Ultrasonic Consolidation
(Ultrasonic Additive Manufacturing)

The mechanism of bond formation during the ultrasonic welding of metals has been widely studied. O’Brien et al. (1987) states that bonding formation is initiated by a combination of compression under moderate pressure and scrubbing of metal caused by ultrasonic motion. The motion cleans off surface oxides through friction and leveling of surface asperities. This allows direct contact of pure metal resulting in atomic bonding. Shear vibration produces heat through friction and by plastically deforming asperities. The heat and plastic deformation promote diffusion and crystallization of material between layers resulting in a true metallic bond. The process maybe aided by the passage of ultrasonic energy into the metal, which effectively may act similarly to localized heating, reducing the stress needed for plasticity.
Ultrasonic Consolidation (Ultrasonic Additive Manufacturing)

- Ultrasonic vibration
- Held stationary by Anvil
- Interfacial vibration of workpieces caused by ultrasonic excitation

- Atoms diffuse across interface
- True Metallurgical bond forms in solid state
- Diffusion occurs across atomically clean interface
- Friction at interface breaks up oxides
Ultrasonic Consolidation
(Ultrasonic Additive Manufacturing)
Fundamental Questions and Conflicting results

- Transducer amplitude vs. normal force
- Transducer slip on top tape?
- Slip or stick of top tape on build structure?
Ultrasonic Consolidation
(Ultrasonic Additive Manufacturing)

Effect of height to width ratio on the dynamics of UC

James M. Gibert, Eric M. Austin and Georges Fadel

Figure 1
25 μs of data; ½ cycle of 20kHz

16 cycles of Doppler fringing

stopped @ extrema (-x)

stopped @ opposite extrema (+x)

Every 2π of fringing is .775 μm of travel
average velocity = 12.4 μm/25 μs ~ 0.50 m/s

instantaneous velocity max = 1.550 μm/2.4 us ~ 0.65 m/s

average acceleration = 0.65 m/s in 12.5 μs = 52 km/s2

20 ns per data point

average velocity = 12.4 μm/25 μs ~ 0.50 m/s
Transducer amplitude vs. normal force

2000N normal force

500N normal force
Finally, a key assumption in the lumped parameter model is no slip between the sonotrode and the top of the foil. During normal operation of the sonotrode damages the top surface (Ram Janaki et al., 2006). Ram Janaki et al., 2006 conclude that the no slip assumption is valid under moderate sonotrode wear and texture loss. Li and Soar (2007) further strengthen this finding by noting excessive sonotrode wear resulted in slip with the foil. They noted several phenomena that occurred when slip existed between the sonotrode and tape. Specifically, slipping resulted in shifting, overlapping and crinkling of foils. Contradicting these findings are the work of Johnson (2008), he concluded that most of ultrasonic energy used for bonding, i.e. energy due to slip, is between the build feature and tape and not at the interface between the tape and the substrate. He bases this conclusion on observing the presence of sub-grain refinement at the sonotrode foil interface. In the context of lumped parameter model the “ideal” case is assuming the no slip condition and using this condition to quantify slip at the tape feature interface.
The mechanism of bond formation during the ultrasonic welding of metals has been widely studied. O’Brien et al. (1987) states that bonding formation is initiated by a combination of compression under moderate pressure and scrubbing of metal caused by ultrasonic motion. The motion cleans off surface oxides through friction and leveling of surface asperities. This allows direct contact of pure metal resulting in atomic bonding. Shear vibration produces heat through friction and by plastically deforming asperities. The heat and plastic deformation promote diffusion and crystallization of material between layers resulting in a true metallic bond. The process maybe aided by the passage of ultrasonic energy into the metal, which effectively may act similarly to localized heating, reducing the stress needed for plasticity.