Effect of Early Weight-Bearing Training on Blood-Spinal Cord Barrier Function in Mice

Nicholas Black1,2, Jarret Williams2, Samantha Kerr2, Lesley Fisher2, Christopher Hansen2,3, Jun Liu, Ph.D1, and D. Michele Basso, Ed.D2,3,4

1College of Engineering, 2Center for Brain and Spinal Cord Repair, 3Neuroscience Graduate Studies Program, 4School of Health and Rehabilitation Sciences
The Ohio State University, 400 W. 12th Ave, Columbus, OH 43210

INTRODUCTION

Spinal cord injury (SCI) results in a breakdown of the blood-spinal cord barrier (BSCB) that permits a robust inflammatory response. Mechanisms responsible for inflammation promote further damage to the neural tissue. Neurotoxicity results from inflammatory cells moving into the spinal cord through the damaged and permeable blood vessels. Activities such as treadmill training attempt to utilize spinal plasticity to promote recovery, but recent animal studies have shown increased BSCB permeability with early swim training [1]. Exercise-regulated gelatinase matrix metalloproteinase-9 (MMP-9) is a regulator of vascular permeability utilized to degrade tight junctions of the blood vessel wall, allowing extravasation into surrounding tissues. MMP-9 is a potent early regulator of pathology after SCI. Whether locomotor training stabilizes or exacerbates BSCI integrity is unknown.

SUBJECTS & INJURY

Wild Type (WT) C57BL/6 mice (n=12) and MMP-9 null (KO) mice (n=3) received a moderate/severe contusion with the Infinite Horizon (IH) device at T9.

TRAINING PARADIGM

Manually-assisted treadmill (TM) training for 20 min occurred 2-7 days post injury (dpi). Groups were: Trained (n=5) and Untrained (n=12).

TISSUE SECTIONING

Mice were perfused with 0.1 M phosphate buffered saline followed by 4% paraformaldehyde. Tissue was collected and cryoprotected in sucrose. The lesion site was transversely sectioned (thickness = 20 um).

WHITE MATTER SPARING

Tissue was stained for myelin using eriochrome cyanine (EC). The section with the largest lesion and least amount of trained white matter represented the lesion epicenter.

HEMATOGENOUS INFILTRATION INTO SPINAL CORD

Exercise delivered acutely after SCI increases or exacerbates BSCB integrity is unknown. Whether surrounding tissues. MMP-9 is a potent early regulator of pathology after SCI. Whether locomotor training stabilizes or exacerbates BSCI integrity is unknown.

METHODS

Subjects & Injury

Wild Type (WT) C57BL/6 mice (n=12) and MMP-9 null (KO) mice (n=3) received a moderate/severe contusion with the Infinite Horizon (IH) device at T9.

Training Paradigm

Manually-assisted treadmill (TM) training for 20 min occurred 2-7 days post injury (dpi). Groups were: Trained (n=5) and Untrained (n=12).

Tissue Sectioning

Mice were perfused with 0.1 M phosphate buffered saline followed by 4% paraformaldehyde. Tissue was collected and cryoprotected in sucrose. The lesion site was transversely sectioned (thickness = 20 um).

White Matter Sparring

Tissue was stained for myelin using eriochrome cyanine (EC). The section with the largest lesion and least amount of trained white matter represented the lesion epicenter.

AseSSments of Vascular Permeability

A 2% solution of Evans Blue Dye (EBD) in normal saline was injected intravenously or intraperitoneally [2]. The stain was allowed to circulate for 30 minutes before perfusion and fixation.

Proportional Analysis of EBD Permeability

ImageJ was used to find the relative area of EBD penetration into the spinal cord at the epicenter and 2.4 mm both caudal and rostral to the epicenter.

Confocal Microscopy

The presence of EBD was detected via fluorescent confocal microscopy (Olympus Fluoview FV1000) at 63 nm.

Summary and Conclusions

Thoracic SCI results in significant permeability within 24h that persists at 7d after SCI. Proportional assessments of Evans Blue dye reveal that 1d is notably more permeable than 7d.

Deletion of MMP-9 reduced permeability both at and away from the lesion site. This is consistent with other work [3].

Exercise showed a similar attenuation of BSCB permeability in WT mice. Thus, targeted locomotor training to the lumbar enlargement results in less systemic vascular demand compared to other exercise models such as swimming [1].

It can be postulated that exercise acutely after SCI causes decreased levels of MMP-9 through modulation of MMP-9 inhibitory proteins, as previously shown with exercise prior to brain injury [4].

Together, exercise and regulation of MMP-9 may be a novel approach to attenuate vascular events early after SCI that may influence functional recovery.

HypothESIS

Exercise delivered acutely after SCI increases endothelial permeability at the lesion site.

Hematogeneous Infiltration Into Spinal Cord

The presence of EBD was detected via fluorescent confocal microscopy (Olympus Flouview FV1000) at 63 nm.

Spinal Cord Injury Method

Left: Mouse stabilized in IH device with impactor positioned over exposed spinal cord.

Right: Exposed spinal cord with epicenter showing EBD presence.

Hematogeneous Infiltration Into Spinal Cord

1d WT UX Group (n=3) 7d WT UX Group (n=4) 7d KO UX Group (n=3) 7d WT EX Group (n=5)

The data show a large degree of permeability at the epicenter in both the 1d WT UX and 7d WT UX, consistent with the section images of the representative animals. The KO and EX groups appear to show much less permeability.

Rostral to the lesion, the greatest permeability was evident at 1d, but still present at 7d. Deletion of MMP-9 (KO) resulted in a significant reduction of Evans Blue extravasation. There was no difference between the 7d Ex and UX groups.

1d WT UX are the most permeable caudal to the injury site. Much less permeability is evident in the 7d WT UX, 7d KO, and 7d WT EX on average. EX shows less permeability than UX.

REFERENCES


ACKNOWLEDGMENTS

This work was supported by NIH grants 1R01NS074882-01A1 and 1F31NS080512-01.

Left: Mouse stabilized in IH device with impactor positioned over exposed spinal cord.

Right: Exposed spinal cord with epicenter showing EBD presence.