LIF Spectroscopy on Rotational Distribution of HfF Photo-ions

M.C. Grau1, H. Loh1, T.S. Yahn1, R.P. Stutz1,
R.W. Field2, E.A. Cornell1

1JILA, NIST and University of Colorado, and Department of Physics,
University of Colorado at Boulder, Boulder, Colorado 80309-0440

2Department of Chemistry, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

Laura Sinclair, Kevin Cossell, Jun Ye,
Chris Greene, Jia Wang, John Bohn
1 Motivation
 - Why Use HfF$^+$?

2 Auto-Ionization
 - Rotational Distribution
 - Orientation
HfF\(^+\) in \(^3\Delta_1\) is Sensitive to electron EDM.

\[E_{\text{eff}} T \sqrt{N} \]

- Measuring the electron EDM is a sensitive probe of CP violation, and exotic new physics.
- EDM sensitivity is proportional to \(E_{\text{eff}} T\).
- Diatomic molecules have large effective electric field.
- Trapped ions can have long measurement times.
Motivation

Why Use HfF$^+$?

HfF$^+$ in $^3\Delta_1$ is Sensitive to electron EDM.

$$E_{\text{eff}}^\tau \sqrt{N}$$

- Measuring the electron EDM is a sensitive probe of CP violation, and exotic new physics.
- EDM sensitivity is proportional to E_{eff}^τ.
- Diatomic molecules have large effective electric field.
- Trapped ions can have long measurement times.
Motivation
Auto-Ionization

Why Use HfF$^+$?

HfF$^+$ in $^3\Delta_1$ is Sensitive to electron EDM.

$E_{\text{eff}} \sqrt{T} \sqrt{N}$

- Measuring the electron EDM is a sensitive probe of CP violation, and exotic new physics.
- EDM sensitivity is proportional to $E_{\text{eff}} T$.
- Diatomic molecules have large effective electric field.
- Trapped ions can have long measurement times.
HfF⁺ in $^3\Delta_1$ is Sensitive to electron EDM.

\[E_{\text{eff}}^T \sqrt{N} \]

- Measuring the electron EDM is a sensitive probe of CP violation, and exotic new physics.
- EDM sensitivity is proportional to E_{eff}^T.
- Diatomic molecules have large effective electric field.
- Trapped ions can have long measurement times.
Creating HfF⁺ In a Single Quantum State

- Perform electron spin resonance on $J = 1, ^3\Delta_1$.
- We want to create a large fraction of ions in this state.
 - More signal
 - Better contrast.
 - Less collisions (better τ).
- Produce ions in this state via Auto-Ionization.

$J = 1, ^3\Delta_1$

Motivation
Auto-Ionization

Why Use HfF⁺?
Creating HfF\(^+\) In a Single Quantum State

Perform electron spin resonance on \(J = 1, 3\Delta_1\).

- we want to create large fraction of ions in this state.
 - More signal
 - Better contrast.
 - Less collisions (better \(\tau\)).

- Produce ions in this state via Auto-Ionization.
Creating HfF$^+$ In a Single Quantum State

- Perform electron spin resonance on $J = 1$, $^3\Delta_1$.
- We want to create a large fraction of ions in this state.
 - More signal
 - Better contrast.
 - Less collisions (better τ).
- Produce ions in this state via Auto-Ionization.

$m = -1 \quad m = 0 \quad m = +1$

$J = 1 \quad ^3\Delta_1$
Outline

1. Motivation
 - Why Use HfF^+?

2. Auto-Ionization
 - Rotational Distribution
 - Orientation
Motivation
Auto-Ionization
Rotational Distribution
Orientation

Ionization Setup.

Ablation

Skimmers

Ionization Lasers

Hf

F

Hf+

MCP

PMT

Ar(99%)+

SF6(1%)

Ionization Lasers
Optical-Optical Double Resonance Auto-ionization.

1. Intermediate selects isotope, parity, and J.
2. Ionization spectrum shows structure on all scales.
Optical-Optical Double Resonance Auto-ionization.

1. Intermediate selects isotope, parity, and J.
2. Ionization spectrum shows structure on all scales.
Circular Dichroism.

Polarization tricks used to enhance or suppress different J.

(a) Ions

(b) P(3/2)
Perturbation of Rydberg State Rotational Band.

\[y = y_0 + B J(J+1) \]

\[B = 0.2911(6) \text{ cm}^{-1} \]

\[y_0 = 5.58(2) \text{ cm}^{-1} \]
Perturbation of Rydberg State Rotational Band.

Motivation
Auto-Ionization
Rotation Distribution
Orientation

\begin{align*}
y &= y_0 + B J (J+1) \\
y_0 &= 5.58(2) \text{ cm}^{-1} \\
B &= 0.2911(6) \text{ cm}^{-1}
\end{align*}

MC Grau, H Loh, TS Yahn, RP Stutz, RW Field, EA Cornell

LIF Spectroscopy on Rotational Distribution of HfF Photo-ions
LIF Setup.

Ablation

Skimmers

Ionization Lasers

PMT

MCP

Ar(99%) + SF₆(1%)

Hf

F

Hf⁺

LIF Spectroscopy on Rotational Distribution of HfF Photo-ions

MC Grau, H Loh, TS Yahn, RP Stutz, RW Field, EA Cornell
LIF Setup.

Motivation
Auto-Ionization
Rotation Distribution
Orientation

LIF Spectroscopy on Rotational Distribution of HfF Photo-ions
Rotational Distribution of Decay Products.

LIF intensities

- Measure LIF photons from $^1\Pi \rightarrow X^1\Sigma$ of HfF$^+$.
- A simple model where the Rydberg molecule wavefunction is projected onto decay products.
- Good agreement, does not assume rotational dynamics.

67.5%$p_{3/2}$, 9.8%$d_{3/2}$, 22.7%$d_{5/2}$

J. Wang, C. Greene, JILA

JILA
Rotational Distribution of Decay Products.

67.5% $p_{3/2}$, 9.8% $d_{3/2}$, 22.7% $d_{5/2}$

1. Measure LIF photons from $^1\Pi \rightarrow X^1\Sigma$ of HfF$^+$.
2. A simple model where the Rydberg molecule wavefunction is projected onto decay products.
3. Good agreement, does not assume rotational dynamics.

J. Wang, C. Greene, JILA
Rotational Distribution of Decay Products.

67.5% $p_{3/2}$, 9.8% $d_{3/2}$, 22.7% $d_{5/2}$

1. Measure LIF photons from $^1\Pi \rightarrow X^1\Sigma$ of HfF$^+$.
2. A simple model where the Rydberg molecule wavefunction is projected onto decay products.
3. Good agreement, does not assume rotational dynamics.

J. Wang, C. Greene, JILA
1 Motivation
 - Why Use HfF⁺?

2 Auto-Ionization
 - Rotational Distribution
 - Orientation
LIF Setup.

Ar(99%)+SF₆(1%) → Hf

Ablation

Skimmers

Hf F

MCP

PMT

Ionization Lasers + LIF

Hf F

Hf+

PMT

MCP

LIF Spectroscopy on Rotational Distribution of HfF Photo-ions
LIF Setup.

MC Grau, H Loh, TS Yahn, RP Stutz, RW Field, EA Cornell

LIF Spectroscopy on Rotational Distribution of HfF Photo-ions
Orient Molecule With Circularly Polarized Light.

By using circularly polarized for the ionization photons, certain transitions are forbidden.

As a result, we can create a Rydberg molecule with polarized Zeeman levels.
Orient Molecule With Circularly Polarized Light.

By using circularly polarized polarization for the ionization photons, certain transitions are forbidden.

As a result, we can create a Rydberg molecule with polarized Zeeman levels.
Orient Molecule With Circularly Polarized Light.

By using circularly polarization for the ionization photons, certain transitions are forbidden.

As a result, we can create a Rydberg molecule with polarized Zeeman levels.
Orientation results.

- The orientation of the Rydberg molecule is preserved during auto-ionization.
- Simple projection model does not do as well.

J. Wang, C. Greene, JILA
The orientation of the Rydberg molecule is preserved during auto-ionization.

Simple projection model does not do as well

Motivation

- Auto-Ionization
- Rotational Distribution
- Orientation

Orientation results.

J. Wang, C. Greene, JILA
Progress Towards State Preparation.

60% of ions in $J = 1$.

50% of ions in $m_J = -1$.

Create 1000 ions per shot, 30% are in the $J = 1$, $m_J = -1$.
Summary

- We create 300 HfF$^+$ in $X^1\Sigma_0$, $J = 1, m_J = -1$.

Outlook
- Still need to create HfF$^+$ in $^3\Delta_1$ science state.
Funded by NSF, W.M. Keck Foundation, Marsico Char of Excellence.
Electron Spin Resonance Measurement.