Comparison of Triature Doppler Velocimetry (TDV) and VISAR

Cenobio H. Gallegos (Sonny)
Phone: 505-663-2056
E-mail: gallegch@nv.doe.gov
Comparison of Triature Doppler Velocimetry (TDV) and VISAR

Cenobio Gallegos, Matthew Teel, Bruce Marshall, Vince Romero, Adam Iverson, Araceli Rutkowski, Abel Diaz, Tom Tunnell, Bart Briggs, Mike Berninger, Fred Sanders, Brent Frogget, Doug Devore, Ed Marsh, Scott Walker, Brian Cata

This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
TDV

- The Triature Doppler Velocimeter (TDV) is a photonic Doppler velocimeter (PDV) with three identical outputs that are separated in phase by 120°.

- The phase shift is accomplished by using a 3×3 single-mode splitter. The fusing process in the construction of the 3×3 splitter has the inherent property of the output fiber signals to be $\sim 120°$ out of phase from each other.

- By applying the quadrature concept, improved temporal resolution is obtained, where the fast Fourier transform (FFT) analysis is limited.
Objectives

- Set up a repeatable fast shock source
- Develop a Positive Light laser flat-top pulse at the target
- Test optical up-conversion methods
- Test results of aluminum tape over target
- Perform comparison tests of the Araceli 450 and 800 MHz avalanche photodiode (APD) detectors
- Compare performance of VISAR and TDV
Laser-induced Shock

• A 120 mJ Positive Light laser with a 145 ps rise time and 300 ps FWHM pulse at 532 nm

• Target: 10-microns-thick copper or aluminum layered on a 49 × 49 × 1 millimeter glass plate

• 1 mm flat-top pulse at target
TDV Face Plate
1-mm Laser Imaged on Aluminum
1-mm Laser Imaged on Copper

Shot A 1.03-mm Diameter

Shot B 1.05-mm Diameter
Profile of Target Spot
Comparison of Triature Doppler Velocimetry and VISAR

Velocity Position Map

![Velocity Position Map Image](image)

Aluminum Target

<table>
<thead>
<tr>
<th>Shot/Position</th>
<th>Velocity</th>
<th>Shot/Position</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1 KM/sec</td>
<td>6</td>
<td>1.2 KM/sec</td>
</tr>
<tr>
<td>2</td>
<td>1.3 KM/sec</td>
<td>7</td>
<td>1.3 KM/sec</td>
</tr>
<tr>
<td>3</td>
<td>1.5 KM/sec</td>
<td>8</td>
<td>1.3 KM/sec</td>
</tr>
<tr>
<td>4</td>
<td>1.4 KM/sec</td>
<td>9</td>
<td>0.95 KM/sec</td>
</tr>
<tr>
<td>5</td>
<td>1.7 KM/sec</td>
<td>Average</td>
<td>1.31 KM/sec</td>
</tr>
</tbody>
</table>

Copper Target

<table>
<thead>
<tr>
<th>Shot/Position</th>
<th>Velocity</th>
<th>Shot/Position</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>379 M/sec</td>
<td>6</td>
<td>303 M/sec</td>
</tr>
<tr>
<td>2</td>
<td>378 M/sec</td>
<td>7</td>
<td>341 M/sec</td>
</tr>
<tr>
<td>3</td>
<td>303 M/sec</td>
<td>8</td>
<td>341 M/sec</td>
</tr>
<tr>
<td>4</td>
<td>379 M/sec</td>
<td>9</td>
<td>870 M/sec</td>
</tr>
<tr>
<td>5</td>
<td>455 M/sec</td>
<td>Average</td>
<td>416 M/sec</td>
</tr>
</tbody>
</table>
Optical Up-conversion

- TDV operates in the frequency domain, combining a Doppler-shifted light with the original unshifted light
- The operating range of the MITEQ 20 GHz detectors is 100 kHz to 20 GHz
- Optical up-conversion moves the database line into the operating range of the detectors
Mach-Zehnder with Unshifted Light
Mach-Zehnder Optical Up-conversion

- Up-converted Data
- Up-converted Base Line
- Mirror Image of Up-converted Data
- Data
- Zero Base Line

FFT Spectrum: TDL/DET3_004.dig WinSize=2048 Shift=512 WinType=Hemming

National Security Technologies LLC
National Nuclear Security Administration
Mach-Zehnder with Tunable Unshifted Light

2-W WPQ laser (Main Laser)

Agilent Tunable Laser

Mach Zehnder Interferometer

RF Signal Generator (4-GHz)

2-W WPQ laser (Main Laser)

Mach Zehnder Interferometer

RF Signal Generator (4-GHz)

Tektronics DPO 72004

Source Laser / Source (Unshifted)

Return Doppler (Shifted)

Auxiliary (Unshifted-Up converted)

Electrical
Mach-Zehnder Data with Tunable Laser and 4 GHz Modulation Unshifted Light
Optical Up-conversion with Tunable Laser
Optical Up-conversion with Tunable Laser Data
Sandia Fast VISAR

- Tests were subsequently performed with the Sandia fast VISAR (developed by Bruce Marshall)
- Two fringe constants (short = 0.7946 meters per second/fringe and long = 0.5855 meters per second/fringe)
- Araceli 450 MHz APD detectors and 800 MHz prototype APD detectors
- Brent Frogget PDV/VISAR probe
PDV/VISAR Probe

- Outer 21 fibers are 100/125 microns
- Inner fiber is a single-mode fiber, angle polished at 8°
- Single-mode fiber is focused separately from the 100-micron fiber
Probe Irradiance at Target

PDV/VISAR NIR 60/35 vpdvg.len

irradiance

Total flux 0.10114E-05 Watts
Max irradiance 0.12643E-01 Watts/CM^2
Min irradiance 0.00000E+00 Watts/CM^2
Sandia VISAR Aluminum Tape Data
High-current Calibration Source

- Designed and built by Bart Briggs of NSTec Los Alamos Operations
- 5 µF at 4.6 kV, generating ~14.5 kA
- Current channeled to a copper strip that is 0.05 inch by 0.25 inch
VISAR/PDV Calibration Data
450 and 800 MHz APD Detectors
VISAR-TDV-PDV Analysis
Comparison of Triature Doppler Velocimetry and VISAR

VISAR/TDV Overlay

ALUMINUM TARGET

VISAR

TDV
Conclusions

- The Positive Light laser is a repeatable flat-top light source for testing velocimetry
- Optical up-conversion eliminates baseline noise to determine an accurate breakout
- Aluminum tape over aluminum target produces a velocimetry system check comparable to a High-current calibration source
- VISAR is limited by detector and recording bandwidth
- TDV provides better than 1 ns resolution
- Coaxial probe is feasible
Araceli 8-channel Rack-mount PDV