Adiponectin and Tibialis Anterior Mass are Improved in Cachectic Tumor – Bearing Mice by Rosiglitazone.

Bethanie A. Combs, Angela A. Wendel, Aparna Purushotham, Li-Fen Liu, Denis C. Guttridge, Martha A. Belury
Dept. Human Nutrition, The Ohio State University, Columbus, OH 43210

Abstract
Cachexia is a disorder characterized by extreme adipose and muscle loss. Insulin resistance is a characteristic of cachexia, which affects nearly eighty percent of all colon cancer patients. The purpose of this pilot study was to determine the extent that rosiglitazone can alter muscle mass in a murine model for colon cancer cachexia. Rosiglitazone sensitizes peripheral tissues to insulin by activating peroxisome proliferator-activated receptor gamma (PPARγ). Treatment with rosiglitazone increases serum adiponectin levels through the activation of PPARγ. Improved insulin sensitivity should increase glucose uptake into muscle, therefore we hypothesized that treatment with rosiglitazone: 1) increases muscle mass when administered to C2F1 mice bearing colon – 26 adenocarcinoma; and 2) increases serum adiponectin levels. Male C2F1 mice were divided into two groups and treated with rosiglitazone (10mg/kg BW) or phosphate buffered saline (PBS) by intraperitoneal injection. After two weeks of treatment mice were inoculated with C26adenocarcinoma. Three days post tumor inoculation, necropsies were performed and liver, gastrocnemius, quadriceps, and tibialis anterior of the right hind limb were snap frozen in liquid nitrogen and later weighed by top loading balance. Mass of the tibialis anterior was significantly enhanced in mice treated with rosiglitazone compared to mice treated with PBS (p<0.05). Serum adiponectin was significantly elevated in rosiglitazone treated mice (p<0.05) as well. These findings suggest that rosiglitazone may elevate muscle mass in a murine cancer cachexia model through increased serum adiponectin. Further work is needed to determine the mechanism of rosiglitazone to sustain muscle, modulate metabolism, and preserve adiponectin levels under the condition of cachexia.

Introduction
Cancer Cachexia
• Energy expenditure disorder consisting of severe weight, adipose, and muscle loss
• Includes insulin resistance, anemia, and anorexia
• Responsible for roughly 1/3 of all cancer deaths

Insulin Sensitivity and TNFα
• TNFα is highly expressed in muscle tissue of those with colon cancer (1)
• Abnormal expression of TNFα is associated with insulin resistance (1)
• TNFα has been shown to stimulate muscle degeneration and suppress muscle regeneration (2)
• TNFα is negatively associated with GLUT4 mRNA (1)
• GLUT4 translocates to the cell surface of the myocyte upon insulin signaling (1) and is needed for the uptake of glucose into the cell

We theorize that muscle of cancer patients with cachexia is insufficient at utilizing glucose as fuel, due to an increase of TNFα and a decrease in insulin sensitivity. Therefore, it is important to determine if an insulin sensitizing drug will indeed increase muscle mass in a murine cancer cachexia model.

Rosiglitazone
• Pharmacological drug used in the treatment of Type 2 diabetes mellitus
• Sensitizes peripheral tissues to insulin in part by activating PPARγ (4)
• PPARγ is an important transcription factor in the regulation of lipid metabolism (5)
• Rosiglitazone activation of PPARγ results in an increase of adiponectin transcription (6)
• Adiponectin is positively correlated with insulin sensitivity (7)
• Rosiglitazone and PPARγ have been shown to inhibit TNFα (8)

Hypotheses
• Rosiglitazone increases muscle mass in mice with cancer cachexia
• Rosiglitazone increases serum adiponectin in mice with cancer cachexia

Materials & Methods
Animals and Treatment
Seven male C2F1 mice were a gift from Dr. Guttridge’s group (The Ohio State University) at 5 weeks of age. Mice (~16g BW) were assigned to 2 groups: Group 1: C26 infected mice with daily IP injections of rosiglitazone. Group 2: control. C26 infected mice with daily IP injections of PBS. The dose of rosiglitazone was 10mg/kg BW daily. Mice were fed a normal chow diet (D12451, 23.6% fat) in pellet form (Research Diets Inc, New Brunswick, NJ). Food intake was measured and 50 grams of foodstarch was supplied every other day. Body weight was measured every other day as well. Mice were housed at The Ohio State University under conventional conditions. A constant temperature/humidity and 12 hour light/dark cycle was maintained. Mice were euthanized at three weeks post cancer injection by carbon-dioxide overdose and cardiac puncture.

Muscle Mass: In order to determine the effect of rosiglitazone on muscle preservation, snap frozen tibialis anterior, gastrocnemius and quadriceps from the hind limbs of each mouse was weighed using a top loading scale. All three of these muscle tissues are a mix of both type I and type II muscle fibers. Muscle mass was recorded from the left hind limb muscle. Muscle weight from each treatment group was compared and statistically evaluated. Muscle mass was normalized to body weight and expressed as muscle/body weight. (Tumor Weight measured at necropsy).

Leptin and Adiponectin
Fasted serum levels of leptin and adiponectin were determined by ELISA (Linco Research Inc., St. Charles, MO) according to manufacturer’s directions.

PPARα and PPARγ
Protein (50 μg) extract from muscle tissue was subjected to SDS-PAGE and transferred to nitrocellulose membranes. The primary antibody used for PPARα protein was PPARα antirat at a concentration of 1:100 (Santa Cruz, Santa Cruz, CA). The secondary antibody is bovine antigen at a concentration of 1:5,000. After overnight incubation with the primary antibody and 1 hour incubation with the secondary antibody the reacted protein bands were visualized using Supersignal Chemiluminescence System (Pierce Biotechnology). PPARγ protein was analyzed following the same procedure. Primary used for PPARα (Cayman Chemical, Ann Arbor, MI) at a concentration of 1:200. The secondary used was anti-rabbit at a concentration of 1:1,000. Densitometry analysis was performed using the Kodak imager system. PPARα and PPARγ expression was normalized to total β-Actin expression (Cell Signaling Tech, Danvers, MA).

Results

Hypothetical
• Rosiglitazone significantly increases muscle mass in mice with cancer cachexia
• Rosiglitazone significantly increases serum adiponectin in mice with cancer cachexia

Figure 1: Food Intake, Body Weight, Tumor Weight
• Food intake between groups was not significantly different.
• Treatment with rosiglitazone did not significantly alter total body weight loss or gain.
• Tumor weight was not significantly different between groups. (CON = 3, ROSI = 4)

Figure 2: Muscle Mass
• Daily treatment with rosiglitazone significantly increased muscle mass of the Tibialis Anterior. (CON n=3, ROSI n=4)

Figure 3: Triglyceride
• Thickness between groups was not significantly different.
• Rosiglitazone did not significantly increase the triglyceride in the quadriceps, the same trend was observed in the gastrocnemius.

Figure 4: Serum Adiponectin & Leptin
• Rosiglitazone significantly increased serum adiponectin levels.
• Adiponectin is important for insulin sensitivity and suppression of TNFα.
• Rosiglitazone did not significantly alter serum leptin levels. (CON n=3, ROSI n=4)

Figure 5: PPARα & PPARγ
• Treatment with rosiglitazone did not significantly increase PPARα protein, but a parallel trend is present.
• Rosiglitazone treatment did not significantly alter PPARα protein. PPARβ is primarily involved in beta – oxidation. (CON n=3, ROSI n=4)

Summary
• Treatment with Rosiglitazone did not significantly alter body weight, food intake, or tumor weight of cachectic mice.
• Rosiglitazone significantly increased tibialis anterior muscle mass.
• Rosiglitazone did not significantly alter the mass of the quadriceps or gastrocnemius muscles.
• Rosiglitazone significantly increased the triglyceride in the quadriceps, the same trend was observed in the gastrocnemius. This observed increase in muscle TG may indicate an improvement in glucose uptake.
• Serum adiponectin was significantly increased in rosiglitazone treated mice, serum leptin was not significantly altered.
• PPARα and PPARγ protein was not significantly altered by rosiglitazone treatment.

References

Adipocytokines

Muscle Mass

Adiponectin

Triglyceride

PPARα & PPARγ

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Adiponectin

Tumor Weight

Mouse Data

Figure 7