PDV measurements of structured wave profiles at modest velocities (< 1 km/s)

2009 Photonic Doppler Velocimetry (PDV) Workshop

November 5-6, 2009
Austin, TX

Z Accelerator

Veloce

Gas Gun

T. Ao and D.H. Dolan
Sandia National Laboratories, Albuquerque, NM, USA
1646 Dynamic Material Properties

Approved for public release. Distribution unlimited.
Motivation

- Achieve both optimal velocity & time precision
- Where does this matter?
 - $l_0 = 1550 \text{ nm}$, $v = 100 \text{ m/s}$, $f = 0.13 \text{ GHz}$
 - $\delta v \leq 10 \text{ m/s}$, $\tau = 6 \text{ ns}$
- “Modest” velocity (<1km/s) transients
 - Structured waves (ramps and multiple shocks)
 - Elastic precursor, phase transition

Background

- PDV beat frequency: $f = \frac{2v}{\lambda_0}$; uncertainty product: $(\delta v)(\tau) \geq \frac{\lambda_0}{8\pi}$, $\tau = \frac{\lambda_0}{8\pi \delta v}$

STFT analysis

$\tau = 20 \text{ ns}$

$\tau = 5 \text{ ns}$

Ramp loading on Veloce

LiF (VISAR) 6 GPa

T. Ao et al., RSI 79, 013903 (2008)
PDV Analyses

- **Detector measures output intensity**

\[
D(t) = aI_R + bI_T(t) + 2\sqrt{I_R I_C(t)} \cos \left[\Phi(t_i) + 4\pi \frac{x(t) - x(t_i)}{\lambda_0} \right]
\]

- **Short-time Fourier Transform (STFT)**
 - Finite time window, usually over several fringes
 - Velocity from Gaussian fitting of power spectrum

- **Three-phase analysis (THRIVE\(^1\))**
 - Three signals shifted by 120°
 - Displacement from quadrature reduction (similar to VISAR analysis)
 - Velocity from differentiation of displacement

- **Local sinusoid**
 - Similar to STFT, less robust to transients

\(^1\)D.H. Dolan and S.C. Jones, RSI 78, 076102 (2007)
Experimental Configuration

- **Gas gun**
 - Ring-up to shock state
 - Comparable target geometry to pulsed power loads

- **Three-phase PDV measurement**
 - Focusing probe (f = 12 mm)
 - DC detectors cleaner than AC detectors but are less sensitive

![Diagram showing experimental setup and measurements](image-url)
- **STFT power spectrum**
 - 20 ns Hamming window
 - Gaussian fitting of peaks

![Diagram with primary and secondary reflections](Image)

- **Apparent velocity (m/s)**
- **Time (ns)**
- **Output (V)**
- **STFT (20 ns)**

Measured PDV signal

- **Apparent velocity (m/s)**
- **Time (ns)**

- **Sandia National Laboratories**
- $t = 20$ ns
 - THRIVE & STFT agree with WONDY prediction
 - Smaller oscillations with STFT

- $t = 5$ ns
 - Deviation between THRIVE & STFT
 - STFT’s average velocity biased systematically lower than WONDY
 - Smaller oscillations with THRIVE
- Attempt to reduce secondary reflection
 - Focusing probe insufficient
 - Add Quartz window to diminish multiple window transit effect
 \[D(t) \propto \sqrt{I_R I_{C_1}(t)} \cos \Phi_1 + \sqrt{I_R I_{C_2}(t)} \cos \Phi_2 \]
- Oscillations smaller than with only Sapphire window but remains
 - Need anti-reflective coating at free surface
- **Anti-reflective coating on Sapphire**
 - Reflectivity < 0.05% at 1550 nm

- **STFT power spectrum**
 - 20 ns Hamming window
 - Gaussian fitting of peaks

Diagram:
- PDV
- Sapphire 12mm
- Quartz 0.5mm
- AR coating

Graphs:
- Apparent velocity vs. Time (ns)
- Apparent Velocity (m/s) vs. Time (ns)
- \(t = 20 \text{ ns} \)
 - THRIVE & STFT agree with WONDY prediction
 - Smaller oscillations with THRIVE

- \(t = 5 \text{ ns} \)
 - Deviation between THRIVE & STFT
 - STFT’s average velocity biased systematically lower than WONDY
 - Smaller oscillations with THRIVE
Mitigation of secondary reflection

- Anti-reflective coating with THRIVE analysis
 - Velocity oscillations of \(\frac{dv}{v} \approx 1\% \) (1s) and \(t=5 \) ns
 - Comparable to velocity and time precision of VISAR
Summary

- **Transient wave profiles at modest velocities (< 1km/s)**
 - Require optimization of both velocity and time precision

- **Short time Fourier Transform analysis (STFT)**
 - Robust and “simple”
 - Reliable over many fringes (large t) but suspect for small number of fringes (small t)

- **Three-phase analysis (THRIVE)**
 - More complicated (3 detectors/probe), more characterizations
 - Better for rapid transients
 - Consistent with STFT over many fringes (large t)

- **Must mitigate secondary reflection at window free surface**
 - Anti-reflective coating < 0.05%
 - Wedged window
Acknowledgements

- Sheri Payne
- Aaron Bowers
- Jesse Lynch
- Andy Shay
- Randy Hickman
Examine displacement profile

- Sinusoid riding on linear ramp

\[x(t) = x(t_i) + vt + A \cos \left(\frac{4\pi}{\lambda_0} vt \right) + B \sin \left(\frac{4\pi}{\lambda_0} vt \right) \]

- Iteratively solve for velocity
 - Use time window covering at least one wavelength of sinusoid (\(t = 6 \text{ ns} \))