What is the accuracy & precision of a single PDV velocity extraction?

Matthew E. Briggs, Lawrence M. Hull, Michael A. Shinas, Los Alamos National Laboratory

PDV Workshop
1st – 4th November, 2011, Livermore, CA

Our understanding of the accuracy and precision of a single PDV trace is limited to a relatively ideal signal with an unchanging frequency over the spectral analysis window. Can we split a signal optically into multiple PDV records to demonstrate precision and accuracy for the non-ideal signals typical of multidimensional experiments?

Special thanks to our PDV technician Steve Hare and firing site technicians Michael Archuleta, Rudy Archuleta, John Echave and Pam Scott.
Results so far give a limit on how good PDV can be. Do we need to know the actual errors?

- Analytic treatment by Dolan (“Accuracy and precision in photonic Doppler velocimetry,” RSI 81, 2010) provides an excellent discussion of errors and their origin, and gives a limit on how good the precision & accuracy can be. Assumes constant frequency and considers only noise for signal degradation.

- Experiments by Jensen et al. (“Accuracy limits and window corrections for photon Doppler velocimetry,” JAP 101, 2007) demonstrate 0.1% accuracy & precision under experimental conditions similar to Dolan’s assumptions of near-ideal signals.

- Are there other treatments of this topic?
If we need to know the error, rather than a limit, we have the following concerns

• We only understand the precision & accuracy for the case of constant frequency. We do not know how to quantify the effects of non-constant velocity.
 – Dolan has reported in a private communication that constant acceleration degrades only precision, not accuracy, and that jerk (non-constant acceleration) does cause accuracy errors, but not yet quantified.

• Dolan showed that the accuracy can be about 5x worse for ideal signals than suggested by the width of a Gaussian fit.

• The effects of time dependent offsets, amplitude and frequency, and the effects of non-linearity in the detection have not been quantified.
Above concerns arise frequently: the signal is often far from ideal, and velocity not constant.

A near ideal signal: only degradation is random noise. Typical only for 1-D gun experiments.

Signals from high-explosive driven experiments show in addition time-dependent offsets, amplitudes and frequency. What effects do these have on precision & accuracy?
Typically one uses error estimates from the results of fitting a peak to each time slice.
Can we group these problems together and demonstrate the final precision & accuracy with an experiment?

We split 1 probe optically 8 ways, sent them to 8 PDV channels, recording each on 2 independent scope channels. We do not know the velocity independently, so this only tests precision.
4 records from one oscilloscope, low-pass filter. They jump off to different offsets? Why?
We had one signal with larger noise, 10% compared to 1% for the rest...

Error bars for noisy signal larger than clean signal, as expected.
But at early times, the error bars show little difference…window width effect?
8 Channels at jump-off all lie inside each others error bars, except SOM of ch 3 (bin size effect)

Error bars appear to be reasonable estimates here.
During slow velocity ramps, the precision is <0.1 % ...are the error bars too large here?
Summary

- Our understanding of precision and accuracy in PDV is limits on how good it could be, not what the actual error bars are.

- We split a single PDV probe signal optically 8x and measured the fringes with 8 PDV channels sharing a common laser.

- We did not know the velocity, so could not check accuracy.

- The results suggest that the error bars calculated from the standard statistical results of fitting a Gaussian or calculating a centroid range from reasonable to overly conservative estimates of the precision for the type of velocity trace studied.