and peak acceleration magnitudes were separately developed to predict peak vGRF for DVJ and SLD trials. R-squared (R²) values were calculated for each model. Both the DVJ and SLD multivariate models only included significant parameters. Statistical analysis was conducted using SPSS™ statistical software (IBM Corporation, Armonk, NY). Statistical significance was set a priori at α = 0.05.

RESULTS

Height, mass, peak waist acceleration, and peak thigh acceleration were significant predictors of vGRF during a DVJ task (Table 1). Peak waist, thigh, and foot accelerations were significant predictors of vGRF during a SLD task (Table 1). The correlations between recorded vGRF and predicted vGRF using multivariate regression predictors for DVJ and SLD trials were significant (DVJ: R² = 0.7451; SLD: R² = 0.7266) (Figures 3-4).

DISCUSSION

A model using height, mass, peak waist acceleration, and peak thigh acceleration from a multivariate regression analysis can predict peak vGRF with an excellent R² value during DVJ trials. A model using peak waist acceleration, peak thigh acceleration, and
peak foot acceleration can predict peak vGRF with an excellent R^2 value during SLD trials.

Models that utilize anthropometric and acceleration data to accurately predict vGRF provide a cost-effective method to collect human motion data. Currently, researchers must utilize 3-D MOCAP in a laboratory setting to accurately study human kinetics and kinematics. 3-D MOCAP data collections are not only expensive, but are often difficult to schedule due to the demanding schedules of elite athletes. However, a portable method to study human biomechanics would allow researchers to measure kinetics and kinematics of athletes on the field. This would eliminate the necessity to study athletes in the lab and decrease scheduling conflicts. Furthermore, research laboratories that cannot afford or do not have access to 3-D MOCAP equipment can also begin to analyze potential risk factors in local athletic populations.

Although 3-D MOCAP accurately measures human kinetics and kinematics, the laboratory setting does not allow athletes to perform natural cutting and jumping tasks that occur during competition. In football, intensity varies between activity levels, exemplified by an injury rate over nine times greater during games than during in-season practices.\(^4\) Because noncontact injuries occur rapidly during athletic competition, researchers have created dynamic tasks to mimic such events in a laboratory.\(^{13,22}\) The DVJ task is widely used to imitate the motion a basketball athlete undergoes while exploding vertically to rebound a basketball.\(^{7,11,20}\) The SLD task is also used to imitate single leg planting during athletic activities.\(^{19}\) However, these tasks only mimic the
actual dynamic movements athletes undergo during injury. Portable activity monitors that can predict vGRF with acceleration data are the first step to quantifying human motion during the actual sport-specific tasks athletes perform prior to injury.

Clinicians can incorporate testing with activity monitors into current screening strategies conducted both in and out of athletic seasons. Researchers are currently expanding the array of portable tests clinicians can use to judge individual athletic performances as well as the effect of training interventions on those performances. Newer tests include timed hop tests, hop tests for distance, and tests that assess functional movement. However, no tests are currently used to test the forces in the lower extremities of athletes during dynamic tasks. The ability to quickly and accurately measure ground reaction forces with activity monitors will provide an additional portable method to assess athletic health.

Future work will incorporate sex and task differences into one model. While the current model predicts vGRF with excellent correlation to vGRF measured with 3-D MOCAP, the current statistics do not incorporate DVJ and SLD into one model. As future goals of the study include using activity monitors to measure forces during a variety of dynamic athletic tasks, the model used to predict vGRF must be able to incorporate multiple types of movements. Previous work with running and gait trials has utilized repeated measure mixed effects regression statistics. Similar models for high-impact landings must be investigated. Repeated measure mixed effects models take into account the variation between tasks as well as the variation between subjects.
Understanding the variation between tasks will allow for the creation of a model that can be used to measure vGRF in multiple different dynamic tasks. Understanding the variation between subjects will provide insight about how to calibrate accelerometers and how to use those measures within the model.

Future work will also attempt to validate the portable measurement of moments in the knee joint using 2-D video analysis. Previous research has proposed 2-D video as a valid portable alternative to 3-D MOCAP in measuring frontal plane knee angles.\(^{16-18}\) Knee angles and ground reaction forces are the two variables integral to calculating knee abduction angle, a known risk factor of ACL injury.\(^{11}\) Calculating knee moments, however, might necessitate the use of accelerometers with gyroscopes. Positional information of the local activity monitor axis would allow calculation of triaxial accelerations in respect to the global coordinate system the embedded force plates within the 3-D MOCAP collection are using.

Limitations to this study include individual activity monitor malfunction. Certain activity monitors did not collect any acceleration data or collected saturated acceleration data sets, both of which caused the data to be discarded before the final regression analysis. In addition, the activity monitors did not contain gyroscopes, so it was not possible to relate the local axis of the activity monitors to the global axis of the embedded force plates and compare peak vertical acceleration to peak vGRF. Finally, these models need to be validated with disparate data sets.
CONCLUSION

Multivariate models that utilized anthropometric data and peak accelerations successfully predicted peak vGRF. This study is the first to our knowledge to utilize multiple activity monitors to produce these results during dynamic, high-impact landing tasks. Application of this model provides clinicians and performance specialists with an opportunity to expand the environment in which they can measure the forces created by athletes during dynamic tasks. Use of accelerometers could expand the research opportunities of what types of athletes are screened, when they are screened, and at what levels of performance. The long-term goal of the study is to validate the use of activity monitors to assess injury risk in a non-laboratory athletic environment while subjects perform sport specific tasks.
Figures and Table

Table 1: Multivariate regression results

<table>
<thead>
<tr>
<th></th>
<th>DVJ</th>
<th>SLD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>phon</td>
</tr>
<tr>
<td>Constant</td>
<td>-.619</td>
<td>0.232</td>
</tr>
<tr>
<td>Height</td>
<td>.923</td>
<td>0.012</td>
</tr>
<tr>
<td>Mass</td>
<td>-0.007</td>
<td>0.026</td>
</tr>
<tr>
<td>Peak Waist ACC</td>
<td>.123</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak Thigh ACC</td>
<td>.058</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak Shank ACC</td>
<td>Not Included</td>
<td>Not Included</td>
</tr>
<tr>
<td>Peak Foot ACC</td>
<td>Not Included</td>
<td>Not Included</td>
</tr>
</tbody>
</table>

Figure 1: Drop vertical jump task
Figure 2: Activity monitor placement on subjects
Figure 3: Fit vGRF vs measured vGRF using multivariate linear regression parameters – DVJ

\[y = 0.7451x + 0.3972 \]
\[R^2 = 0.74512 \]

Figure 4: Fit vGRF vs measured vGRF using multivariate linear regression parameters – SLD

\[y = 0.7266x + 1.0604 \]
\[R^2 = 0.72661 \]
References

