HETEROODYNE VELOCIMETRY
AND DETONICS EXPERIMENTS

Pierre-Antoine FRUGIER, Patrick MERCIER, Jacky BENIER
CEA–DAM–DIF FRANCE

Austin, November 5th-6th, 2009

Approved for public release. Distribution unlimited.
OVERVIEW

- APPARATUS CONFIGURATIONS
 - 1 or 2 lasers
 - 1 or 2 optical fibers

- HARDWARE

- SOFTWARE & PROCESSING

- EXPERIMENTS
 - Tin particles velocity
 - Laser shock driven experiments
 - Embedded fibers in nitromethane

- CONCLUSION
OVERVIEW

- **APPARATUS CONFIGURATIONS**
 - 1 or 2 lasers
 - 1 or 2 optical fibers

- **HARDWARE**

- **SOFTWARE & PROCESSING**

- **EXPERIMENTS**
 - Tin particles velocity
 - Laser shock driven experiments
 - Embedded fibers in nitromethane

- **CONCLUSION**
PDV: single setup with one optical fiber

- Single-mode laser 1.55µm, 2W
- Circulator
- Single-mode optical fiber
- Moving object
- Coupler
- Detector
 BW: 50kHz-12 GHz
- Digitizer
 BW: 8 GHz
 20 GS/s
PDV: single or two-laser setups with a single optical fiber

Single-mode laser 1.55μm, 2W

10 mW (200 μW after coupler)

400 mW

-50 dB return loss (coating, angle)

Single-mode optical fiber

F₀

F

1 to 10 μW

Moving object

Circulator

Coupler

Single-mode laser 1.55μm+ δλ, 50 mW

F₁

Detector

BW: 50kHz-12 GHz

Digitizer

BW: 12 GHz
50 GS/s
PDV: Static adjustment easier with 2 spectrally-shifted lasers
PDV setup with 2 spectrally-shifted lasers: velocity range $x2$

- 1 laser: frequency f_0

 $f_D := f_0 \left(1 + 2 \frac{V}{C}\right)$ \hspace{1cm} $\Delta f := f_D - f_0$

- 1 single solution

- Laser N°0: frequency f_0

- Laser N°1: frequency f_1

- Bandwidth is doubled

2 solutions

(only 1 is physical)

$V_{\text{real}} = V_{\text{pivot}} \pm V_{\text{measured}}$

$V_{\text{measured}} = |V_{\text{real}} - V_{\text{pivot}}|$
PDV setup with 2 spectrally-shifted lasers: velocity solutions

Experimental velocities

Measured velocities (TFR)

Retrieved velocities

\[V_p = (F_D - F_0) \cdot \lambda / 2 \]
\[V_m = (F_D - F_0) \cdot \lambda / 2 \]
\[V_e = (F_D - F_0) \cdot \lambda / 2 = (F_D - F_1) \cdot \lambda / 2 + (F_1 - F_0) \cdot \lambda / 2 \]
\[V_e = V_m + V_p \]

\[V_m = |V_p - V_e| \]
\[V_c = V_p \pm V_m \]
PDV setup with 2 spectrally-shifted lasers: velocity solutions with a wrong shift way

Experimental velocities Measured velocities (TFR) Calculated velocities

Example 3

\[V_m = |V_p - V_e| \]

\[V_c = V_p \pm V_m \]

Wrong solution

Right solution
FREE SURFACE VELOCITY OF Ta PLATE. H.E. PWG

Single laser and two-laser results: Excellent agreement

Aliasing on 2-laser setup makes the signal slightly more complex
PDV with two spectrally-shifted lasers

- Bandwith x2 → velocity range x2

- Higher velocity measurement (10, 20 km/s….)

- Frequency beat is useful
 - For static level adjustments (easier for operator)
 - To measure photometry level and evolution (static/dynamic)

- No folding of negative velocity (example later)

- Processing: two possible solutions, only one is physical

\[V_{\text{experimental}} = |V_{\text{measured}} \pm V_{\text{pivot}}| \]

OVERVIEW

- **APPARATUS CONFIGURATIONS**
 - 1 or 2 lasers
 - 1 or 2 optical fibers

- **HARDWARE**

- **SOFTWARE & PROCESSING**

- **EXPERIMENTS**
 - Tin particles velocity
 - Laser shock driven experiments
 - Embedded fibers in nitromethane

- **CONCLUSION**
PDV: single or two-laser setups with a single optical fiber

- Single-mode laser 1.55 µm, 2W
- 400 mW
- 10 mW (200 µW after coupler)
- Single-mode optical fiber
- Circulator
- Detector BW: 50 kHz-12 GHz
- Digitizer BW: 12 GHz 50 GS/s
- Moving object
- -50 dB return loss (coating, angle)

(2%, 98%)
PDV: single or two-laser setups with two optical fibers

Single-mode laser
1.55 µm, 2W

Single-mode laser
1.55 µm + 8λ, 50 mW

400 mW

10 mW
(200 µW after coupler)

F₀

F₀

F₁

Coupler
(2%, 98%)

Detector
BW: 50kHz-12 GHz

F - F₁

Digitizer
BW: 12 GHz
50 GS/s

No coating

Moving object

1 to 10 µW

(2%, 98%)
OVERVIEW

- **APPARATUS CONFIGURATIONS**
 - 1 or 2 lasers
 - 1 or 2 optical fibers

- **HARDWARE**

- **SOFTWARE & PROCESSING**

- **EXPERIMENTS**
 - Tin particles velocity
 - Laser shock driven experiments
 - Embedded fibers in nitromethane

- **CONCLUSION**
Subcontracted PDV cabinet

- Digitizer
 DPO 71254
 (12 GHz, 50 GS/s)
- Detector unit
- Tunable laser
- Main laser
PDV PROBES: «OZ optics» and «LIGHTPATH»

- Efficiency law: level and probing depth range
- Return loss (-40 to -60 dB)
- Size

OZ Optics: Φ 2.5 mm

Lightpath: Φ 1.25 mm

E2000 connector
Copper cylinder experiment:

- 2 channels setup with couplers and circulators.
- Single channel setup with couplers.
OVERVIEW

● APPARATUS CONFIGURATIONS
 ■ 1 or 2 lasers
 ■ 1 or 2 optical fibers

● HARDWARE

● SOFTWARE & PROCESSING

● EXPERIMENTS
 ■ Tin particles velocity
 ■ Laser shock driven experiments
 ■ Embedded fibers in nitromethane

● CONCLUSION
Short Term Fourier Transform algorithm (FFT as implemented in Matlab). Mostly with 50 ns (1000-2000 pts) windowing and 10 ns step. Satisfying enough for most experiments.

\[|S_x(\tau, \nu)|^2 = \int x(\tau)h(\tau - t)^* x(u)^* h(u - t) e^{-j2\pi \nu (\tau - u)} d\tau du \]

\[I(t) = 1 + \cos \left(2 \cdot \frac{2\pi}{\lambda_0} \int_0^t v(u) du \right) \]

\[V(t) = \Delta F(t) \cdot \frac{\lambda_0}{2} \]
Uncertainties are spread over:

Signal dependent
- **Drift**
 - A few 10^{-4} m/s each
 - $Biais\left(f_i(l)\right) \approx \frac{\phi^{(3)}(lT).h^2}{80.\pi}$
 - *Difficult* to evaluate

- **Variance**
 - $Var\left(f_i(l)\right) \approx \frac{6\sigma^2 T}{4\pi^2 |A|^2 h^3}$
 - *Evaluable* through momentum algorithm (under gaussian white centered noise assumption)

Sampling / Processing dependent
- **Quantization**
 - $\Delta \nu = \frac{1}{2 \cdot \delta t \cdot N \cdot padding}$
 - Typically 5-15 m/s
Collaboration with a DSP team (Supelec) brought us to develop an algorithm with adaptative window. Currently under development (latest modifications allow efficient processing, even with multi-frequency contents). To be further tested and implemented.

The size of the window is chosen such as to minimize bias and variance (chosen through an interval of confidence algorithm):

- Thus, bias and variance are made negligible wrt quantization: in this case, zero-padding lowers down uncertainties

- Not applicable to rapid changes in velocities
- Easier Graphical User Interface for ‘daily’ processing of PDV signals

- Better visualisation

- Automatic selection of the velocity curve on the spectrogram…

- …and direct export to a .xls file

- Designed to be expandable (modules) and compilable as a standalone crossplatform application
PDV Signal Processing

Software: signal interface
PDV Signal Processing

Software: spectrogram interface – linear scaling
PDV Signal Processing

Software: spectrogram interface – Log10 scaling
PDV Signal Processing

Software: spectrogram interface – column-normalized scaling
PDV Signal Processing

Software: spectrogram interface – column-normalized and Log10 scaling
Software: interactive tracking of the velocity
Software: interactive tracking of the velocity

- The blue dots are the ones that are actually exported in the ‘.xls’ file
OVERVIEW

- APPARATUS CONFIGURATIONS
 - 1 or 2 lasers
 - 1 or 2 optical fibers

- HARDWARE

- SOFTWARE & PROCESSING

- EXPERIMENTS
 - Tin particles velocity
 - Laser shock driven experiments
 - Embedded fibers in nitromethane

- CONCLUSION
GUN EXPERIMENT ON TIN : PARTICLE VELOCITY

Corrected Time-Frequency Spectrogram

V_{Tin free surface} about 1700 m/s

V_{Tin articles} 1800 to 2500 m/s

Raw Time-Frequency Spectrogram
GUN EXPERIMENT ON TIN : PARTICLE SIZE

- No vacuum (air atmospheric pressure)
- Model with only drag force: braking
- $C_d = 0.45$
- Size range: 0.4 to 5 µm
- Better model: with ablation
OVERVIEW

● APPARATUS CONFIGURATIONS
 ■ 1 or 2 lasers
 ■ 1 or 2 optical fibers

● HARDWARE

● SOFTWARE & PROCESSING

● EXPERIMENTS
 ■ Tin particles velocity
 ■ Laser shock driven experiments
 ■ Embedded fibers in nitromethane

● CONCLUSION
LULI EXPERIMENTAL SETUP

- **Laser**
- **Protection window**
- **PDV probe**
- **Other diagnostics (VISAR or camera)**
- **Particles**
- **Al target (20 to 1000 µm)**
- **Transverse Shadowgraphy (3 cameras)**
LULI 2000 LASER : EXPERIMENTAL CHAMBER

- **LULI 2000**
 - $\lambda = 1057$ nm
 - $E = 790$ J
 - Pulse duration = 2 or 3 ns
 - Target spot diameter : 3 or 4 mm
 - Irradiance = 2 to 5 TW/cm²
 - Vacuum = 10^{-5} mbar
LULI PDV SHOT PROGRAM (12 ns shots, 22 fs shots)

<table>
<thead>
<tr>
<th>Shot</th>
<th>Target</th>
<th>Laser ($\lambda = 1057$ nm)</th>
<th>Target (defocus)</th>
<th>Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Material</td>
<td>Thickness</td>
<td>Pulse</td>
<td>Energy</td>
</tr>
<tr>
<td>T15 ns</td>
<td>Al</td>
<td>200 μm</td>
<td>LULI200</td>
<td>2.2 ns</td>
</tr>
<tr>
<td>T20 ns</td>
<td>Al</td>
<td>1000 μm</td>
<td>LULI200</td>
<td>3.1 ns</td>
</tr>
<tr>
<td>T19 fs</td>
<td>Al</td>
<td>20 μm</td>
<td>100TW</td>
<td>300 fs</td>
</tr>
<tr>
<td>T22 fs</td>
<td>Al</td>
<td>20 μm</td>
<td>100TW</td>
<td>300 fs</td>
</tr>
</tbody>
</table>

Single laser configuration
OZ probe, Φ 2.5 mm
SHOT T20 ns: 1 mm, 2 TW/cm², 3.1 ns \rightarrow Spall created

- Break-out time
- VISAR
- Spall comes away from the Al bulk
- Flight of the spall
- Impact on the window

26 ns (70 µm thickness)
SHOT T15 ns : 200 µm, 5 TW/cm², 2.2 ns → Particles created

Flight of particles and fragments

Impact on the window

PDV raw signal

T = 250 ns

T = 500 ns

4.7 µs

Break out time

Velocity

5000 m/s

4000 m/s

3000 m/s

2000 m/s

1000 m/s

Time
SHOT T19 fs: 20 μm, 1.7 PW/cm², 300 fs → Particles cloud

Impact on window

Hyperbola: \(V = d / (t - t_{\text{break out}}) \)

Artefact: beats of two laser modes

1st particle family

2nd particle family

Break out time

PDV raw signal

T = 1 µs

T = 3 µs
PDV: Velocity sign accessible with 2 spectrally-shifted lasers.

- Two laser configuration
- Single laser configuration

Negative velocity
Folded velocity

Al target (20 to 1000 µm)
OVERVIEW

- APPARATUS CONFIGURATIONS
 - 1 or 2 lasers
 - 1 or 2 optical fibers

- HARDWARE

- SOFTWARE & PROCESSING

- EXPERIMENTS
 - Tin particles velocity
 - Laser shock driven experiments
 - Embedded fibers in nitromethane

- CONCLUSION
PDV SETUP FOR EMBEDDED FIBER IN NITROMETHANE

Single-mode laser
1.55μm, 2W

Single-mode laser
1.55μm+ δλ, 50 mW

Circulator

Singlemode optical fiber

Coupler

Detector
BW : 50kHz-12 GHz

Digitizer
BW : 8 GHz
20 GS/s

Moving object

Bare fiber
PDV AND EMBEDDED FIBER IN NITROMETHANE: STEADY DETONATION

\[V_{\text{real}} = \frac{V_{\text{pivot}} + V_{\text{measured}}}{n_{\text{silica}}} = 6270 \text{ ms}^{-1} \]
PDV AND EMBEDDED FIBER IN NITROMETHANE: NON STEADY DETONATION
HV AND EMBEDDED FIBER IN NITROMETHANE: NON STEADY DETONATION
CONCLUSION

- **Photonic Doppler Velocimetry (PDV)** is a remarkable and versatile tool with many advantages in comparison to DLI and VISAR:
 - Low cost, fully fibered setup, small probe sizes & spot
 - Good accuracy (a few m/s), good photometric dynamics (more than 26 dB)
 - Long time record (5 to 100 µs)
 - Ability to record simultaneously many velocities (with one or two solutions)
 - Large velocity range (0 – 20 km/s with 2-laser setup)
 - New PDV equipments subcontracted (12 GHz BW, 50 GS/s sampling)

- **Future**
 - We plan to improve the number of probes
 - Raw signal information (20 ps sampling) not yet completely used
 - Particles (histogram, size)
 - Embedded fibers…
2006 :
P. MERCIER, J. BENIER, A. AZZOLINA, JM. LAGRANGE, D. PARTOUCHE
"Photonic Doppler Velocimetry in shock physics experiments“

2008 :
P. MERCIER, J. BENIER, P.A. FRUGIER, G. CONTENCIN, J. VEAUX, S. LAURIOT-BASSEUIL, M. DEBRUYNE
Heterodyne velocimetry and detonics experiments.
28th International Congress on High-Speed Imaging and Photonics. Canberra, Australia. 9-14 november (2008).

2009 :
Velocity Heterodyne measurements under high power laser shock into solids

P.A. FRUGIER, P. MERCIER, J. BENIER, E. DUBREUIL, J. VEAUX
PDV and shock physics
SPIE - Optics and photonics. San Diego, USA. 2-6 august (2009).

J. BENIER, P. MERCIER, E. DUBREUIL, J. VEAUX, P.A. FRUGIER.
New Heterodyne Velocimetry and shock physics.
ACKNOWLEDGEMENTS

● CEA-DAM-DIF
 ■ Estelle DUBREUIL,
 ■ Séverine LAURIOT,
 ■ Jacqueline VEAUX,
 ■ Blandine CROUZET,
 ■ Michel DEBRUYNE,
 ■ Yann PIERRE,
 ■ Thierry SOMMERLINCK,
 ■ Virgile GUYOT,
 ■ Arnaud SOLLIER.

● LULI-CEA-ECOLE POLYTECHNIQUE
 ■ Marc RABEC LE GLOAHEC

● CNRS-ENSMA Poitiers
 ■ Michel BOUSTIE,
 ■ Thibaut de RESSEGUIER,
 ■ Jean-Paul CUQ-LELANDAIS,
 ■ Emilien LESCOUTE.

● CNRS-LALP-PIMM Paris
 ■ Mariette NIVARD,
 ■ Elise GAY.