The Archaeological Society of Ohio

Term Expires A.S.O. OFFICERS
2008 President Rocky Falleti, 5904 South Ave., Youngstown, OH 44512 (330) 788-1598.
2008 Vice President Michael Van Steen, 5303 Wildman Road, South Charleston, OH 45314.
2008 Immediate Past President John Mocic, Box 170 RD #1, Dilles Bottom, OH 45947 (740) 976-1077.
2008 Executive Secretary George Colvin, 220 Darbymoor Drive, Plain City, OH 43064 (614) 879-9825.
2008 Recording Secretary Cindy Wells, 15001 Sycamore Road, Plain City, OH 43064 (614) 873-5159.
2010 Editor Robert N. Converse, 199 Converse Drive, Plain City, OH 43064 (614) 873-5471.

TRUSTEES
2010 Carl Harruff, Box 81, Sparta, OH 43350 (419) 253-4804.
2010 Elaine Hozapfel, 415 Memorial Dr., Greenville, OH 45331 (937) 548-0325.
2008 Randall Hackworth, 1063 Moulton-Fl Amanda Rd., Wapakoneta, OH 45895 (419) 657-8557.
2008 Tony DeRegnaucourt, 106 North Street, Arcanum, OH 45310 (937) 892-8569.

REGIONAL COLLABORATORS
Mike Rusnak, 1642 Friar Road, Stow, OH 44242
Mark W. Long, Box 627, Jackson, OH 45640
Steven Kelley, R.O. Box 1, Seaman, OH 45679
James L. Murphy, University Libraries, 1858 Neil Ave., Columbus, OH 43210
Jeff Carkadden, 8375 Heilman Dr., New Carlisle, OH 45344
Elaine Hozapfel, 415 Memorial Dr., Greenville, OH 45331
Brian DaRe, 58861 Sharon Blvd., Rayland, OH 43943
Dr. Robert Morris, Prof. of Geology, Wittenberg University, Springfield, OH 45501
Gary Fogelman, 245 Fairview Rd., Turritown, PA 17772
ASO Webmaster - Steven Carpenter - www.ohioarch.org

All articles, reviews, and comments regarding the Ohio Archaeologist should be sent to the Editor. Memberships, requests for back issues, changes of address, and other inquiries should be sent to the Business Manager.

PLEASE NOTIFY THE BUSINESS MANAGER OF ADDRESS CHANGES IMMEDIATELY SINCE, BY POSTAL REGULATIONS, SOCIETY MAIL CANNOT BE FORWARDED.

MEMBERSHIP AND DUES
Annual dues to the Archaeological Society of Ohio are payable on the first of January as follows: Regular membership $25.00; Individual Life Membership $40.00. Subscription to the Ohio Archaeologist, published quarterly, is included in the membership dues. The Archaeological Society of Ohio is an incorporated non-profit organization.

PUBLICATIONS
Publications and back issues of the Ohio Archaeologist:
Ohio Flint Types, by Robert N. Converse $40.00 add $4.50 P-H
Ohio Stone Tools, by Robert N. Converse $ 8.00 add $1.50 P-H
Ohio Slate Tools, by Robert N. Converse $15.00 add $1.50 P-H

NEW BUSINESS MANAGER
Peggy Potter, 6478 Winchester Blvd., Suite 120, Canal Winchester, OH 43110
Business Phone 1-800-736-7815
ASO WEBSITE - www.ohioarch.org
President’s Page

During this holiday season I want to wish everyone a safe and blessed Merry Christmas and Happy New Year.

With the end of the year comes the need for renewal of your membership - please renew in a timely manner. It saves mailing reminders and is a lot less work for our Business Manager. We need to keep our membership on an increase to maintain the premier place our Society holds as the largest and most active state society in the United States.

We can look forward to new and exciting things for the coming year. We will have a membership drive – we plan for more displays at our meetings and more exciting programs and speakers. We also plan to recognize more contributors to our meetings – displays – field found contest – recognition of younger members. We hope to improve the Ohio Archaeologist – more color – more interesting stories and more site reports. So, sign up a new member – or an old one who has dropped out. It’s your Society – let’s make 2007 the best year yet.

Negotiations with the Ohio Historical Society to allow access to their collections for research and publication by our members continue. We will meet with them again in February and hope for more progress. The problems don’t appear to be insurmountable. Access and publication of their collections will not only help archaeology, it will boost attendance at their museum and provide a boost to a science which has been in the doldrums.

Rocky Falletti

President
The Archaeological Society of Ohio
AN UNRECORDED PETROGLYPH SITE IN BELMONT COUNTY, OHIO

Abstract
Continued rapprochement on the part of author DaRe and local avocational archaeologists in eastern Ohio has resulted in the documentation of a remarkable group of prehistoric rock carvings near Barton, Richland Township, Belmont Co., Ohio. Located on a large block of sandstone in Wheeling Creek, ca. 8 km from the confluence of Wheeling Creek with the Ohio River, the Barton Rock petroglyphs are unusual in their location and other respects, not readily fitting into either of the categories defined by Weeks (2002). While some of the two dozen designs can be readily interpreted as turtle, snake, and "thunderbird," others remain more problematic and ambiguous, as do any interpretations regarding their origin and function.

Introduction
Through the efforts of DaRe's Share Program (DaRe 2002), a remarkable, previously unrecorded petroglyph site in Belmont Co., Ohio, is here documented. The senior author was conducted to the site by Keringer and Davenport, who helped in examining and documenting the rock carvings. Keringer has known of the site for many years. Davenport has made numerous trips back to the site to confirm information and record additional data.

Location
The Barton Rock petroglyphs are located on a large sandstone boulder in the middle of Wheeling Creek, in the downstream portion of a narrow stream meander, approximately 0.7 mile downstream from the town of Barton, in north-central Section 23, Richland Township, Belmont Co., Ohio (Figs. 1, 2). The southern and eastern bank of Wheeling Creek at this point is a steep hillside rising more than 400 feet to a north-south trending ridgetop separating Wheeling Creek from the waters of a tributary of Flat Run to the east. A low erosional ledge along the southern bank does not appear to provide sufficient protection for prehistoric occupation but has not been archaeologically tested. The bedrock consists of shale and sandstone in the uppermost portion of the Conemaugh Group and is referable to the Connellsville sandstone member (Berryhill 1963: 14).

The northern bank of Wheeling Creek at this point is broad, level alluvial plain covered with Chagrin silt loam and on the higher portions, Chili gravelly loam. It should be noted that formerly the highway ran directly along the northern...
Description
The sandstone boulder on which the Barton petroglyphs are carved measures approximately 8 by 5.3 meters. It can be reached only by wading from the creek bank (or by boat or canoe given sufficient water depth). Barton Rock is evidently a float block of native sandstone derived from the nearby cliffs, but precise provenience cannot be determined, nor can it be certain how long ago it reached its present location. Two smaller fragments clearly have been broken from this rock at some point in the past but do not bear any petroglyphs. It is believed that the petroglyphs were carved at this location in midstream, not on bedrock while it was still in place. Evidence of considerable wear from stream action is found on both the upstream and downstream sides of the rock, though naturally it is much more pronounced on the upstream side, on which only one rock carving has been discovered (Design 29). It is possible that others have been completely obliterated or, more likely, that the prehistoric artisans favored the downstream side because their designs would last longer there.

While we are well aware of arguments against using chalk to enhance rock carvings (e.g., Sanger and Meighan 1990) attempts to photograph the carvings without chalking proved ineffectual. Preservation issues aside, chalk highlighting leads to a certain amount of subjective interpretation in the designs, but such subjectivity in interpretation is inevitable and we have presented the carvings as accurately and objectively as we can.

At least 29 different carvings occur on Barton Rock, all but one of which is believed to be prehistoric, probably Late Prehistoric. A diagram showing the relative locations of the designs has been made by Davenport (Fig. 3). Collectively, the designs displayed at the Barton Rock petroglyph site are notable for the complete absence of human footprints, as well as the absence of cuspidiform bird tracks or arrows. Two human hand prints occur. Elements indicating sex or gender are lacking throughout. Drawings of animals include turtles, snakes, and various birds but no fish and do not incorporate human elements, perhaps suggesting a lack of shamanism in their function or intent. Several appear to be classic “x-ray” drawings. Two, possibly three, small human stick figures occur and these, by analogy, may contain shamanistic elements. No significant orientation or relationship between designs is discernible, although a possible exception to this lack of relationship between elements is the contiguity of turtle and thunderbird in two instances.

Individual Designs
Designs 1 and 22-26 are located along the northwest edge of the rock and may represent a deliberate grouping on the sloping rock panel. They are shown in Figures 4 and 5, which also illustrate some differences in interpretation. Figure 5 being considered the more accurate. Three crude thunderbirds are represented, two of which are clearly associated with turtle carvings. A human left hand design also occurs, and on a somewhat lower flat surface, another turtle. Design 1 represents two thunderbirds both with wingspan of ca. 10.5 inches. Immediately below one of these is a crude but distinct turtle ca. 5 inches in diameter (Design 24). Design 23 is a third thunderbird, perhaps the most distinctive due to the presence of a fanshaped tail, with a wingspan of ca. 6-7 inches. Immediately below it is a turtle effigy, ca. 6 inches in greatest diameter. The co-occurrence of thunderbird and turtle is especially interesting because this association has been noted elsewhere, perhaps most dramatically at the Gottschall Rockshelter in Wisconsin (Salzer and Rajnovich 2001). The two design types occur at other Ohio Valley rock art sites, notably Babb’s Island, Smith’s Ferry, Saxon, and possibly Brown’s Island (Swauger 1974, 1984). Unfortunately, the relative placement of the designs at any of these sites has not been recorded, so it is not known whether they occurred in close proximity to one another. Design 25 is a human hand, presumably a left hand, just under 5 inches wide (Fig. 4, 5). A third, isolated turtle (Design 26) ca. 7 inches in diameter lies somewhat lower on a flat, exposed bedding plane (Figs. 5, 6).

Designs 2-20 extend across a sloping to nearly vertical parietal panel but do not necessarily represent a single grouping. Designs 2-6 are shown in Figure 7. Design 2 can described as a dumbbell-shaped, ca. 8 inches long. Design 3 is a spiral interpreted as representing a coiled snake, slightly over 8 inches in diameter. Design 4 is somewhat humanoid and stylistically related to Design 8, 11-13, and 19 and 20 to the far south edge of the rock. Of particular interest is the tripartite head, which resembles some Peterborough pointed head “shaman figures.” If not Vastokas and Vastokas’ (1973: 67, fig. 11) figures “with conical headdress.” Also of potential significance are the three to six “dots” associated with the design; although their significance remains uncertain, similar cupules are sometimes interpreted as representing “medicine” or “power.” Note that the bottom two cupules may be connected to form a dumbbell-shaped element similar to Design 2.

Design 6 is the most elaborate of the thunderbird designs, with distinctive horizontal lines emphasizing or decorating the triangular tail. It may represent an x-ray motif, although comparison of Figures 8 and 9, which illustrate subjective differences in interpretation, suggests that the small pendant circle may be due to spalling of the sandstone. Some rock art experts of course might theorize that the design was deliberately carved at this spot in order to incorporate the circular spalling. This thunderbird has a wing span of nearly 24 inches. Design 5, an unusual form to the upper left of this thunderbird is reminiscent of a spider but appears to have only four legs (Fig. 7, 8, 9). It could also be interpreted as a partial human figure oriented in the opposite direction, with horizontal lines filling the head.

Designs 7 and 9 may represent snakes, while Design 8 could be described as humanoid, although it is very abstract (Fig. 8). It bears some resemblance to Design 4, particularly if inverted, but is even closer to Design 1, which has been interpreted as a somewhat abstract “thunderbird.” Design 8 is also one of the more obscure of the designs present, so our interpretation should be accepted with due caution. Design 10 is clearly an x-ray drawing of a quadruped, but identification cannot be more precise (Figure 10). The spiral line emanating from its back very likely is a “spirit line.” Above this figure is a congeries of incised lines that defy interpretation or even simple description. Some petroglyph scholars would undoubtedly make much out of the fact that this creature appears to rise out of a small, ephemeral puddle of water, but we think this is fortuitous, as is the similar case of a turtle (Design 26) being adjacent to several small water-filled depressions (Figure 6).

Designs 11 - 13 form a somewhat isolated group on a small panel and include a human stick figure with outstretched hands, an abstract design, and an animal, possibly a dog or even a horse (Fig. 11). Stylistically simple and of a perceived base these three are also related spatially and could conceivably represent sympathetic hunting magic, although the central design is too stylized for interpretation. The human figure with one hand outstretched and the other turned down is reminiscent of “shaman figures with pointed heads” illustrated from Peterborough (Vastokas and Vastokas 1973: fig. 12a, b). Rajnovich (1994: 75-81) gives some consideration to possible interpretations of the upturned/downturned arm, but the Barton Rock carving remains ambiguous. Using Keyser and Whitney’s (2006) criteria distinguishing sympathetic hunting magic, it seems more likely that this Barton panel is the result of a vision quest to obtain hunting power in general rather than an example of an attempt to affect the outcome of a specific hunt.

Designs 14-18 form a complicated grouping that clearly includes two bird figures, a human stick figure, and a prob-
able turtle (Design 17), although it was originally interpreted as a paw print. Design 15 appears to be an x-ray drawing. Other elements in this group are too abstract or incomplete to permit interpretation (Figure 12).

Designs 19 and 20 (Figure 13) are isolated and stylistically similar but so amorphous as to defy interpretation. The larger is about 8.5 inches high. They do resemble designs recorded by Vastokas and Vastokas (1973: fig. 14a, b) as “shaman figures with elongated abdomen.” The authors suggest three tentative interpretations: pregnant woman, hunter with full stomach (i.e., a successful hunt), and a Jessakids shaman (ibid.: 69). Without committing ourselves to any of these interpretations, it is worth noting, as Vastokas and Vastokas observe, the Algokian Jessakids were under the protection of the Turtle and Thunderbird manitous (ibid.: 52); at Barton Rock, two of these unusual stick figures (Designs 4 and 8) do occur adjacent to a thunderbird carving.

Design 21 is an isolated bird design located at the very edge of the Barton Rock, on the downstream side (Fig. 14). It is ca. 12 inches high. The head and tail are demarcated from the body by diagonal lines, and the body includes a circular “x-ray” drawing. This is the largest and one of the more realistic bird carvings, but whether turkey, crow/raven, vulture, or hawk is impossible to infer. The diagonal lines are interpreted as spirit bands. This carving is of interest in that it clearly must have been carved while the artist was either in the water or, more unlikely, in a canoe.

All of the above designs are carved on the downstream side of the Barton Rock. On the relatively narrow apex of the rock there is only one clear carving, Design 27, a spiral believed to represent a coiled snake, about 6.5 inches in diameter and quite similar to Design 3 (Fig. 15).

On a flat area along the top of the rock at the northeastern corner is a Historic carving of a “fort” complete with flag and cannon. Rather sharply incised rather than pecked, this is probably Euro-American (Fig. 16). One cannot help but call attention, however, to the similarity between it and a carving on the Leech Lake Mide medicine stick illustrated by Hoffman (1891: Pl. XXI). His drawings are reproduced here as Figure 17. Hoffman uses this artifact as an example of a Midewiwin medicine stick incorporating designs of European origin, specifically the diamond, heart, club and spade motifs. (By some lights it would be quite logical to interpret the Leech Lake medicine stick as the record of a shamanistic foretelling of the rise of casino gambling among the Ojibwa.) Noting that the thunderbird, snake, turtle, human hand, bird, and fort or house and flag (though not the playing card) motifs all occur at Barton Rock, one so inclined could argue that the carving was performed by a Mide “priest.” We are more inclined to accept this as a coincidental indication of the ubiquity of simple designs and agree with Hoffman’s conclusion that while “The pictographic delineation of ideas is found to exist chiefly among the shamans, hunters, and travelers of the Ojibwa... there does not appear to be a recognized system by which the work of any one person is fully intelligible to another” (Hoffman 1891: 287).

Whether carved by Historic Indian, Euro-American frontiersman, or local farmboy, it is doubtful that this petroglyph (Fig. 28) represents a specific fort. The nearest substantial fort that would have had cannon was at Wheeling, but it did not have cannon on wheeled carriages, merely a swivel cannon. It is interesting to note the tradition that Indians attacking Fort Henry at Wheeling tried making a log cannon, which exploded when they tried to fire it (Newton 1873: 128). A weak argument against Design 28 being Euro-American is the absence of any carved names or dates associated with it or, for that matter, any place on Barton Rock. The same negative argument would apply to its being carved by local children, although pretender children might assay carving a fort and cannon and it should be noted that a farmhouse once stood only a short distance downstream, on the right bank of Wheeling Creek. Also, the highway once followed the inside curve of the Wheeling Creek meander, thus passing right by Barton Rock. The same argument would apply to the cannon, rather than following the highway’s present course across the meander. Clearly, the rather remote location of the Barton Rock today was not always the case in Historic times. Were it not for the cannon, one might readily compare the design to the Wisconsin Indian house markers to be seen).

Weeks, placing great emphasis upon the physical visibility of individual petroglyphs, concludes that these rock carvings were not boundary markers (contra George) but “teaching rocks” characterized by deliberately low contextual and physical visibility which made the sites difficult to find (whereas boundary markers would entail high visibility because the makers would want the markers to be seen).

Despite his overt emphasis upon scientific measurement, Weeks’ arguments are highly subjective, very selective, and based upon a number of dubious assumptions, including the assumption that the rock-carvings must have been either boundary markers or teaching rocks. Alternate interpretations, such as individual carvings representing signatures — totemic, tribal, or otherwise — or being the result of individual vision quests by shamans or non-shamans, are not explored. Because of its location Barton Rock would serve admirably as a place for an individual’s vision quest; while not inconspicuous in the landscape, it is sufficiently remote and isolated by the creek waters to provide privacy. Logistically, it is much easier to imagine an individual engaging in a vision quest at this site than it is to picture an “Elder” inducting a group of Indians into the Midewiwin mysteries with the group either perched precariously on Barton Rock or surrounding it in knee deep water.

To support the false dichotomy between boundary markers and “teaching rocks,” Weeks also constructs two arbitrary classes of rock carvings, with either low or high physical and “contextual” visibility, the few “anomalies”
being explained away by various other assumptions, such as the belief that carvings subsequently obscured by high water or vegetation must necessarily have been deliberately located with this end in mind, thus ignoring the possibility that the petroglyph makers might have been totally unconcerned with the future of their carvings, that the importance may have simply been the act of creating the carving. There is a too facile assumption that every petroglyph was designed as a monument or shrine for posterity, whereas their purpose may have been much more immediate, individual, and ephemeral, despite what seems a labored process of creation to the modern viewer. Weeks also tacitly assumes that all carvings on a particular panel are contemporaneous, carved by the same person or persons at the same time, with the same purpose in mind. Stylistic attributes — most notably line width — are assumed to entail a specific function and intent (greater visibility) when they may not.

Significantly, Weeks modifies Swauger's conclusion to fit his own preconception. It is an exaggeration to write of Swauger's conclusion that the sites "likely pertained to the religious activities of an ancient Algonkian-speaking people" or his "theory of Monongahela rock-art being used to record and teach religious concepts" (Weeks 2002: 49, 57, 58), for this is not precisely what Swauger has written. While Swauger noted the similarity of some Ohio Valley petroglyph designs to those found on Ojibwa Midewiwin bark scrolls, he definitely did not conclude that petroglyph sites were used as "teaching rocks" or even offer such a hypothesis. In fact, he specifically notes that the Mide cult is probably of no great antiquity and has simply adopted earlier mnemonic symbols of wide-spread Algonkian usage. This occurred at a time when there was actually little contact between Algonkian speakers of the western Great Lakes area and the proto-Shawnee to whom Swauger attributes the Upper Ohio Valley petroglyphs (Swauger 1974: 111, 1978: 272).

While Swauger recognized that "so many of the designs, particularly large and complexly designed depictions of human and animal figures known from birch-bark scrolls to be mystical personages that it is likely many of the carvers were shamans," he nowhere hypothesizes that these carvings were used specifically for instructional purposes (Swauger 1974: 112). Nor does he precisely define the term "shaman," writing only of the Midewiwin. It is true that in the 1972 Valcamonica symposium on prehistoric religion, Swauger does refer to an undetermined number of Upper Ohio Valley petroglyphs as "religious figures" and even states that "many of our petroglyph designs are ceremonial religious figures," but it is believed that this rare use of the term was designed to help his paper fit into the theme of the symposium rather than to explicate his thoughts on the original use of such petroglyphs (Swauger 1975: 484, 485). For whatever reason, Swauger has (almost religiously) avoided the term "religious," usually preferring such phrases as "mystic concepts," and we would suggest that it was just this implication of formal, religious training associated with the Midewiwin beliefs and ritual that he wished to avoid. Furthermore, Weeks (2002: 56) egregiously misquotes Swauger as perceiving an "early suite of religious concepts," a phrase nowhere found in Swauger's extensive writings. Week's citations of Swauger (1974: 111; 1976:466) refer instead only to "a set of mystic concepts," "an older set of spiritual concepts," and "ancient symbolism," which "did not develop [into] the Midewiwin ritual" in Monongahela (Swauger 1976: 467). Nor should it be overlooked that by subtly revising Swauger's interpretation of the Ohio rock art designs into this "early suite of religious concepts" common to the ancestors over a broad area of Algonkian-speaking groups and then casually noting that "contemporary Ojibway extend the term 'Anishinaabe to ancestral as well as modern-day peoples," Weeks (2002: 57) not only initiates an argument that might allow modern-day Anishinaabe to claim Ohio Valley petroglyphs as religious artifacts. We suggest that, subconsciously or otherwise, this may be a strong motivation in Weeks' effort to explain Upper Ohio Valley rock carvings as "teaching rocks.

In recent years, in part as a reaction to New Age attempts to appropriate their beliefs, Native Americans have often been given to producing interpretations of their rock art, based largely upon their extensive familiarity with Algonkian and Western North American sites as well as contact with modern "shamans." Rather than "teaching rocks," Conway would call North American rock art "dream rocks," the rich complexity of which he regards as "trivial voices that provide living links to the past." Allowing that North American rock art varies from region to region, he recognizes an underlying current that connects "not only all North American tribes but all indigenous nations across the globe," a "universal language and imagery of shamanism and personal spirituality." Turning his attention inward, he discovers "an archetypal common ground. The soul speaks in the language of images and symbols" (ibid: 18).

We view Conway's work as a highly romanticized, New Age (pictographs are "natural touchstones, like faceted crystals") presentation of the more spectacular pictograph sites and the very antithesis of Kehoe's approach. He does, however, distinguish between the Ojibwa Midewiwin—"traditional shamanism verging on a more organized priesthood-the Muskik-Ininni, or herbal healers; the often malevolent Wabeno; and the Djiski-Ininni (Jessakkids), characterized by the production of x-ray rock drawings. Conway also notes that at different times, various types of shamans might visit the same rock art site, producing a confusing palimpsest for the archaeologist (ibid: 60). He concludes that the majority of Algonkian rock art sites served as vision quest locations (ibid: 106).

In his introduction, Conway speaks of his boyhood wandering "through the deep river valleys and hemlock-darkened hollows of western Pennsylvania," terrain not completely unfamiliar to us. There he felt "the lingering presence of long-vanished tribes... present in the carvings that covered the walls of abandoned rockshelters" and also tangible along "the banks of the Clarion and Allegheny rivers, where seasonally flooded rock slabs glistened with the power of carved panthers and other ancient dreams" (Conway 1993: 13). Reduced to "the dry words of science," as
Conway puts it, we point out that Carnegie Museum’s extensive inventory of western Pennsylvania rock art sites has produced only one panther along the banks of the Clarion and Allegheny rivers (Pawnee’s Landing) and only on rocks after containing a total of ten petroglyph designs (Rainbow Rocks). This romantic exaggeration, we feel, is emblematic of Conway’s entire opus. Conway, incidentally, attributes this western Pennsylvania rock art to “a Pennsylvania area tribe we now call the Monanganahela [sic] people, probably cousins to the Shawnee [italics added].”

In contrast to Weeks, Vastokas and Vastokas (1973) in their thorough and careful study of the Peterborough, Ontario, petroglyphs and the relationship between these rock carvings and the Midewiwin bark scroll ideographs have, following Schoolcraft, clearly delineated three distinct metaphysical approaches or attitudes among the Algonkian peoples. Following Levi-Strauss, Vastokas, and Vastokas take care to distinguish between totemism, a system of names having a collective, primarily social value, and an individual’s personal relationship with a guardian spirit, though both may be represented by real or imagined animals. Totem is an Ojibwa term and refers to a system of names and emblems which serve to provide members of a family or clan with a readily identifiable, symbolic bond (ibid.: 34). The guardian spirit concept, on the other hand, is directly connected with Manitou or spirit and signifies an individual’s quest for making contact with and gaining access to the spiritual power and latent energy of the world, often resulting in a conscious, time-consuming quest by the individual, in isolation from others, for a psychic experience, intense religious experience, or vision. Among the Algonkians, such individual vision quests were sometimes provided with an artistic outlet, and the guardian spirits as well as the inherited, totemic symbols, might be known pictorial form (ibid.: 35). In addition, some individuals acquired extraordinary ecstatic powers and exceptional spiritual helpers, and were often believed to have become Manitou-like if not in fact an actual Manitou, absorbing the qualities of the spirit aides. Among these “spiritual specialists” were the Jessakkids, who could see into the future, usually for a fee; they formed no group among themselves, practiced alone, and were directly assisted by the Turtle and Thunderbird Manitous (ibid.: 36). The Wabenos also practiced alone and specialized in the use of medicinal herbs and potions in hunting and love magic. According to Schoolcraft, they were often feared as sorcerers and could inflict harm. Finally, there were the Mides, a high structured organization known as the Midewiwin, a group that specialized in curing the sick and also served as a culturally recognized institution for the preservation of traditional Ojibwa lore and beliefs. Given these distinctive names, we see little reason to refer to these individuals, other than generically, as “shamans.” As an organized hierarchy of priests, the Midewiwin was functionally transitional between the indigenous “spiritual specialists” of most hunting bands and the organized, community-oriented and publicly recognized priesthood of agricultural communities (ibid.: 37). The few ethnographic accounts available for the Ohio Valley region do not indicate the presence of such a “publicly recognized priesthood.” An additional important point noted by Vastokas and Vastokas is that the Midewiwin appears to be a relatively recent, possibly even post-contact development, not known or practiced among the majority of Canadian Algonkians and first noted in ethnohistoric sources only in 1709-1710 (ibid.: 38). Hickerson goes even further and concludes that the Midewiwin was not even an aboriginal institution but a reaction to contact with Europeans (Hickerson 1970: 54, 57, 63). More recently, Rajnovich suggests that the Midewiwin dates much further back, and claims that most archaeologists agree with this contention. Elsewhere (Rajnovich 1994: 18), however, she qualifies this as “aspects of the Midewiwin” and she also carefully distinguishes between the Jessakkids, Wabenos, and Mides. Although familiar with the work of Schoolcraft, Hoffmann, and Vastokas and Vastokas, Weeks chooses to consider only the Midewiwin as responsible for rock art, very possibly because only the Midewiwin took upon themselves the formal function of teaching. (He also ignores Rajnovich’s (1994:19) observation that children are generally trained by a parent on how to discover a personal Manitou and proceed on the vision quest, which would hardly qualify as shamanism though it would be teaching, albeit without any resultant rock carving being a “teaching rock.”) Alleged teaching rocks, in other words, need not presuppose a formal Midewiwin teacher, and the rock carvings or pictographs were more likely a part of the individual ritual, not a blackboard illustration used in a Midewiwin lecture (cf. Arsenault 2004: 301).

Vastokas and Vastokas make the reasonable suggestion that some identical pictographs may have had either a strictly secular significance — clan totems rendered by hunters to mark game trails and water routes — or sacred spirit-images used to record shamanistic visions. Some of the latter may very likely have been derived from a generally known pictographic system later adapted to a hieratic organization with esoteric lore acquired only after initiation (Vastokas and Vastokas 1973: 45). Such an evolutionary hypothesis is in accord with the evidence that the Midewiwin Society as we know it is a relatively recent development, so that while present-day Indians may think they can interpret ancient pictographs according to their own lights, there is no guarantee that they are doing so in accord with the original intent of the pictographs’ makers. Rajnovich (1994: 11:11) mentions an incident preserved in the Jesuit Relations: when a group of Nipissing Ojibwas first saw a picture of the Holy Spirit represented as a dove in a church at Quebec City, they immediately misidentified the dove as a thunderbird. This should serve as an object lesson to all modern interpreters of pictographs, including Native Americans.

Signatures and Boundary Markers

George (1994) proposed that some petroglyph sites, notably Indian God Rock, Venango, Co., Pennsylvania, may have served as a boundary marker between Algonkian and Iroquoian territory. That historic Indians did embellish boundary marks with engraved symbols is evident from work by Edward J. Lenik, who describes several Historic Indian survey markers in New York (Lenik 2002: 168-171), but these are Historic markers, after the Indians had adopted or accepted European concepts of land ownership. While George interpreted two apparent representations of the bow and arrow on Indian God Rock as “symbols of war” (it would seem just as likely that such symbols might represent the act of hunting), this symbol was used as a signature or totem by several Historic Indians, notably Ansantawae, Mon-towese, and Caunannicus, all Algonkian leaders of Connecticut and Rhode Island (De Forest 1851: 494). Furthermore, numerous examples of Indian signatures consisting of the representation of turtles, birds and other animals are recorded, including several “x-ray” drawings. The use of such signs as signatures for Indian leaders or for the people they represent does nothing to mitigate George’s argument, which is further buttressed, as Weeks admits, by the physical prominence of Indian God Rock as well as the fact that early explorers and Jesuit missionaries, such as Bienville chose this locale as one in which to deposit one of his lead plates in 1749, thus attesting to its suitability for placing a boundary marker. But the concept of land ownership in prehistoric times is a complicated one, the most basic question being whether Indians actually recognized and marked land boundaries in the EuroAmerican fashion, whether they indicated ownership by markings constructed within the territory, or whether they bothered doing either.

The salient point is that there are multiple plausible explanations for the existence of a particular rock carving or even group of carvings, including that they are simply signatures or totem-like symbols not necessarily containing or conveying any spiritual or religious meaning and not intended to be Midewi-like “teaching rocks.” As true of Peterborough, Ohio
Valley petroglyphs "cannot be read like Mide bark records," for the glyphs are not mnemonic devices for narration of Midewiwin songs or myths and do not "tell a story" (Vastokas and Vastokas 1973: 46). Rajovich (1994) would disagree, making a concerted argument that the Midewiwin song scrolls are not a Contact phenomenon but date far back into prehistory, but even she allows for multiple usages and interpretations of these Algonkian symbols (1994:112). She does not restrict their usage to the Midewiwin and even allows for secular uses, although she views the sacred picture writing as more prevalent and interprets it as the result of vision quests to obtain medicine.

Closer to home than the Canadian Shield, there are numerous early records of Indian designs incised or painted on trees, the purpose of which was quite clear and was neither shamanistic nor pedagogical (Coy 2004). Explorer Christopher Gist, for example, mentions a large warriors' camp in what is now Wise County, Virginia, "their Captain's Name or Title was the Crane, as I knew by his Picture painted on a Tree" (Darlington 1893: 61). Darlington explains, "A common practice among the Indian tribes, with war parties at a distance from home, was to paint on trees or a rock figures of warriors, prisoners, animals, etc., as intelligible to other Indians as a printed handbill among whites" (Ibid.: 134).

The direct relationship of petroglyph sites to prehistoric trails and landmarks has long been documented. While the precise location of any trails in the immediate vicinity of the Barton petroglyph site remains unknown, the likelihood that Barton Rock did serve as a landmark is certainly enhanced by its location in the middle of a canoeable stream. Although by no means conspicuous in the landscape, Barton Rock is distinctive, unique, and recognizable, by no means obscure or hidden. Both George and Weeks ignore the possibility that petroglyphs may have been used to enhance natural landmarks as signposts or elements in cognitive maps. Rather than boundary markers, they might have demarcated paths, stream crossings, distances, resting spots, or hunting areas, among other possibilities.

Comments on Weeks' "Contextually and Physically Visible" Rock Art Attributes

Following the lead of his thesis advisor (Carr 1995), Weeks interprets various, somewhat self-evident, stylistic parameters as indicative of the degree to which the petroglyph creators wanted to enhance or decrease the visibility of their work. Distinguishing between "contextually visible" and "physically visible" attributes, Weeks maintains, for example, that a flat (horizontal) panel has less contextual visibility than a parietal (vertical) surface and that a panel covered by sediment, water, or organic material has less visibility than one that is uncovered. But while such conclusions are intuitively obvious, Weeks then makes the further assumption that flat surfaces were deliberately selected to decrease the visibility of the rock carvings and that for the same reason the carvings were deliberately covered or placed in a location where they were naturally covered and thus hidden from all but the cognoscenti. We see no particular justification for directly relating such conditions to such a motive and feel that it might be said Weeks' theory of "contextual visibility" capsizes on Barton Rock. Similarly, Weeks postulates that open-air panel locations have more contextual visibility than that of a panel in a "small rockshelter," increasing the likelihood that the former (unless artificially or naturally covered) would be more susceptible to discovery. Yet this ignores the fact that even small rockshelters are in themselves more visible than open-air panels and might serve as the location for rock-carvings because such shelters are more conspicuous and relatively easy to find; "context," in other words, cannot be restricted to whether a petroglyph site is parietal or flat. And, in fact, on the Barton petroglyph, both types of surface are utilized for rock carvings.

As for Weeks' physically visible attributes, the size and number of designs on a given panel may well depend upon the amount of space available, so that visibility may have less to do with the final result than with the number of designs the prehistoric artist wishes to create or record. The amount of time and effort required to carve a particular petroglyph may be another factor that impacts design size as well as the number of designs, assuming that all or most were carved by the same person or persons at approximately the same time, an assumption that Weeks' argument does not undermine when faced with a relatively large number of rock carvings at a single locality.

Finally, Weeks' argument that groove width is a direct reflection of the artist's desire to increase visibility of the design seems dubious. At the very least, the depth of the grooves would seem just as important or more important in terms of physical visibility, for it would influence the strength of the shadows formed by the incised lines more than would line width. It is believed that in this particular argument, if not elsewhere, Weeks conflates style with function in order to support his case. Certainly he uses counting and measuring to provide a scientific or rational aura to buttress his a priori belief that rock carvings in the Upper Ohio Valley were used as "teaching rocks."

How does the Barton petroglyph site fit into the scheme devised by Weeks? The locale clearly is lowland and open-air but is unique in that it occurs on a large boulder located in a stream as opposed to lying along a stream bank. Ecological arguments about lowland settings affording longer growing seasons, easily cultivated soil for intensive maize agriculture, and numerous aquatic resources, versus the access to nut masts, large mammals, and land for swidden farming upland areas become exceedingly moot. The petroglyph consists of both parietal and flat panels and is covered only by the very highest of Wheeling Creek floodwaters, so that any argument that its location or surface aspect was chosen to limit the visibility of the rock carvings is undercut by the rather conspicuous location of the rock and the utilization of both flat and vertical or slanted surfaces. Not nearly as large as most "standing stones," the Barton rock might still have served as a trail marker [e.g., cross the stream here] or as a signal to canoeists [e.g., leave the stream at this point]. Or it might convey the information that there is a village nearby. (Keringer in fact has found Late Woodland/Late Prehistoric triangular points a short distance downstream from the petroglyphs, at the head of Wetzel's Flat.) These are alternative possibilities that should be considered. Its isolated position in midstream would also render it ideal as a suitable retreat for an individual's vision quest.

Comparison with Other Ohio Valley Petroglyph Sites

The Barton Rock carvings have little in common with those at the nearest major petroglyph site, the Barnesville Track Rocks, an upland site dominated by bird and animal tracks. The dominance of turtle and bird figures at Barton relates it to other riverine sites, particularly those along the Ohio River, such as Babbs Island, Browns Island, and Smiths Ferry (Swauger 1974), and the more elaborate birds and mammals, as well as the turtles, might be lost among the designs at these Upper Ohio Valley sites.

Absent from the Barton Site, however, are any human or animal figures that incorporate any clearly mythical or mystical elements, rendering it more likely that the carvings are simply totemic or individual signatures or the result of one or more individual's vision quests. Several designs include x-ray drawings, spirit bands, or power projections also found on Mide bark scrolls but this is not in itself sufficient evidence that they are religious symbols identical to those found on the Midewiwin scrolls or were produced by the Mide. Nor are there any complex animal/human amalgams suggestive of Manitou or spiritual specialists. Although the frequency of thunderbird and turtle designs suggest that these manitous were important at the site on one or more occasions, they might be the result of individual vision quests or even totemic or personal markers.

The most intriguing evidence that any of the carvings might represent the work of "spirit specialists" is the apparent spa-
tial relationship between two of the thunderbirds with turtle designs. Perhaps these do reflect the *manitous* of an Algonkian Jessakkid, although that fact would by no means render the Barton petroglyph site a “teaching rock.” It is unfortunate that while Swauger and earlier workers were able to preserve the turtle and thunderbird designs found at other Upper Ohio Valley rock art sites, the spatial relationship between the designs appears not to have been recorded.

Conclusions

We believe that Swauger’s assessment is essentially correct, that the Upper Ohio Valley petroglyphs represent Monongahela and/or proto-Shawnee Algonkian (*Anishinabae, if you will*) carvings that may have had different functions, by no means solely or even primarily for traditional religious or moral instruction. They were made by an unknown number of individuals at different intervals over a considerable period of time, but all are believed to be Late Prehistoric in age and not directly related to Midewiwin instruction. Weeks’ argument that the rock carvings were deliberately designed to be inconspicuous or hidden seems to be based on subjective and debatable criteria which certainly do not apply to the place of Barton Rock in the local landscape, and his case is not strengthened by the hermetic (perhaps we should say “hermemic”) pronouncement that he could explain the “meaning of the designs” if he so chose but prefers not to apply to the place of Barton Rock in the local landscape, and his case is not strengthened by the hermetic (perhaps we should say “hermemic”) pronouncement that he could explain the “meaning of the designs” if he so chose but prefers not to out of sensitivity to *Anishinabae* concerns, an argument that rings hollow particularly when contrasted with Conway’s apparent success in obtaining ethnographic information from living Ojibwa “shamans” (Weeks 2002: 87). We are more inclined to accept the conclusion of Vastokas and Vastokas (1973: 4 1) that, “Since most rock art in North America is prehistoric, exact and definite explanations have disappeared with the creators,” a sentiment with which the late James Swauger was certainly in accord. Regardless of the antiquity of the Midewiwin, if living native oral traditionalists have whispered some arcane religious explanation of these carvings to Weeks, he is probably justified in keeping it to himself, such smug silence, however, scarcely contributes to his authority in the matter of their interpretation. Reason and logic suggest that the Barton Rock petroglyphs are the result of individual vision quests, the carving of individual totems or signatures, sympathetic magic related to hunting, or other efforts of the individual imagination rather than the result of Midewiwin didacticism.

References

Arsenault, Daniel

Berryhill, Henry L.

Carr, Christopher

Conway, Thor

Coy, Fred E.

DaRe, Brian

Darlington, William M.
1893 Christopher Gist’s Journals with Historical, Geographical and Ethnological Notes and Biographies of his Contemporaries, J. R. Weldin & Co., Pittsburgh.

De Forest John W.

Dias-Granados, Carol, and James R. Duncan

Greer, Mavis, and John Greer

Hickerson, Harold

Hoffman W. J.

Kehoe, Alice B.

Keyser, James D., and David S. Whitley

Lenik, Edward J.

Newton, J. H., ed.
1879 *History of the Pan-handle: Being Historical Collections of the Counties of Ohio, Brooke, Marshall, and Hancock, West Virginia. J. A. Caldwell, Wheeling.*

Rajovich, Grace

Salzar, Robert J., and Grace Rajovich

Sanger, Kay Kenady and Clement W. Meighan

Schaafsma, Polly

Swauger, James L.

Taçon, P. C. S.

Vastokas, Joan M. and Romas K.

Weeks, W. Rex

Whitley, David S.
Figure 3. (Murphy, DaRe, Davenport & Keringer) Diagram by Gary Davenport showing the relative positions and locations of the Barton Rock carvings.

Figure 4. (Murphy, DaRe, Davenport & Keringer) Designs 1, 22 (not chalked), 23, 24 (partially chalked), 25, and 26 (not chalked).
Figure 5. (Murphy, DaRe, Davenport & Keringer) Designs 1, 22-26. Twelve inch scale.

Figure 6. (Murphy, DaRe, Davenport & Keringer) Isolated turtle carving, Design 26, on flat bedding plane near west edge of Barton Rock. Design 23 in lower left corner of photograph.
Figure 7. (Murphy, DaRe, Davenport & Keringer) Designs 2-6. Design 3 clearly represents a snake and Design 6 is the most elaborate "thunderbird" at the site. Design 4 may represent a shamanistic figure.

Figure 8. (Murphy, DaRe, Davenport & Keringer) Possible x-ray "thunderbird (Design 6) and designs 5, 7-9, and portion of Design 10. Designs 7 and 9 may represent uncoiled snakes but such an identification is tenuous.
Figure 9. (Murphy, DaRe, Davenport & Keringer) "Thunderbird" (Design 6) showing that the apparent circular "x-ray" may be due to rock spalling.

Figure 10. (Murphy, DaRe, Davenport & Keringer) Designs 27 (upper left), 5-7, and 10. Figures 8 and 9 not chalked.

Figure 11. (Murphy, DaRe, Davenport & Keringer) Figures 11 - 13 on a separate vertical panel. Twelve inch scale.
Figure 12. Two bird-like designs (14, 15), a turtle (17) and human stick figure (18). Figure 15 appears to be an x-ray drawing. Rectangular design, cupules and semi-circles are ambiguous.

Figure 13. (Murphy, DeRe, Davenport & Keringer) Two isolated amorphous figures (19, 20), subhuman or superhuman depending upon your interpretation. Twelve inch scale. Design 14 is very similar to figures at the Peterborough, Ontario, petroglyph site.
Figure 14. (Murphy, DaRe, Davenport & Keringer) Bird figure (21) at west edge of Barton Rock. X-ray drawing with spirit bands.

Figure 15. (Murphy, DaRe, Davenport & Keringer) Coiled serpent motif (Design 27) and semi-circle and cupule on apex of Barton Rock.
Figure 16. (Murphy, DaRe, Davenport & Keringer) Historic Representation of Fort and Cannon at South End of Barton Rock.

Figure 17. (Murphy, DaRe, Davenport & Keringer) Leech Lake "Prayer Stick" Incorporating European Elements (Diamond, Heart, Club, and Spade) and House with "Medicine Pole." From Hoffman (1891).

Figure 18. (Murphy, DaRe, Davenport & Keringer)
I am currently conducting a distribution study of the Hafted Shaft Scraper. This very unique tool is only found in Ohio. If you have any of these tools and would like to be included in the study please fill out the form below and mail or e-mail me your contribution. Include the county from where the scraper was found and if it is a “left handed or right handed” type. See drawing below for left or right description.

Thank you for your help and contribution to this project.

COUNTY

LEFT OR RIGHT

Figure 1. (Alt) Display of Hafted Shaft Scrapers at November ASO meeting.
Daniel Shuler (1817-1898), a renowned gunsmith and engraver, carved his name on the poll of this axe. Born in Licking County, Shuler settled in Hardin County in 1856, where he established a gun shop.

Around this time, he found the full-grooved axe at Clay Lick, near Roundhead, Ohio. Subsequently, the axe passed through a number of collections from that of Doctor Shulman in West Milton, Ohio (1957), to Floyd Ritter in Illinois.

The D. Shuler axe is made of dark heavily-patinated igneous rock, measures eight inches long, and weighs six pounds. It is distinguished by a light green streak which extends longitudinally along one face.

Full-grooved axes date from the Archaic period (7000 before present).

Many thanks to Jon Amspaugh of Wapakoneta for providing detailed information about this axe.
DO SOME GLACIAL KAME GORGETS REPRESENT TURTLES?

by
Elaine Holzapfel
415 Memorial
Greenville, OH 45331

The slate gorgets in Figures 1, 2, and 3, which clearly represent turtles, may prove to be “Rosetta stones” in the interpretation of certain other gorgets. The gorget in Figure 1 has been shown to be an anatomically accurate depiction of a map turtle (Holzapfel 2004). The scutes or spines slope backward toward the tail. Viewed from the top, the “head” end is blunt, and the opposite end trails to a point, suggesting a tail.

Figure 2, although broken, seems similar. Note that the artist used the banding in the slate to depict an eye.

The gorget in Figure 3 has only three dorsal scutes. This artifact may illustrate a different species of map turtle, possibly a blotched or false map turtle, or even a juvenile. Like the scutes of the gorget in Figure 1, the scutes slope back from the “head” toward the “tail.” The “head” and “tail” ends are merely suggested in this artifact as the head end is rounded and the tail end is only slightly elongated. As can be seen in Figure 3, the reverse side of the gorget (or plastron of the turtle) is concave. Although the plastrons of some species of male turtles exhibit some concavity, the quality is exaggerated in this example.

Although Glacial Kame gorgets were probably intended as functional objects and not primarily as art, realistic and stylized portrayals are seen. Stylized art depicts the essential nature of an object while eliminating much realistic detail; only simplified qualities of the subject are portrayed. According to Schapiro (1994:58), primitive art belongs to an established world of collective beliefs and symbols, unlike modern art, which is likely to spring from individual expression. The gorgets in Figures 4, 5, and 6 are almost certainly stylized representations of turtles. In all three, the prominent dorsal ridge slopes away from a rounded “head” toward a rounded, but narrower, “tail.”

Figure 7 shows a different species of turtle. This is the Eastern spiny softshell, which has a flat, leathery carapace ranging in color from olive to tan. Instead of prominent dorsal scutes, this turtle has numerous small conical spines.

The gorget in Figure 8 displays a number of similarities to a spiny softshell turtle. The gorget is fairly flat, the dorsal ridge is long and narrow, and one end is blunt and squared-off while the opposite end tapers slightly, suggesting a tail. And, as with the eye of the gorget in Figure 2, the banding in the slate plays a significant part in artistic portrayal; the yellow and gray banded slate approximates the olive color of an actual turtle, and the banding intersects the dorsal spine, suggesting many small spines.

Figure 9 shows a ridged gorget with hash marks along the dorsal ridge. Could this, also, be a turtle? It is possible that spineback gorgets, which have one blunt end, one extended end, and a single dorsal projection are highly stylized turtle representations. As Converse (1978:36) pointed out about spinebacks: "Like other Glacial Kame gorgets they do not have two symmetric halves and seem to have an upper and lower end."

What Does It Mean?

The ranges of both map turtles and spiny softshells are restricted to the Midwest, in roughly the same area inhabited by Glacial Kame people - northwestern Ohio, southern Michigan, and eastern Indiana. The ethology of the two turtles, however, differs. Spiny softshells are fast moving on both land and water and have an aggressive disposition. They like to hide buried in shallow, muddy waters, waiting to attack prey. A bite from a soft-shell can be dangerous. Map turtles are gentler and prefer streams with gravel bottoms and riffles where they can feed from mollusks and insects.

Could variations in turtle behavior observed thousands of years ago be reflected in certain gorget styles? And do these artifacts in turn indicate societal differences or clan memberships? According to Richard Ackley, an Ojibwa, the fish and turtle clans were combined, and each clan had a special function and responsibility (Holzapfel 2004:113).

Does realism evolve into stylization and indicate the passage of time? Not necessarily, as realism and stylization occur simultaneously in most cultures. But what occurred in prehistory? Do artifact differences reflect regional styles? The answers may lie in our midst, buried in the volumes of unpublished archaeological work known as “gray literature” (archaeology which is kept secret), as well as in inaccessible museum collections.

The Glacial Kame people of 5,000 to 2,500 years ago had a complex culture. A comprehensive study of their art and artifacts would certainly open a new window of understanding.

References cited

Converse, Robert N.
1978 Ohio Slate Types, Archaeological Society of Ohio, Columbus.

Holzapfel, Elaine
2004 Archaeology and Artifacts of Darke Co., Archaeological Investigations LLC.

Schapiro, Meyer

Figure 1 (Holzapfel) Banded slate turtle effigy gorget, Palestine, Darke County, Ohio. Turtle faces right. Length 4½ inches.

Greenville, OH 45331
Figure 2 (Holzapfel) Turtle effigy gorget, Marion County, Ohio. Physical feature of the "eye" is depicted by banding in the slate. Length 3½ inches.

Figure 3 (Holzapfel) Banded slate turtle effigy gorget, Hartford City, Indiana, showing concave plastron. Collection of Rick Waibel.

Figure 4 (Holzapfel) Yellow siltstone turtle effigy gorget, Piqua, Miami County, Ohio. Turtle has concave plastron, faces right. Length 3½ inches.
Figure 5 (Holzapfel) Undrilled yellow quartzite gorget, Darke County, Ohio. Meuser 2751/5. Turtle faces right. Length 3½ inches.

Figure 6 (Holzapfel) Undrilled black slate gorget, facing right. Four miles north of Gettysburg, Darke County, Ohio. Meuser 834/5. Turtle faces right. Length 4½ inches.
Figure 7 (Holzapfel) Drawing of Eastern spiny softshell turtle showing numerous conical spines.

Figure 8 (Holzapfel) Highly stylized spiny softshell turtle gorget. As in figure 2, banding in slate suggests physical features. In this example, banding represents numerous spines and olive color. Turtle faces right. Length 5½ inches.

Figure 9 (Holzapfel) Ridged gorget with incised hash marks, perhaps suggesting a turtle carapace. Length 4½ inches.
COLORFUL CELTS

The celt is among the most common of all stone tools. Literally thousands of them have been found in all parts of the Midwest. In size they range from small two inch examples to some really large celts, 9 inches long or more. Celts may be made of any kind of stone including granite, slate, quartzite and hematite - but a vast majority are made of diorite. Shown are some colorful celts made of granite, conglomerate and puddingstone. Celt upper left is 6 inches long.
POCKET AND MINIATURE AXES

by
Robert N. Converse
199 Converse Drive
Plain City, Ohio

Shown are a group of small axes—often called pocket axes by collectors. Some may be classed as miniatures but true miniatures are usually less than three inches long. Strangely, a large majority of pocket axes are three-quarter grooved—full grooved examples are particularly scarce. In the bottom row are three full-grooved examples. Example upper left is 3¼ inches long.
Shown are historic pipes from my collection made of catlinite. Catlinite, or Minnesota pipestone, was traded over a wide area and was a popular medium for pipes in the early historic period.

Pipe upper left first page (A) is an elbow pipe with a pair of bear paws carved in bas-relief. Both the bowl and the stem are carved with rings.

Pipe (B) upper right is also an elbow pipe and it has a bear carved in a similar manner on the stem.

Lower left (C) pipe is carved in the image of what appears to be a deer which faces the smoker. I estimate it to be dated around the 1830s.

Pipe lower right (D) of catlinite is a small elbow pipe on which is carved a human who straddles the prow in front of the bowl.

On the second page the pipe upper left (E) is in the image of a horse with double pipe bowls. It is from Wisconsin and probably dates to the early 1800s.

Upper right (F) left example shows a bowl with an animal head carved into the stem.

Lower (G) obverse and reverse views of two catlinite disc pipes - one collected in Paris, France, and the other from northern Arkansas.
Due to his fine work in restoring broken or damaged prehistoric artifacts, many collectors who do not personally know Sam Speck have heard of him. Sam is also a major collector of high-grade artifacts, and eight representative examples are illustrated and described here.

Editor's Note
This is the last article submitted to the Ohio Archaeologist by Lar Hothem.

Figure 1 (Hothem) Winged bannerstone. Archaic, weathered green slate, 7¼ inches wide. This large and fine banner was found in Wood County, Ohio.

Figure 2 (Hothem) Adena biconcave gorget, 4¾ inches long, banded slate. This nicely balanced piece is ex-collections Smith and Bushey, Ashland County, Ohio.

Figure 3 (Hothem) Glacial kame gorget, "submarine" type, banded glacial slate. This scarce example, 4¼ inches long, is drilled and highly polished, Marion County, Ohio.

Figure 4 (Hothem) Single-hole expanded-center gorget, a rare Hopewell (Middle Woodland) example, 4 inches long. It is made of banded slate and was found by the owner near Fredericktown, Knox County, Ohio.

Figure 5 (Hothem) Fluted tube bannerstone, Archaic, banded slate, 6½ inches long. Ex-collection Hawks, it was found in 1929, Ashland County, Ohio.

Figure 6 (Hothem) Boatstone, banded glacial slate with concentric banding, 3½ inches long. This polished example is both drilled and scooped and has faint engraving, Holmes County, Ohio.

Figure 7 (Hothem) Fluted ball bannerstone, Archaic, 2¼ inches in diameter. Ex-collection Craven, it was found while turkey hunting near Brinkhaven, Knox County, Ohio.

Figure 8 (Hothem) Pendant, brown close-grained stone, 4¾ inches high. Ex-collection Heckman, it has engraving on both faces; the "ladder" type incising is shown on the obverse, Mason County, Kentucky.
I had known Lar Hothem for twenty years or more as did many people in our Society. Lar was the author of numerous publications on collecting and artifacts and one could see his books in places as far away as New Mexico and Arizona. He was a prolific and first class writer on many subjects and published many articles in the Ohio Archaeologist.

Few people can realize the contributions to archaeology made by Lar. His many books prompted numerous people to become interested in collecting and publicizing the artifacts they found. It is doubtful that anyone of his caliber will come along again. He will long be remembered.

Our respects go to his wife Sue and family.

Robert N. Converse, Editor

November 21, 2006
ROBERT L. CURRY, D.D.S.
2809 Bell Street
Zanesville, OH 43701

(740) 453-8098

Dear Fellow Members of the Archaeological Society of Ohio,

It is really sad to lose such a great mentor, editor, collaborator, and friend as Lar Hothem, who passed away October 18, 2006.

In the eleven years that I have been finding artifacts on our farm and collecting others, Lar was always a great help in the identification process and always seemed to have the time, enthusiasm, and knowledge to be able to educate me in my new hobby. Lar’s patience with a neophyte, such as myself, always impressed me.

I have over twenty of his published books and so his education for me continues on and yet I will miss the personal chats and encouragement that he always had with me.

We should all as members remember to thank these very learned resource people in our society that we have. Such knowledge that we can glean from people like Robert Converse, Dr. Richard Gramly, Sam Speck, Jim Hahn, Lar, and many others really makes our Society great and unique.

These people have so much to offer in educating each of us to be more involved and to keep learning more about the beautiful treasures that were left in the fields by the great Native American stewards before our time.

I want to personally thank Lar and his wife, Sue, for their help in my learning process.

Also, I would like to thank the others mentioned and many more that are always there to help in our endeavors to collect and keep these treasures.

We have a great organization and every one of us, as members should thank our editor, Robert Converse, and our officers and board members. Thank you all for making the Archaeological Society of Ohio a truly great organization.

Sincerely,
Robert L. Curry, D.D.S.
REAL PHOTO POSTCARDS
SHOW ADENA MOUNDS IN EARLIER TIMES

by
D.R. Gehlbach
Columbus, Ohio

Real photo postcards are part of a category of paper collectibles often referred to as ephemera. Important archaeological monuments were featured on a number of the photo postcards especially from about 1900 to 1915, when black and white photo images were first reproduced in substantial quantities. In an era when Ohio’s road systems were primitive and access more limited, postcards showing archaeological sites allowed one to view the more remote works of prehistoric man such as the Enon mound (see Figure 1). The same cards also were a vehicle for friends and relatives to share information when they were geographically separated from one another. It is interesting to observe the number of these “penny” postcards that were postmarked while individuals were traveling via rail. Local Indian mound pictures were likely available along with other curio-type items at terminal stops along the way.

Actual black and white photographs of Indian mounds are among the rarest subjects on postcards dated in the early 1900’s. In some instances they show mounds that no longer exist and they also show surrounding scenery that is often very different from today’s landscapes. In many examples the quality of the photo image is somewhat less than would be expected from today’s high quality resolution digital pictures.

Some of the non-photographic postcard images of mounds were sometimes “doctored”, to create interest and to produce a more spectacular impression. In many examples the subject mound’s overall height and proportions were significantly distorted. This is especially true of the various early printed depictions of the highly publicized Conus mound in Marietta, Ohio (to be referenced later in this article).

Shown are some rare real photo Ohio Adena mound postcards from the writer’s collection. All were published between 1900 and 1915.

The first photo card shows Enon, Ohio’s sizable Adena mound somewhat prosaically sitting in a farm field with a substantial-looking barn at its side. Historically known as the Prairie Knob Mound or Engle Park Mound, the Enon Mound currently stands 27.5 feet high with a diameter of 110 feet. At one time the mound was supposedly 49 feet high with a diameter of 180 feet. These dimensions probably were estimates provided by an overly exuberant early chronicler. The mound currently owned by the City of Enon, sits in a mature housing development appropriately called Indian Mound Estates. It is well landscaped and appears to be in a pristine condition.

The second photo card shows an early view of the enormous Miamisburg Mound at the edge of Miamisburg, Ohio. It sits on a high bluff east of the Miami River and is the dominant feature of Miamisburg’s Mound Park. The site, once part of the estate owned by noted inventor and businessman, Charles Kettering, was donated to the Ohio Historical Society in the 1920’s. The Miamisburg Mound is the second largest conical burial mound in the United States (only the Grave Creek Mound in Moundsville, West Virginia is larger.) It is currently about 65 feet high and has a circumference of 875 feet. The mound was partially explored in 1869 by digging a centrally located vertical shaft and several horizontal tunnels. Burials found in the laterally excavated shafts were surrounded by logs and covered with bark, establishing the mound’s Adena cultural affiliation.

The third card shows the much-chronicled Conus Mound reposing in a cemetery in Marietta, Ohio. This is one of the earliest published postcard views of the subject mound. Its early publishing date can be verified by the existence of the written message space at the side of the photo. Early on individuals were only permitted to write on the front of a mailed postcard. This card was postmarked 1905. Both the mound and its surrounding cemetery have been protected for over 200 years. As a result the Conus Mound probably has never been disturbed. The mound cemetery was established in this location prior to 1800 by the founding fathers of Marietta in part to preserve the mound and its associated earthwork. The Conus Mound is approximately 30 feet high and is surrounded by a low circular embankment, another diagnostic Adena cultural feature. It is but one of a number of nearby prehistoric works in Marietta which include remnants of rectangular and parallel earthworks, and several nearby pyramidal mounds. The latter earthen features are attributed to the Hopewell people.

The fourth postcard shows an old time view of another sizable mound, this one called the Braddock Mound, in Fredericktown, Knox County, Ohio. This edifice apparently no longer exists, thus the card documents a mound of only former importance. This is an unfortunate circumstance since it appears the mound was once well maintained as the picture suggests, only to eventually fall victim to more worthy landscape enhancements. The photo suggests the conically-shaped mound is Adena in origin and perhaps was once 12 to 15 feet in height.

Postcard number five shows an impressive view of a mound located in the tiny village of Homer, Licking County, Ohio. Known as the Williams or Dixon Mound it lies next to a village church on property currently owned by the Archaeological Conservancy. It is about 15 feet high and 80 feet in diameter (the photo seems to portray it as being somewhat larger.) It is situated on a terrace above the North Fork of the Licking River.

The mound in its current condition appears to have suffered from erosion or other undetermined surface damage. There is no record of it being investigated. Based on its context and configuration the Williams/Dixon Mound is probably an Adena mound.

The final postcard shows the Kilvert Mound, located in a cornfield at the western edge of Bainbridge in Ross County, Ohio. It is situated about 30 yards north of State Highway 50 just east of its intersection with Highway 41. From the roadside it appears to be still in excellent condition without visible alterations. It is completely covered by a stand of medium size trees which partially obscure it from view during the summer season. The current rural landscape surrounding the mound is very similar to the one shown in the old photo card. The conical Kilvert Mound has been long identified as an Adena mound. It appears to rise about 20 feet above the adjacent cultivated field.

Vintage photo postcards of Ohio’s prehistoric mounds from the early 1900’s have considerable value. They have helped to document the archaeological record of the state. In some cases the cards represent the only available record of Adena mounds that formerly dotted the middle and southern portions of the state’s landscape.
Figure 1 (Gehlbach) Postcard view of the Enon Mound, Clark County, Ohio.

Figure 2 (Gehlbach) Postcard view of the Miamisburg Mound, Montgomery County, Ohio.

Figure 3 (Gehlbach) Postcard view of the Conus Mound, Washington County, Ohio.
Figure 4 (Gehlbach) Postcard view of the Braddock Mound, Knox County, Ohio.

Figure 5 (Gehlbach) Postcard view of the Williams Mound, Licking County, Ohio.

Figure 6 (Gehlbach) Postcard view of the Kilvert Mound, Ross County, Ohio.
THIRD EXAMPLE OF ARCHAIC TOOL FROM PORTAGE COUNTY

by

Michael Rusnak

4642 Friar Rd.
Stow, Ohio 44224

In the Fall 2005 issue of Ohio Archaeologist, I reported two examples of an unusual tool type that were found by ASO member Jeff Adams within a mile of one another in the Cuyahoga River area of northern Portage County. As described, the two examples, pictured in figure 1, have a pinwheel outline, measure less than one inch across, and were made out of black upper Mercer flint. Additionally, because the tools were bifacial, it was speculated that the tools were likely from Ohio's archaic time period.

Shortly after the article appeared, ASO member Ed Miller of Kent reported what appears to be another example of this unusual tool. Figure 2 shows the obverse and reverse of the piece that was - curiously - also found in northern Portage County. This piece was found in the area of Tinker's Creek, a tributary of the Cuyahoga.

Like the two earlier examples, the tool carries a similar pinwheel outline. It is somewhat smaller than the other two examples, measuring .75 of an inch across. It appears to be made from pink Flint Ridge material.

The tool is also quite worn. The perforator at the top of the photo looks offset somewhat, perhaps due to a worn down and then remade tip. The cutting edges are considerably worked as well.

Miller agrees that the tool was probably used between thumb and forefinger. He commented that “Things are most often just what they look like. We don't have to go too far to figure out how this was used. They weren't doing too many things anyway, cutting, scraping, and making holes about sums it up. A problem is that we usually find things just at the time they get thrown away, and they may have been used for several different things before they came to their last function.”

Miller also agrees that the tool is likely from the Archaic period. In addition to the fact that it is bifaced - and not unifaced, as are many paleo tools - he presented several frames of artifacts found in the same field and adjacent fields as the multipurpose tool. He noted that there are 3 close sites that straddle Tinker's Creek, which he has been hunting for 18 years. He said, “I think it's a good type site with a lot of very early Archaic material which I'm interested in. All three sites have a lot of early Archaic material and almost no Woodland material at all.” He also related that “The tool in question came from a much smaller site about 200 yards away that sits 20 ft. above a bog, and it also has similar material with perhaps a bit more Late Archaic material.” As can be seen in figure 3, many of the artifacts found in the same field are from the archaic.
Faded yellow numbers can be seen on these Red Ocher or modified turkeytail spears, indicating they may have been part of a cache. The artifact at left, marked 22, has only a provenience of Indiana. The one at right, number 36, however, is marked Parke County, Indiana, which is situated in the west-central part of the state.

Both made of gray Harrison County flint, the two points exhibit cortex on tips and bases. They resemble the 200-blade Nussbaum cache found in Indiana in the 1950s. Are these old numbers familiar to anyone?
FLINT RIDGE SPEAR FOUND IN LICKING COUNTY
by
Elaine Holzapfel
415 Memorial
Greenville, OH 45331

Chris Parkinson found this 5½ inch long spear on May 1, 2006, while planting a field that had been bulldozed to remove trees. The artifact was lying on a hilltop in sandy soil only a thirty-minute drive from Flint Ridge. When he displayed it at the November 19, 2006, ASO meeting, the point was identified by several individuals as a micro-notch, a dovetail, and a side-notch.

Many thanks to Chris for sharing this unique artifact.

2007 MEETING DATES

JANUARY 21 • MARCH 18 • MAY 20 • NOVEMBER 11
CUMBERLAND TYPE POINT FOUND IN PUTNAM COUNTY
by
Ron Siebeneck
Fort Jennings, Ohio

I found this Cumberland type point in Union Township, Putnam County, Ohio, along a small stream which empties into the Ottawa River. Other artifacts have been found at this site but this is the first Paleo point.

Cumberland type fluted points are rare so far north in Ohio since their distribution is normally near the Ohio River. However in recent years similar points have been reported from Miami County and one was reported from Auglaize County by Robert Braun in the Summer 2005 Ohio Archaeologist. Thus, thanks to reporting, the range of such points has been greatly expanded.

Figure 1 (Siebeneck) Cumberland point 2¼ inches long found in Putnam County – shown in obverse and reverse.
A FINE FLINT KNIFE
by
John Mocic
Box 170, Rt 1
Dilles Bottom, Ohio

I found this flint knife in Guernsey County, Ohio in May 2006. It was found in a field which had not been plowed for the last 16 years.

Figure 1 (Mocic) Obverse and reverse of 5¾ inch knife of Upper Mercer flint.

AN OUTSTANDING BAR ATLATL WEIGHT
by
Rick Waibel
South Charleston, Ohio

Bar atlatl weights are rare objects especially those which haven't been prehistorically damaged or broken by farm machinery. This example was found in Wabash County, Indiana, and is virtually flawless. As with all the type, this one curves symmetrically from end to end and the center has a notch or groove cut at right angles for hafting.
A PENNSYLVANIA CACHE

by
Charles Rudesill
616 Mt. Jackson Rd.
New Castle, PA 16102

We found eight of these Upper Mercer flint blades in October, 1991. We took them to a meeting of the King Beaver Chapter and the late John Zakucia suggested we go back and dig for more. We went back and found 32 more blades. They were found near Mount Jackson, Lawrence County, Pennsylvania.

Figure 1 (Rudesill) Cache of forty Upper Mercer flint blades found in Pennsylvania.

NEW INDIAN RIDGE MUSEUM

46900 Cooper Foster Park Rd.
Amherst, Ohio 44001
Nat Nahorn, Curator

Shown in the photographs are artifacts from the old Inidan Ridge Museum, Vietzen collection. They are now part of the new Indian Ridge Museum, Amherst, Ohio, Matt Nahorn, Curator.

One of the goals of the new museum is to re-collect many of the artifacts from the original museum to add to those pictured.
"CRAB ORCHARD CHERT": A GEOLOGICAL MISNOMER
by
James L. Murphy
Grove City, Ohio

Abstract.- "Crab Orchard Chert" consists of silicified fossil Ordovician stromatoporoid bodies locally utilized during prehistoric times in central Kentucky. The occurrences are actually in the Ordovician Reba limestone rather than the Silurian Crab Orchard Formation. Distinguishing various stromatoporoidal "cherts" based upon stromatoporoid taxonomy is feasible in some cases but is inhibited by the reluctance of paleontologists to study material in which silicification has destroyed much of the structure and which requires thin-section preparation. The distribution of silicified stromatoporoids has also been neglected by most field geologists and ignored by archaeologists.

Introduction.- "Crab Orchard Chert" was originally described as a "provisional type" by DeRenaucourt and Georgijad (1988) from the Silurian Crab Orchard Formation of Garrard Co., Kentucky. It is further described in Deregnaucourt (2001) but mistakenly identified as Devonic in age. Because of the pronounced wavy, zig-zag, or "crimped" pattern it often displays, this material is very distinctive. Although "Crab Orchard chert" is limited to the area of Paint Lick and Lancaster, in Garrard County, Kentucky, very similar materials occur in Ordovician and Devonian rocks of Tennessee, Ohio, and New York, and may be expected elsewhere.

The present study was initially undertaken because flint or chert has nowhere else been reported from Crab Orchard strata. A visit to the type locality on the Walker-Nea farm near Paint Lick (Fig. 1) revealed that "Crab Orchard Chert" actually consists of float fragments of silicified fossil stromatoporoid colonies weathered from the Reba Member of the Upper Ordovician Ashlock Formation (Fig. 2). At the Walker-Nea farm, silicified stromatoporoid bodies occur mainly between elevations of 990-1010' A.M.S.L. along a small tributary of Walker Run and, along with utilized material, in cultivated fields immediately to the south, where the motiled, banded gray material is mixed with abundant brightly-colored flint derived from outcrops of Boyle Dolomite occurring about 80 feet higher. The intervening bedrock is of poorly exposed dolomitic shales of the upper Ordovician Drakes Formation and the Silurian Crab Orchard Formation, neither of which contains any flint or chert.

Stromatoporoids.- Stromatoporoids are extinct, sponge-like invertebrate organisms with non-spiculate, calcareous basal skeletons of laminar, domical, bulbous, branching to columnar form; internally composed of regular, continuous network of growth parallel and normal to growth skeletal elements, either interconnected laminae, or cyst plates, and pillars. They are limited to Ordovician through Devonian marine strata. "Stroms" are often poorly preserved due to replacement of the original high-magnesium calcite and aragonite by low-magnesium calcite and even silica. (Stearn et al. 1999).

Identification even at the generic level usually requires microscopic study of thin sections. Figure 3, taken from Galloway and St. Jean (1961), illustrates vertical and tangential cross sections of the two most common genera found in the middle Ordovician of central Kentucky, Labechia (1A, 1B) and Stromatocephum (2A, 2B). Unfortunately, because silicification often destroys the finer structures of stromatoporoids, silicified examples have not received any study by paleontologists; for that matter, stratigraphers and general geologists often pay little attention to the occurrence of stromatoporoids unless they are abundant enough to form large, reef-like masses. Conversation with Kentucky geologists has not revealed any recollection of seeing silicified stromatoporoids in the field, and stromatoporoid specialists have been reluctant to study the available material, although much of it does preserve stromatoporoid microstructure.

Silicified Stromatoporoids in Kentucky.- The Reba limestone member of the upper Ashlock Formation ranges from 10 to 25 feet thick. It has been found from near Stanford to near Winchester and was previously referred to as the Arnheim Formation of Ohio, a stratigraphic term no longer used (Weir, Greene, and Simmons 1965). Silicified stromatoporoids have been found in situ in the Reba Member as far west as Lancaster, Garrard Co. They have also been found in a new roadcut at Point Leavall, ca. 5 km northwest of the Walker-Nea outcrop. The Reba Member intergrades eastward into beds of the Bull Fork Formation and southwest into the Cumberland Formation, and silicified stromatoporoids have not been found in outcrops of those rocks, although thin stringers of chert have been noted in the Cumberland Formation near Burkesville, Kentucky, and unsilicified stromatoporoids occur in the Sunset Member of the Bull Fork Formation.

Silicified stromatoporoids have also been found near Danville, Boyle Co., in the Middle Ordovician Tanglewood Member of the Lexington Formation where the largest known silicified Kentucky examples occur. These have been tentatively identified as Stromatoporoid, although unsilicified stromatoporoid bodies abundant in the Strodes Creek, Stamping Ground, and Tanglewood members of the Lexington Limestone, where they are sometimes very conspicuous (Fig. 4), have generally been referred to as Labechia. The geographic extent of silicified material is currently very poorly known, but since it clearly occurs in more than one stratigraphic unit, this material should probably be referred to as "Kentucky stromatoporoid chert" or "Ordovician stromatoporoid chert" unless there is a clear reason to believe the material came from a particular stratigraphic unit. The term "Crab Orchard Chert" is a geological misnomer, is definitely misleading, and should not be used.

Confusion with Tyrone and Other Kentucky Banded Cherts.- It appears that the stromatoporoid chert of central Kentucky has been confused with banded chert from the older Ordovician Tyrone Limestone and with banded Mississippian cherts of the Meade Co. area. Thin bedded and nodular banded chert is common in the Ordovician Tyrone limestone, often associated with siliceous pyroilitic bentonite ash beds, and local collectors frequently refer to banded chert artifacts found in the area along the Kentucky River north of Garrard County as "Tyrone chert," even if it exhibits fossilized stromatoporoid structure. The Tyrone has been examined at the type locality in and near the quarry at Tyrone, Anderson County, about five miles west of Versailles, and in the high Bridge section near Boonesborough. At Tyrone, nodular and thin-bedded banded chert is abundant but generally too fractured to have been widely utilized for artifact material. It is possible that suitable material may occur elsewhere in the Tyrone and have been carried downstream along the Kentucky River, but this remains to be established. Finely banded nodular chert is also common in Mississippian limestones in Meade County, across the Ohio River from the better known "Harrison County" or Wyandot chert of Indiana. Lacking fossil evidence, these Ordovician and Mississippian cherts can easily be confused with one another, but all of them lack the zig-zag pattern created by stromatoporoid marmelons as well as the finer cellular structure of stromatoporoid bodies. Artifacts manufactured from Garro Co. silicified stromatoporoids are
Silicified Stromatoporoids in Tennessee.- To complicate matters further, silicified stromatoporoids are also abundant in central Tennessee, particularly along the Cumberland and Duck Rivers, where the material was utilized in prehistoric times as well as the present. Bassler (1932) and Wilson (1948) provide data on numerous occurrences of silicified stromatoporoids in middle and upper Ordovician rocks of central Kentucky, and this material is familiar to Tennessee archaeologists as "sponge chert." Amick (1987), following Faulkner and McCollough (1973) and McCollough and Faulkner (1976) provides a good description of its occurrence in the Ordovician Bigby-Cannon limestone of central Duck River Basin but like his predecessors failed to realize the organic nature of its origin, referring to it simply as "gray-banded" or "brown-banded" chert. Faulkner and McCollough's Shelton Quarry site (40BD80), a half-mile below the Normandy Reservoir dam, has been visited and very dark but typical stromatoporoidal chert collected (Fig. 7).

Silicified Stromatoporoids in New York and Ohio.- Silicified stromatoporoids and bedded black chert have been described from dolomite in the Martisco Reef Complex of Cobleskill age near Marcellus Falls, New York (Ciurca 2003). Stromatoporoids are common in Ordovician, Silurian and Devonian rocks of Ohio but silicified examples have not been reported. Although Ordovician and Silurian examples are relatively small, massive stromatoporoids (Anostylostroma) up to 20 cm. in diameter are common in the Devonian limestones of central and northwestern Ohio and might be available in glacial drift (Keller 1963).

One end scraper of this material has been noted in a collection from the Crawford County area. The finely spaced, broad, even laminae are quite distinctive and such material cannot be confused with Kentucky Ordovician stromatoporoids.

Conclusions.- The term "Crab Orchard chert" is based upon a stratigraphic misidentification and should not be used. Lithic material derived from silicified stromatoporoids in the Reba limestone of Garrard Co., Kentucky is macroscopically indistinguishable from similar material along the Cumberland River in north central Tennessee. Further field work is necessary to determine the extent of silicified stromatoporoid occurrences in Kentucky and Tennessee, while detailed paleontological study is necessary to determine whether distinct species characterize the different stratigraphic occurrences.

Acknowledgements.- Tony DeRegnaucourt kindly provided locality information and contacts in the central Kentucky area. Randall Carrier, Lancaster, Kentucky, who probably has the largest collection of Garrard County stromatoporoid artifacts extant, accompanied me in the field on several occasions and very kindly allowed me to photograph his collection.

References

Amick, Daniel S.

Ciurca, Samuel J., Jr.

DeRegnaucourt, Tony

Faulkner, Charles H., and Major C.R. McCollough

Galloway, J. J., and J. St. Jean

Keller, Paul H.

McCollough, Major C.R., and Charles H. Faulkner

DeRegnaucourt, Tony

Faulkner, Charles H., and Major C.R. McCollough

Galloway, J. J., and J. St. Jean

Keller, Paul H.

McCollough, Major C.R., and Charles H. Faulkner

DeRegnaucourt, Tony

Faulkner, Charles H., and Major C.R. McCollough

Galloway, J. J., and J. St. Jean

Keller, Paul H.

McCollough, Major C.R., and Charles H. Faulkner

DeRegnaucourt, Tony

Faulkner, Charles H., and Major C.R. McCollough

Galloway, J. J., and J. St. Jean

Keller, Paul H.

McCollough, Major C.R., and Charles H. Faulkner

DeRegnaucourt, Tony

Faulkner, Charles H., and Major C.R. McCollough

Galloway, J. J., and J. St. Jean

Keller, Paul H.

McCollough, Major C.R., and Charles H. Faulkner

DeRegnaucourt, Tony

Faulkner, Charles H., and Major C.R. McCollough

Galloway, J. J., and J. St. Jean
Figure 2. (Murphy) Natural cross-section of silicified stromatoporoid from Walker-Noe farm near Paint Lick, Garrard Co., Kentucky.

Figure 3. (Murphy) Microscopic vertical and tangential cross sections of Labechia (1a-b) and Stromatocerium (2a-b) illustrating structure (From Galloway and St. Jean 1961).

Figure 4. (Murphy) Large unsilicified Labechia stromatoporoid bodies in the Lexington limestone exposed in roadcut near Lexington, Kentucky.
Fig. 5. (Murphy) Bifaces of Kentucky silicified stromatoporoid material from Garrard Co., Kentucky. Randall Carrier Collection.

Fig. 6. (Murphy) Additional bifaces of Kentucky silicified stromatoporoid material from Garrard Co., Kentucky. Randall Carrier Collection.

Fig. 7. (Murphy) Fragments of Faulkner and McCollough's "gray-banded chert" from the Shelton Quarry Site. Silicified stromatoporoids from the Bigby-Cannon Limestone along Duck Creek below the Normandy Reservoir Dam, Bedford Co., Tennessee.
A distinctive pipe type which appeared at the end of the proto-historic and early historic period is an elbow pipe with a small protrusion at the top of the bowl nearest the smoker. These pipes are usually made of some kind of exotic material such as chlorite or pipestone. They may also be decorated with a variety of designs - the bottom example having graduated U-shaped engravings. A pipe of this type from Sandusky County, Ohio, was in the Dr. Meuser collection.

Figure 1 (Ritchie) Elbow pipe of orange-red stone, possibly chlorite or quartzite. It was found in Pennsylvania.

Figure 2 (Ritchie) Elbow pipe of olive-green chlorite. Indentations were probably made to hold pieces of shell. Found near Lake St. Clair, Michigan.

Figure 3 (Ritchie) Elbow pipe of chlorite. Probably Iroquois and dates to the 17th century.
DISPLAYS OF DRILLS:
THEME OF THE ASO MEETING AT SHRINE TEMPLE
IN COLUMBUS ON NOVEMBER 19, 2006
by
Elaine Holzapfel
415 Memorial
Greenville, OH 45331

Doug Hooks display

Dovetail drill from Clay County, Illinois. Displayed by Tom Alt.

Doug Hooks display

Drill made of Flint Ridge Flint, Summit County.
THREE UNIQUE PENDANTS

by
Rick Waibel
South Charleston, Ohio

The anchor pendant on left was found near Roundhead in Hardin County in 1959.
The center pendant is heavily engraved. It was found near the Athens County-Vinton County line west of Albany, Ohio.
The pendant on the right is unique in having two wide and deep grooves on each side of the perforation. All examples in the color plate are made of banded slate.

BOOK REVIEW

by
Elaine Holzapfel

NEW BOOK:
THE AUTOBIOGRAPHY OF ANNIE OAKLEY
Edited by Marilyn Robbins, 2006
$10.00 (plus shipping)
Darke County Historical Society
205 North Broadway
Greenville, OH 45331
(937)-548-5250

For the first time the story of Annie Oakley's life is told in Annie's own words. Marilyn Robbins, museum volunteer, edited a series of newspaper articles from the archives of the Garst Museum written by Annie in 1925 and 1926 and put them together into a book.

Annie Oakley explains how and why she learned to shoot a cap and ball Kentucky rifle when she was only eight years old and relates later shooting adventures all over the world.

She reveals details about husband Frank Butler, and such friends as Sitting Bull, Geronimo, and Buffalo Bill, as well as her adventures with the kings and queens and royalty of Europe.

This soft-bound book has 68 pages and 24 photographs, many of which have rarely been seen. It is an example of the kind of wonderful thing that can be accomplished when museums allow motivated individuals access to their collection.

Get your copy before this under-priced book is out of print.
Chris Rummel, an authority on the Hopewell culture, discussed the North Benton Mound in Mahoning County, Ohio. His talk shed light on Hopewell in northeastern Ohio.

Rummel spoke about an enormous thirty-foot-long bird effigy which had been constructed of white rocks, and his power point presentation included photographs of panpipes, copper celts, a wooden tube plated with silver, cannel coal gorgets, and many other artifacts.

He is preparing a detailed report which will follow in the Ohio Archaeologist in which he will reveal the mysterious significance of the number four in the context of the North Benton Mound.

RARE INDIANA HOPEWELL MATERIAL DISPLAYED AT NOVEMBER MEETING

These three large frames of rarely shown Indiana Hopewell artifacts were displayed by Alex Valentine, Van Ness Rd., Pierceton, Indiana.
Colorful Hopewell cores from the collection of Joe Schneider, Circleville, Ohio.

OBJECT OF THE SOCIETY

The Archaeological Society of Ohio is organized to discover and conserve archaeological sites and material within the State of Ohio, to seek and promote a better understanding among students and collectors of archaeological material, professional and non-professional, including individuals, museums, and institutions of learning, and to disseminate knowledge on the subject of archaeology. Membership in the society shall be open to any person of good character interested in archaeology or the collecting of American Indian artifacts, upon acceptance of written application and payment of dues.