Manufacturing Applications of Exploding Foil and Wire and use of PDV as a Diagnostic Technique

Anupam Vivek
Wednesday, September 8
ACKNOWLEDGEMENTS

Slides, ideas and work conveniently borrowed from:

Geoff Taber, Huimin Wang, Steve Woodward, Glenn Daehn, Jason Johnson and Emma

Thanks to:

Jerry Stofleth, Sandia National Labs
Jim Dykeman, Honda Research
Andrew Skrepnek, Summo Steel Corporation
SHEARING

Exploding foil

Die

Shim

Spring steel plate

Clamping force

Fixture

Dies

For spring steel

For TrIP Steel
SHEARING: Some results

Velocity of the Flyer > 400 m/s
Sample No.	1	3	4
Burr height(µm) | 0 | 33.29 | 48.03

Burr height will increase with decreasing energy.
• Capacitor bank discharges large current into actuator
• Actuator transfers current to metal foil
• Foil explodes due to large current, creating a high-pressure wave
• Pressure wave pushes flyer into part at high velocity
Part is completely within dimensional tolerances

- Part remains in T6 temper condition throughout entire process – no heat treatment required
- Exploding foil process shows significant improvements over hydroforming or electromagnetic forming

- Hydroforming only:
- Hydroforming then explosive foil calibration:
TUBE EXPANSION

Department of Materials Science and Engineering
TUBE EXPANSION:
Instrumentation-Current, Voltage and Velocity

- 9.6 kJ Energy
- Ø0.06" Al Wire
- ID 1" Annealed Copper Tube

- Net Δr:
 - PDV: 8.3 mm
 - Calliper Measurement: 7.6 mm

Current (kAmps)
Channel 1 Velocity (m/s)
Channel 2 Velocity (m/s)
Voltage (100 V)
Pressure = Force/Area
Force = Mass * Acceleration
Acceleration = \(\frac{dV}{dt} \) where V is velocity, t is time
Mass = Density * Volume
Volume of tube \(\sim \) Area of curved surface * Thickness
\implies \text{Pressure} = \frac{(\text{Density} \times \text{Area} \times \text{Thickness} \times \frac{dV}{dt})}{\text{Area}} = (\text{Density} \times \frac{dV}{dt}) \times \text{Thickness}

Sample Calculation:
Density of copper = 8940 kg/m^3
Thickness of tube = 1.5875 \times 10^{-3} m
\(\frac{dV}{dt} = 19.6 \times 10^6 \text{ m/s}^2 \)
\implies \text{Pressure} = 8940 \times 0.0015875 \times 19.6 \text{ Mpa} = 278.1681 \text{ Mpa}
TUBE EXPANSION:
Result summary

![Ohio State University Logo](image)

Department of Materials Science and Engineering

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Energy (kJ)</th>
<th>Wire material</th>
<th>Max Current (kAmps)</th>
<th>Rise Time (μs)</th>
<th>Max Velocity C1, C2 (m/s)</th>
<th>First dV/dt (m/s²)*10^6</th>
<th>Peak Pressure (Mpa)</th>
<th>Max dV/dt excluding first value (m/s²)*10^6</th>
<th>Peak Pressure (Mpa)</th>
<th>Final OD (inch)</th>
<th>% Radial Strain</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.4</td>
<td>Al, 0.06" diameter</td>
<td>126</td>
<td>20.4</td>
<td>90,101</td>
<td>40.3</td>
<td>571.0477</td>
<td>19.6</td>
<td>278.1681</td>
<td>1.45</td>
<td>28.8%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.4</td>
<td>Al, 0.06" diameter</td>
<td>121</td>
<td>19.6</td>
<td>83,79</td>
<td>11.6</td>
<td>164.6301</td>
<td>23.1</td>
<td>327.841</td>
<td>1.39</td>
<td>23.5%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.4</td>
<td>Al, 0.06" diameter</td>
<td>125</td>
<td>19.6</td>
<td>87</td>
<td>59.5</td>
<td>884.4389</td>
<td>15</td>
<td>212.8838</td>
<td>1.43</td>
<td>27.1%</td>
<td>PDV 2 not working</td>
</tr>
<tr>
<td>4</td>
<td>8.0</td>
<td>Al, 0.06" diameter</td>
<td>135</td>
<td>19.6</td>
<td>112, 106</td>
<td>29.7</td>
<td>421.5098</td>
<td>32.3</td>
<td>458.4097</td>
<td>1.6</td>
<td>42.2%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>Al, 0.06" diameter</td>
<td>135</td>
<td>18.8</td>
<td>118, 112</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.66</td>
<td>47.5%</td>
<td>Noisy velocity data</td>
</tr>
<tr>
<td>6</td>
<td>9.6</td>
<td>Al, 0.06" diameter</td>
<td>135</td>
<td>17.2</td>
<td>70, 66</td>
<td>41.4</td>
<td>587.5592</td>
<td>24.1</td>
<td>342.0332</td>
<td>1.35</td>
<td>20%</td>
<td>Current Shortage through tube</td>
</tr>
<tr>
<td>7</td>
<td>9.6</td>
<td>Al, 0.06" diameter</td>
<td>143</td>
<td>17.2</td>
<td>123, 131</td>
<td>29.7</td>
<td>421.5098</td>
<td>38.1</td>
<td>540.7247</td>
<td>1.72</td>
<td>52.8%</td>
<td>Cracking Begins</td>
</tr>
<tr>
<td>8</td>
<td>8.0</td>
<td>Al, 0.03" diameter</td>
<td>70</td>
<td>8.9</td>
<td>77, 70</td>
<td>21.4</td>
<td>803.7142</td>
<td>28</td>
<td>397.383</td>
<td>1.65</td>
<td>46.6%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8.0</td>
<td>Al, 0.08" diameter</td>
<td>157</td>
<td>24.5</td>
<td>16,19</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.22</td>
<td>8.4%</td>
<td>Noisy velocity data</td>
</tr>
<tr>
<td>10</td>
<td>8.0</td>
<td>Cu, 0.06" diameter</td>
<td>154</td>
<td>22.8</td>
<td>24,23</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.28</td>
<td>13.8%</td>
<td>Noisy velocity data</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- Very high pressures to move workpieces very fast
- PDV can be used for validating models for this process
- Quick estimates of pressure by PDV
- Optimization of process: velocity of impact, travel distance before impact etc.