Directional Velocity Measurements Using Frequency-Shifted Reference Leg in a PDV System

Scott C. Jones, Gary R. Chantler, and Timothy T. Covert, Sandia National Laboratories, Albuquerque, NM

Adrian Hughes and Andrew Sibley, Atomic Weapons Establishment, Aldermaston, UK

PDV Workshop, Austin, TX
Approved for public release. Distribution unlimited.
November 2009
Ed Daykin and Carlos Perez, PDV Workshop 2008, described advantages of using an up-shifted laser frequency in a PDV system in order to provide direction-of-travel information from a single channel PDV record.

The promise of this technique is very attractive for developing a large probe number, direction-sensitive velocimetry system for Sandia’s LIHE (Light-Initiated High Explosive) impulse testing facility – potentially very robust and economical.

Should require one oscilloscope channel/probe, and Er-fiber lasers are much less expensive than 532 nm CW lasers of sufficient power to anchor a 10+ probe system.

Up-shifted PDV, PDI and conventional VISAR were tested side-by-side to measure LIHE-driven flyer velocities required to determine the momentum imparted to test objects in a three shot demonstration effort.
Objects of diagnostic development are to provide a many probe (10+) system that can measure the flyer-delivered impulse over many points of a test structure accurately, easily and economically.

Impulse (momentum transferred/unit area)

\[I = mDv \]

where \(m \) = flyer mass/area.

Need to accurately measure both the impact and rebound (negative) velocities in order to obtain the desired \(Dv \)
• With 3 kHz line-width, no need to match leg length
• Up-shift Modulator: Brimrose XXX-XX-YYZ
• Probe: OZ 60 dB, 6.2 mm aperture, 28 mm WD
• Flyer – 8 mil, 1100 Aluminum foil, rough polished

\[n_{det} = n_{ref} - n_{targ} \]
\[n_{det} = n_{us} - 2n_{o}(v/c) \]
\[v \geq, \leq 0 \]
The up-shift PDV was fielded along with 3-phase Photonic Displacement Interferometer (PDI) and conventional VISAR at 532 nm as a head-to-head test for deciding future diagnostic direction at SNL’s LIHE facility.
Flyer & Target Hardware
Data & Analysis

500 MHz beat frequency pre-shot

Full record

PDV Vers. 2.1, NSTec LAO

\[n_{\text{det}} = n_{\text{ref}} - n_{\text{targ}} \]

\[n_{\text{det}} = n_{\text{us}} - 2n_o(v/c) \]

“Initial” velocity for \(n_{\text{us}} = 500 \) MHz

\[v_i = ln_{\text{us}}/2 = 387.5 \text{ m/s} \]
To obtain the final velocity profile, v_f, from the PDV analysis result, v_o,

$$v_f = -(v_o - 387.5 \text{ m/s})$$
Results

PDI data not analyzable

SHOT 38C PDV

SHOT 38C VISAR
Results
Comparison to Normal PDV

Up-shift PDV

One PDI Channel, same shot

Direction of travel is automatic result of technique
Conclusion

The up-shifted reference PDV system was demonstrated to work very well in this first attempt at fielding – a fairly difficult first try.

This method appears to be more forgiving of poor and varying return signal than PDI using the same probes – a result of extracting frequency rather than interference phase.

Optimizing probe configuration should pay off with even easier set-up and more robust signal quality.

Economics relative to conventional VISAR is self-evident for a large probe number system – single scope channel per probe vs 3 for PDI and 2-4 for VISAR.

A 10+ probe system is presently under development at Sandia’s LIHE facility.
Backup Slides
Single Channel PDI

Laser → 1 → 2 → Radius → 3 → Target

• Analysis of Lissajous (2 ch) enables automated displacement analysis for arbitrarily long records (up to 1 Mpoints to date)
• Reduces uncertainty in displacement analysis-Unambiguous direction, numerically

PDI with Quadrature Recording

Laser → 1 → 2 → Probe → Target

• Target and reference signals mix in 3x3 coupler
• 3x3 coupler output signals have stable $\phi = 120^\circ$ phase difference.
• Symmetric target and reference legs for simple proof-of-principle. Not required for multiple probe system