GAS EXCHANGE, LEAF NITROGEN, AND GROWTH EFFICIENCY OF POPULUS TREMULOIDES IN A CO₂-ENRICHED ATMOSPHERE

PETER S. CURTIS,¹,⁸ CHRISTOPH S. VOGEL,² XIANZHONG WANG,¹ KURT S. PREGITZER,³ DONALD R. ZAK,⁴ JOHN LUSSENHOP,⁵ MARK KUBISKE,⁶ AND JAMES A. TEEPII

¹Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio 43210-1293 USA
²University of Michigan Biological Station, University of Michigan, Ann Arbor, Michigan 48109 USA
³School of Forestry and Wood Products, Michigan Technological University, Houghton, Michigan 49931 USA
⁴School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109 USA
⁵Department of Biology, University of Illinois, Chicago, Illinois 60680 USA
⁶School of Forestry, Mississippi State University, Mississippi State, Mississippi 39762 USA
⁷University of Michigan Biological Station, University of Michigan, Ann Arbor, Michigan 48109 USA

Abstract. Predicting forest responses to rising atmospheric CO₂ will require an understanding of key feedbacks in the cycling of carbon and nitrogen between plants and soil microorganisms. We conducted a study for 2.5 growing seasons with Populus tremuloides grown under experimental atmospheric CO₂ and soil-N-availability treatments. Our objective was to integrate the combined influence of atmospheric CO₂ and soil-N availability on the flow of C and N in the plant–soil system and to relate these processes to the performance of this widespread and economically important tree species. Here we consider treatment effects on photosynthesis and canopy development and the efficiency with which this productive capacity is translated into aboveground, harvestable yield.

We grew six P. tremuloides genotypes at ambient (35 Pa) or elevated (70 Pa) CO₂ and in soil of low or high N mineralization rate at the University of Michigan Biological Station, Pellston, Michigan, USA (45°35’ N, 84°42’ W). In the second year of growth, net CO₂ assimilation rate was significantly higher in elevated-CO₂ compared to ambient-CO₂ plants in both soil-N treatments, and we found little evidence for photosynthetic acclimation to high CO₂. In the third year, however, elevated-CO₂ plants in low-N soil had reduced photosynthetic capacity compared to ambient-CO₂, low-N plants. Plants in high-N soil showed the opposite response, with elevated-CO₂ plants having higher photosynthetic capacity than ambient-CO₂ plants. Net CO₂ assimilation rate was linearly related to leaf N concentration (log : log scale), with identical slopes but different intercepts in the two CO₂ treatments, indicating differences in photosynthetic N-use efficiency. Elevated CO₂ increased tissue dark respiration in high-N soil (+22%) but had no significant effect in low-N soil (+9%). There were no CO₂ effects on stomatal conductance. At the final harvest, stem biomass and total leaf area increased significantly due to CO₂ enrichment in high-N but not in low-N soil. Treatment effects on wood production were largely attributable to changes in leaf area, with no significant effects on growth efficiency. We conclude that harvest intervals for P. tremuloides on fertile sites will shorten with rising atmospheric CO₂, but that tree size at canopy closure may be unaffected.

Key words: carbon dioxide, elevated; feedbacks in the plant–soil system; forest responses to rising atmospheric CO₂; gas exchange, plant–soil system; global climate change, ecological effects; growth efficiency; leaf nitrogen; Michigan (USA); photosynthesis; Populus tremuloides; respiration; soil-N availability.

INTRODUCTION

Elevated atmospheric CO₂ and plant–soil interactions

The common limitation of nitrogen (N) for plant growth and carbon (C) for microbial growth in soil results in close coupling of the plant and soil C and N cycles (Pastor and Post 1988). At a fundamental level, the response of these biogeochemical cycles to rising atmospheric CO₂ will be controlled by the growth response of plants and the extent to which changes in above- and belowground litter inputs alter the composition and function of microbial communities in soil. To further our understanding of plant–soil interactions with rising atmospheric CO₂ and hence our ability to predict changes in ecosystem function, greater attention must be paid to experiments focusing on key feedbacks.
in the cycling of C and N between plants and soil microorganisms (Curtis et al. 1994). These feedbacks occur within a complex chain of assimilation, transport, transformation, and release of these elements and require approaches that integrate physiological and growth processes operating in different spatial domains and time scales.

Soil microorganisms represent important sinks as well as sources of N (Vitousek and Matson 1984, Zak et al. 1990), and they are the main regulators of C dynamics within the soil (McGill et al. 1986). Increased fine-root and leaf production, and altered tissue biochemistry, could potentially alter microbial growth in soil, and thus influence the flow of N from soil microorganisms to plant roots. Although the interaction between plants and soil microorganisms has important consequences for C sequestration in terrestrial ecosystems, there are fundamental gaps in our knowledge of the mechanisms by which rising atmospheric CO₂ will alter the exchange of C and N between plants and soil microorganisms. For example, we understand relatively little regarding how atmospheric CO₂ will modify the production and timing of root C inputs to soil and how this input of substrate will influence the composition and function of microbial communities in soil. Moreover, it is likely that differences in soil-N availability will modify plant growth response to atmospheric CO₂, but we have little information about this potential feedback on the flow of C and N through the soil food web. Some experimental evidence suggests that C and N cycling will slow under elevated CO₂ due to the production of plant litter that will enhance rates of microbial immobilization (Diaz et al. 1993, Berntson and Bazzaz 1997), whereas others have observed increased rates of C and N transformations (Zak et al. 1993, Hungate et al. 1997). Whether rising atmospheric CO₂ will increase, decrease, or not influence rates of C and N cycling in soil has important global implications for C sequestration in terrestrial ecosystems.

In 1993 we initiated an experiment to study the combined influence of atmospheric CO₂ and soil-N availability on the cycling of C and N between plant roots and soil microorganisms. We grew softwood cuttings of Populus tremuloides Michx. under experimental atmospheric-CO₂ and soil-N-availability treatments for three growing seasons in large open-top chambers. Our experiment was designed to test the broad hypothesis that there is long-term positive feedback between CO₂ assimilation at elevated CO₂, root growth, microbial populations, and soil-N availability (Zak et al. 1993). More specifically, we hypothesized that plant C assimilation will increase in an elevated-CO₂ atmosphere, even under conditions of low soil-N availability. Moreover, we reasoned that this increase will be maintained over time by greater C translocation belowground and increased N acquisition. The latter will be driven by larger fine-root production and greater mycorrhizal infection under CO₂ enrichment, resulting in greater soil exploration. Short-term soil-C availability could increase in response to greater rates of fine-root production (or turnover), and greater soil-C availability would elicit an increase in soil microbial biomass. We also predicted that net N mineralization would increase as a result of either an increase in the turnover of microbial N (via increased protozoan grazing) or through greater organic-matter mineralization by a larger microbial population.

Carbon dioxide assimilation at high CO₂

Regardless of the physiological links between plants and soil microorganisms, the first stage in signal transduction from atmospheric C to biogeochemical processes in soil is the assimilation of CO₂ by plants. There is now a sizable body of literature detailing the gas-exchange responses of woody plants to CO₂ enrichment, with some convergence in estimates of the overall direction and magnitude of CO₂ effects on key physiological processes and allocational patterns in young (<5 yr) plants. Under optimal growth conditions (i.e., given ample water, nutrients, and light) it is clear that leaf-level light-saturated net CO₂ assimilation (hereafter called “A”’) shows a positive, sustained increase under twice-ambient CO₂, with estimates from quantitative reviews ranging from +44% (Gunderson and Wullschleger 1994) to +66% (Norby et al. 1999). A sustained increase in the assimilatory capacity of leaves is central to many predictions of greater forest productivity with rising CO₂ (Reynolds et al. 1996). Although the effect of elevated CO₂ on A is probably the best understood plant CO₂ response at a mechanistic level, our understanding of the environmental factors causing down-regulation, or acclimation of A at high CO₂ (A_accl, sensu Gunderson and Wullschleger 1994) remains incomplete. Under some conditions root restriction elicits a strong A_accl response (Thomas and Strain 1991) suggesting an important role for source : sink dynamics, but this result is far from universal (McConnaughay et al. 1993). Gunderson and Wullschleger (1994) estimated a mean 21% A_accl across 20 studies with some indication of greater A_accl under low nutrients, a conclusion supported by Curtis (1996). In a more recent review, Curtis and Wang (1998) found no evidence for systematic A_accl by trees, except for those grown in pots <0.5 L.

A promising line of research that may improve our ability to predict A_accl under different environmental conditions builds on the well-recognized positive relationship between A and leaf N concentration (Field and Mooney 1986) and on the inherent tradeoffs between C and N allocation to leaf structural or defense functions on the one hand and to assimilatory capacity on the other (Lambers and Poorter 1992). The magnitude of the CO₂ response by A, and the probability of A_accl, may be largely a function of N and structural
biomass allocation within the leaf (Luo et al. 1994) and may follow predictable patterns across biomes or plant functional groups (Peterson et al. 1999). Framing the consideration of elevated-CO2 effects on A within the context of leaf N and specific leaf area (SLA) has the additional benefit of allowing one to relate photosynthetic responses following experimental CO2 manipulations to broader patterns of plant adaptation and functioning within natural ecosystems (e.g., Reich et al. 1997).

Biomass also is consistently, positively affected by elevated CO2 under optimal conditions, but as growth conditions diverge from optimal our certainty in the average CO2 effect size is considerably less, as evidenced by markedly different conclusions reached in recent reviews. For example, while McGuire et al. (1995) and Curtis and Wang (1998) estimated a halving of the CO2 effect on biomass accumulation due to growth under low-nutrient conditions, Idso and Idso (1994) and Wullschleger et al. (1995) concluded that there was no effect of nutrients on the magnitude of the CO2 response (i.e., it was equivalent to that under optimal conditions). These different conclusions reflect both different quantitative review methods and methodological differences among the primary studies considered by the reviewers, such as the presence of interacting stress variables, length of CO2 exposure, pot size, or type of exposure facility, which can affect the CO2 response independently of soil nutrient status (Curtis 1996). Norby (1996) suggested that biomass gain per se may not be the best measure of woody-plant growth response to elevated CO2 precisely because it is so sensitive to environmental and cultural conditions. Short-term effects on development are amplified over time in young plants so that biomass gain during early growth may be poorly related to CO2 effects occurring later in stand development. As an alternative he proposed the canopy productivity index, or growth efficiency (E, wood production per unit leaf area per unit time) sensu Waring (1983) as a measure better tied conceptually to the control of productivity in trees. For example, as stand leaf-area index (LAI) increases, with consequent increases in competition for light, E typically declines in a manner reflective of species-specific adaptational characteristics and of site conditions. Factors allowing the maintenance of high E as LAI increases, such as shade tolerance or nutrient addition, lead to sustained increases in stand productivity during canopy closure (Waring 1983). Because CO2 enrichment can affect canopy development itself (e.g., Reekie and Bazzaz 1989, Ceulemans et al. 1995, Curtis et al. 1995) E may be a more conservative indicator of overall performance and a better predictor of long-term behavior than is biomass gain. Indeed, among seven elevated-CO2 experiments in which E could be calculated, the coefficient of variation (CV) for mean percentage increase in aboveground dry mass due to elevated CO2 was 75% compared to a 24% cv for the mean CO2 effect on E (Norby 1996).

In this paper, we report the effects of elevated CO2 on photosynthetic C assimilation and growth of P. tremuloides, the first step in the movement of C from the atmosphere to the biogeochemical cycling of C and N by soil microorganisms. Our objectives were to characterize the pattern of C gain over time as influenced by CO2 and soil-N availability and to put these observations into the larger picture of tree growth dynamics and long-term stand productivity. Our null hypothesis was that C assimilation and growth would show a continued, positive response to CO2 enrichment, even in low-N soil We reasoned that greater belowground growth under elevated CO2 would increase plant N acquisition, thus maintaining greater rates of C acquisition at elevated compared to ambient CO2 (Zak et al. 1993).

METHODS

Our experiment was conducted at the University of Michigan Biological Station, Pellston, Michigan, USA, 45°35’ N, 84°42’ W. An array of 20 open-bottom root boxes (3.3 × 3.3 × 0.4 m) were placed in an open field in October 1993 and filled with soil. The root boxes rested on soil surface whose A and E horizons had previously been removed. Each root box was lined with 1.3-cm-thick styrofoam insulation and plastic sheeting and contained eight minirhizotron tubes (Pregitzer et al. 2000). Two soil-N-availability treatments were established by filling half of the root boxes with the A horizon of a Kalkaska series topsoil (high-N treatment), a common soil type in northern lower Michigan, and the remaining boxes with a mixture of 20% Kalkaska A horizon and 80% Rubicon C horizon sand (low-N treatment). Five centimeters of 100% Rubicon sand were placed over the soil surface of each root box to equalize surface albedo. Net nitrogen mineralization was significantly higher in the high-N soil (318 ng N·g⁻¹·d⁻¹) than in the low-N soil (62 ng N·g⁻¹·d⁻¹, Zak et al. 2000b). These N mineralization rates are well within the range normally encountered in soils of this region and where aspen would be expected to establish following disturbance (Zak et al. 2000a). Other physical and chemical properties of the two soils are presented in Table 1. Soil texture was determined using the hydrometer method. Ceramic-plate pressure membranes were used to determine soil water content at −0.03 and −1.50 MPa. Total C and N were measured using an NC2500 Elantech elemental analyzer (CE Elantech, Lakewood, New Jersey, USA). The Bray P1 method (Kuo 1996) was used to extract PO4-P, and P concentrations were determined with an Alpkem RFA 300 autoanalyzer (Alpkem, Wilsonville, Oregon, USA). Soil pH was measured in a 1:1 soil-deionized water paste with a glass electrode.

Open-top chambers (3 × 2.3 m, Heagle et al. 1989)
were used to manipulate atmospheric-CO$_2$ partial pressure. Ten chambers received additional CO$_2$ (elevated-CO$_2$ treatment) and 10 chambers received no additional CO$_2$ (ambient-CO$_2$ treatment). Carbon dioxide treatments were randomized across soil-N availability treatments within five replicate blocks. Carbon dioxide partial pressure was increased by dispensing 100% CO$_2$ into an input blower via manual flowmeters with the atmosphere inside all elevated-CO$_2$ chambers and one ambient-CO$_2$ chamber monitored continuously using an infrared gas analyzer. Carbon dioxide treatments were maintained 24 hr/d for all days during which green leaves were present in the chambers, but CO$_2$ fumigation was terminated following leaf senescence in 1994 and 1995. Daytime (0701–1900) elevated-CO$_2$ treatment was 70.7 ± 0.06 Pa (mean of daily averages across all chambers and days ± 1 SE) and nighttime (1901–0700) elevated-CO$_2$ treatment was 73.2 ± 0.14 Pa. The ambient-CO$_2$ treatment was 35.7 ± 0.06 Pa (day) and 38.32 ± 0.09 Pa (night). Light and temperature were continuously monitored every 10 min inside and outside chambers during the growing season. Daytime temperatures were 1.34 ± 0.24°C (mean ± 1 SE) higher inside than outside chambers across the three growing seasons. The chamber plastic transmitted 81% of ambient PAR (photosynthetically active radiation).

On 7 June 1994 two individuals from each of six locally derived trembling aspen (*Populus tremuloides* Michx.) genotypes were transplanted into each root box (=12 trees per chamber) and CO$_2$ treatments begun. Genotype was therefore a subplot within the CO$_2$ × soil-N whole plot, yielding a split-plot randomized complete-block design. The genotypes were selected based on field observations of patterns of autumnal leaf senescence. Three genotypes (42E, 51E, and 61E) typically dropped their leaves in mid-October (early leaf-drop phenotype) and three genotypes (1L, 2L, and 8L) typically dropped their leaves in early November (late leaf-drop phenotype). By selecting these genotypes we hoped to encompass the variation present locally in a phenological trait that might influence the CO$_2$ response.

Individuals were arranged in two concentric circles within each chamber—an outer circle of eight trees and an inner circle of four trees. During June and July 1994 chambers were irrigated daily with 7–10 L water/m2 soil surface, except on rainy or cloudy, cool days. Plants relied on natural precipitation from August 1994 until the beginning of the harvest in July 1996. In September 1995 all chambers were enlarged to 3.4 m in height to accommodate tree growth. During the following winter 5% of each tree’s total aboveground wood volume was removed by pruning a portion of the terminal shoot. This was done to ensure containment of all trees within the open-top chambers until the end of the experiment.

Gas exchange

Leaf net CO$_2$ assimilation and stomatal conductance (g_s) were measured on 12 August 1995, and on 6 June and 16 July 1996 using a LI-COR LI-6400 portable photosynthesis system (LI-COR, Lincoln, Nebraska). Leaf temperature was maintained at 26°C–30°C and saturating light intensity (1800–2000 μmol·m$^{-2}$·s$^{-1}$ PAR) supplied with a cuvette illuminator. Gas-exchange measurements were performed between 1000 and 1600 on young, fully expanded leaves that had developed in full sun. CO$_2$ enriched air was supplied to the LI-6400 for measurements above ambient-CO$_2$ partial pressure (p(CO$_2$)).

Both A and g_s were measured at growth p(CO$_2$) and at internal leaf p(CO$_2$) (C$_i$) of 27 and 56 Pa. These C$_i$
values were representative of full-sun leaves from ambient- and elevated-CO₂ treatments, respectively, and allowed us to evaluate photosynthetic capacity independent of environmental effects on gₛ. Leaves were first exposed to their growth p(CO₂) until steady-state gas exchange was observed, then they were measured under stable conditions. At each measurement p(CO₂), leaves were allowed to equilibrate for at least 4 min before measurements of A (leaf-level light-saturated net CO₂ assimilation) or gₛ (stomatal conductance) were made. Following each measurement, 2.6-cm² leaf discs were collected from the sampled leaf, frozen on dry ice, and later lyophilized to dryness. These samples were used for calculation of SLA (specific leaf area) and leaf N on a mass (Nₘ) or an area (Nₐ) basis. Tissue N was measured with a CE Elantech CN 1200 elemental analyzer. Leaf discs were also collected from mature, high-light-grown leaves, embedded in paraffin, and 10-μm sections examined using light microscopy for determination of leaf thickness.

Leaf respiration was measured on shaded leaves during the day once in 1995 (3 July, blocks 2–5), twice in 1996 (5 June and 9 July, blocks 2–5), and once on shaded leaves at night in 1996 (5 June, blocks 1–5). All leaf-respiration measurements were made at 28°C and at growth p(CO₂) using the LI-6400. In 1995 only genotypes 1L, 51E, and 61E were measured while in 1996 all genotypes were measured. Individuals were selected at random within a chamber, resulting in a partial repeated measure of individuals although branches sampled were always different. Stem respiration was measured once in 1995 (30 June–5 July, blocks 3–5, genotypes 1L and 61E) using the LI-6400 fitted with a custom branch cuvette; surface temperatures varied between 26°C and 30°C and measurements were made at growth p(CO₂).

Growth measurements

In 1994 the total leaf area per plant (LA) was calculated by summing the area of individual leaves (Lₐ), which was estimated by

\[LA_n = x_i \times (L_i \times L_{wa}) + y_i \]

(1)

where \(L_i \) was leaf length, \(L_{wa} \) was leaf width, and \(x_i \) and \(y_i \) were genotype-specific regression coefficients obtained from destructive harvest of non-experimental plants. In 1995 LA was calculated by summing the leaf area of individual branches (Lₐₐ), estimated by

\[LA_{ab} = w_{b} \times B_{d} + x_{b} \times B_{l} + y_{b} \times (B_{l} \times B_{d}) + z_{b} \]

(2)

where \(B_{l} \) was branch length, \(B_{d} \) was branch basal diameter, and \(w_{b}, x_{b}, y_{b}, \) and \(z_{b} \) were genotype-specific regression coefficients obtained from measuring \(L_{i} \) and \(L_{wa} \) on all leaves from a subset of experimental branches and applying Eq. 1. Stem volume was estimated from \(B_{l} \) and \(B_{d} \) assuming a conical stem geometry.

Growth efficiency was calculated both on the basis of estimated yearly stem-volume increase (aboveground volume growth efficiency, \(E_{v} \)) and on the basis of harvested stem dry mass (\(E_{dm} \)). All growth-efficiency calculations were made on the basis of growth per chamber (as opposed to growth per plant) of the four plants growing in the center of the chamber, thereby eliminating the influence of side light, using the following expressions:

\[E_{v} = \frac{V_{n} - V_{n-1}}{d_n \times LA_n} \]

(3)

\[E_{dm} = \frac{S_{dm}}{401 \times \sum_{n=1994}^{1996} LA_n} \]

(4)

where \(V_{n} \) was estimated stem volume in year \(n \), LAₐ was estimated leaf area in year \(n \), \(d_n \) was number of days since leaf out in year \(n \), and \(S_{dm} \) was harvested stem dry mass. There were 401 d of leaf exposure during the entire study (=\(\sum d_j \)).

Plants were destructively harvested beginning 8 July 1996. Leaves were separated into three canopy-position classes based on their height above the soil surface: <1 m, 1–2 m, and >2 m for the high-N treatment, and <0.5 m, 0.5–1 m, and >1 m for the low-N treatment. Total leaf fresh mass per tree was obtained for each position class, the leaves were composited, and a subsample taken for leaf-area measurement (LI-COR LI-3000 leaf-area meter). This subsample was dried at 65°C and used for fresh mass: dry mass and mass: leaf area conversions for each tree. Leaf tissue C and N concentrations were determined from these subsamples using a CE Elantech CN 1200 elemental analyzer. Stem tissue was separated at each year’s terminal bud scale scar, yielding first-year wood (produced in 1994, secondary growth in 1995 and 1996), second-year wood (produced in 1995, secondary growth in 1996), and third-year wood (produced in 1996). One ~10-cm sub-sample was cut from each age class and air dried for density determination. Stem volume at harvest for each individual was determined from stem age-class dry mass and stem age-class density. Zak et al. (2000a) and Pregitzer et al. (2000) provide details regarding the belowground harvest of this experiment.

Carbohydrate analysis

Leaf discs (2.6 cm²) were excised between 1400 and 1500 on 3 July 1996 from the youngest fully expanded leaf on a branch exposed to full sun, immediately frozen in liquid nitrogen, and stored at ~80°C until lyophilized. Powdered, lyophilized samples were extracted with 80% ethanol at 80°C, the supernatant evaporated to dryness, and then redissolved in H₂O + polyvinylpyrrolidone. Soluble carbohydrates were analyzed enzymatically using a modification of the procedure of Jones et al. (1977). The recovery rate was 95%. The ethanol-extracted tissue pellet was suspended...
in 0.2 mol/L KOH, boiled for 20 min, and brought to pH 7.0 with 1.0 mol/L CH₃COOH. Amyloglucosidase (EC [Enzyme Classification] 3.2.1.3) was added to the resuspended pellet and incubated for 1 h at 55°C. Starch concentration was determined as glucose equivalents using the same procedure as for soluble sugars. Starch recovery was 93%.

Statistical analysis

Data were analyzed by analysis of variance (ANOVA) for a split-plot factorial block design where main effects (CO₂, and soil fertility) and CO₂ × soil fertility interaction were tested over the CO₂ × fertility nested within block mean square. The effect of genotype and all treatment interactions with genotype were tested over the error mean square. Growth efficiency, which was expressed on a per chamber basis, was analyzed as a two-way factorial ANOVA with five replicate blocks. Comparison among CO₂ and fertility treatment means was by least significant difference for a priori comparisons (between CO₂ treatments within a fertility treatment), and by minimum significant difference for all a posteriori comparisons (Sokal and Rohlf 1981).

The overall effect of CO₂ on respiration across years and tissue types was evaluated by calculating the 95% confidence interval around the mean CO₂ effect (Li), where

\[\bar{L} = \frac{\sum w_i L_i}{\sum w_i} \]

and \(L_i = \log(\bar{x}_i/\bar{x}_a) \), the log-transformed ratio of elevated (\(\bar{x}_i \)) to ambient (\(\bar{x}_a \)) CO₂ treatment means of the ith set of measurements, and \(w_i \) is the reciprocal of the total variance of \(L_i \) (Hedges et al. 1999). This is, therefore, a mean estimate weighted according to the precision (standard error) of the k separate studies and is typical for meta-analyses of this kind (Cooper and Hedges 1994).

The effect of CO₂ enrichment on the relationship between A and leaf N was evaluated using the linear model:

\[\log(A_i) = \beta_0 + \beta_1 \log(\text{leaf N})_i + \beta_2 X_i + \beta_3 \log(\text{leaf N})_i X_i + \varepsilon_i \]

(6)

where \(\beta_0 \) is the centered \(y \) intercept for ambient CO₂, \(\beta_1 \) is the slope for the ambient-CO₂ treatment, \(\beta_2 \) and \(\beta_3 \) are the change in the centered \(y \) intercept and slope, respectively, due to CO₂ enrichment, \(X_i \) is a dummy variable coded 0 for ambient CO₂ and 1 for elevated CO₂, and \(\varepsilon_i \) is residual error (Peterson et al. 1999). Significance of coefficients was determined by least-squares regression.

RESULTS

Gas exchange

Net CO₂ assimilation varied both among treatments and across years (Table 2). In mid-August 1995, A at growth p(CO₂) (A₉₉) increased significantly in both soil N treatments (+56% and +26% in high- and low-N soil, respectively), but there was no effect of soil-N availability within CO₂ treatments. High-CO₂-grown plants in both soil N treatments had reduced photosynthetic capacity at 27 Pa C, relative to ambient-CO₂-grown plants, but no reduction in capacity at 56 Pa C. There was no CO₂ or soil-N availability effect on g, under any measurement C (Table 2).

By mid-July 1996 this picture had changed substantially (Table 2). Both A and g, were significantly lower

Table 2. Gas exchange of *Populus tremuloides* grown in low- or high-N soil and at ambient or elevated CO₂.

<table>
<thead>
<tr>
<th>Date</th>
<th>Low-N soil</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>g</td>
<td>A</td>
<td>g</td>
<td>A</td>
<td>g</td>
<td>A</td>
<td>g</td>
<td>A</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>1 SE</td>
</tr>
<tr>
<td>August 1995</td>
<td>21.0⁷<sup>a</sup></td>
<td>1.4</td>
<td>26.4⁷<sup>a</sup></td>
<td>1.1</td>
<td>20.9<sup>bc</sup></td>
<td>1.9</td>
<td>32.6<sup>bc</sup></td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.64<sup>a</sup></td>
<td>0.07</td>
<td>0.44<sup>a</sup></td>
<td>0.06</td>
<td>0.55<sup>a</sup></td>
<td>0.11</td>
<td>0.46<sup>a</sup></td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.5<sup>b</sup></td>
<td>1.1</td>
<td>17.5<sup>b</sup></td>
<td>0.35</td>
<td>23.4<sup>b</sup></td>
<td>0.6</td>
<td>20.2<sup>b</sup></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.65<sup>a</sup></td>
<td>0.06</td>
<td>0.41<sup>a</sup></td>
<td>0.04</td>
<td>0.54<sup>a</sup></td>
<td>0.12</td>
<td>0.42<sup>a</sup></td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.8<sup>a</sup></td>
<td>1.2</td>
<td>26.5<sup>a</sup></td>
<td>1.1</td>
<td>34.8<sup>a</sup></td>
<td>0.9</td>
<td>33.7<sup>a</sup></td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.54<sup>a</sup></td>
<td>0.06</td>
<td>0.43<sup>a</sup></td>
<td>0.05</td>
<td>0.49<sup>a</sup></td>
<td>0.12</td>
<td>0.46<sup>a</sup></td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 1996</td>
<td>9.1<sup>ab</sup></td>
<td>1.0</td>
<td>12.1<sup>a</sup></td>
<td>1.6</td>
<td>9.2<sup>a</sup></td>
<td>0.8</td>
<td>21.0<sup>b</sup></td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15<sup>a</sup></td>
<td>0.04</td>
<td>0.11<sup>a</sup></td>
<td>0.03</td>
<td>0.13<sup>a</sup></td>
<td>0.02</td>
<td>0.16<sup>a</sup></td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.9<sup>b</sup></td>
<td>0.8</td>
<td>6.7<sup>b</sup></td>
<td>0.7</td>
<td>12.9<sup>b</sup></td>
<td>1.5</td>
<td>15.1<sup>b</sup></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15<sup>a</sup></td>
<td>0.04</td>
<td>0.10<sup>a</sup></td>
<td>0.02</td>
<td>0.13<sup>a</sup></td>
<td>0.02</td>
<td>0.13<sup>a</sup></td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.2<sup>a</sup></td>
<td>0.6</td>
<td>13.7<sup>a</sup></td>
<td>1.0</td>
<td>20.5<sup>a</sup></td>
<td>1.1</td>
<td>24.6<sup>a</sup></td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.14<sup>a</sup></td>
<td>0.03</td>
<td>0.11<sup>a</sup></td>
<td>0.03</td>
<td>0.11<sup>a</sup></td>
<td>0.02</td>
<td>0.15<sup>a</sup></td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Measurements of net CO₂ assimilation (A) and stomatal conductance (g) were made at growth p(CO₂) (A₉₉, g₉₉) and at internal p(CO₂) of 27 Pa (A₂₇, g₂₇) and 56 (A₅₆, g₅₆) Pa, respectively [p(CO₂) partial pressure]; n = 5 replicate chambers per CO₂ and soil-N availability treatment. Within a means with the same lowercase superscript letters are not significantly different at \(P < 0.05 \).
in 1996 than in 1995, and the effect of CO₂ enrichment on A had diverged between the two soil-N-availability treatments. In high-N soil, A₂ was 128% greater in elevated-compared to ambient-CO₂-grown plants, while there was no significant CO₂ effect in low-N soil. This CO₂ × soil-N interaction also was reflected in the measurements of A at constant C. In low-N soil, elevated-CO₂-grown plants had significantly lower A at both measurement C's than did ambient-CO₂-grown plants. In high-N soil, however, A in elevated-CO₂-grown plants was equal to that in ambient-CO₂-grown plants when measured at 27 Pa CO₂, and greater than that in ambient-CO₂-grown plants when measured at 56 Pa CO₂. As in 1995, there were no treatment effects on A’s. In July 1996 we found no evidence for differential photosynthetic capacity among genotypes or in genotypic responses to the CO₂ or soil N treatments (Table 3).

Tissue sample | Low-N soil | High-N soil |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ambient CO₂</td>
<td>Elevated CO₂</td>
</tr>
<tr>
<td>Leaf, 1995 day</td>
<td>2.49 (0.22)</td>
<td>3.12 (0.12)</td>
</tr>
<tr>
<td>Leaf, 1996a day</td>
<td>2.62 (0.17)</td>
<td>2.94 (0.20)</td>
</tr>
<tr>
<td>Leaf, 1996b day</td>
<td>1.96 (0.06)</td>
<td>2.10 (0.14)</td>
</tr>
<tr>
<td>Leaf, 1996 night</td>
<td>1.68 (0.13)</td>
<td>1.69 (0.10)</td>
</tr>
<tr>
<td>Stem, 1996 day</td>
<td>4.53 (0.74)</td>
<td>3.82 (0.48)</td>
</tr>
<tr>
<td>(L) (%)‡</td>
<td>+9.0</td>
<td></td>
</tr>
<tr>
<td>(95% \text{ CI})</td>
<td>(0–19)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Leaves were measured once in 1995 during the day, twice in 1996 during the day (1996a and 1996b), and once in 1996 during the night; stems were measured once in 1996 during the day. Respiration data are means with 1 SE in parentheses; \(n = 3–5\) replicate chambers per CO₂ and soil-N availability treatment.

† Percentage change due to CO₂ treatment.

‡ The mean CO₂ effect size, \(L\), was calculated from the log-transformed ratios of elevated to ambient means within a soil N treatment (see Methods: Statistical analysis for details).
Fig. 1. Change in net CO\(_2\) assimilation in relation to leaf N of *Populus tremuloides* growing in low-N (open symbols) or high-N (solid symbols) soil and at ambient (circles, dashed line) or elevated (squares, solid line) CO\(_2\). Note log scales. Measurements of \(A\) (leaf-level light-saturated net CO\(_2\) assimilation) were made in 1996 on day of year 157 (symbols without \(1\)) or day of year 197 (symbols with \(1\)) and both at growth \(p(\text{CO}_2)\) (A) and 56 Pa \(C_i\) (B). Each point represents the mean response of one chamber with lines fitted by least-squares regression.

![Graph showing change in net CO\(_2\) assimilation.](image)

Table 5. Leaf chemical and physical properties of *Populus tremuloides* grown in low- or high-N soil and at ambient or elevated CO\(_2\).

Leaf property	Low-N soil			High-N soil				
	Ambient CO\(_2\)	Elevated CO\(_2\)		Ambient CO\(_2\)	Elevated CO\(_2\)			
August 1995	Mean	1 se	Mean	1 se	Mean	1 se		
\(N_m\) (%)	2.1\(^a\)	0.1	1.6\(^b\)	0.1	2.7\(^b\)	0.1	2.1\(^a\)	0.1
\(N_a\) (g/m\(^2\))	1.3\(^c\)	0.1	1.1\(^b\)	0.03	1.8\(^a\)	0.1	1.7\(^a\)	0.1
C (%)	50.5\(^a\)	0.1	50.1\(^c\)	0.2	51.0\(^b\)	0.1	50.3\(^a\)	0.1
C/N	25.1\(^a\)	1.3	33.3\(^b\)	1.7	19.4\(^b\)	0.4	24.7\(^a\)	0.6
SLA (m\(^2\)/kg)	15.8\(^a\)	0.4	13.8\(^a\)	0.7	14.9\(^cd\)	0.3	12.0\(^ac\)	0.6
July 1996	Mean	1 se	Mean	1 se	Mean	1 se		
\(N_m\) (%)	1.8\(^d\)	0.1	1.4\(^f\)	0.1	2.5\(^b\)	0.1	2.2\(^b\)	0.04
\(N_a\) (g/m\(^2\))	1.3\(^c\)	0.1	1.2\(^b\)	0.03	1.7\(^a\)	0.04	1.7\(^a\)	0.04
C (%)	50.8\(^a\)	0.1	50.6\(^a\)	0.3	50.8\(^a\)	0.3	50.4\(^a\)	0.1
C/N	29.3\(^c\)	1.3	38.3\(^a\)	1.7	20.6\(^a\)	0.8	23.8\(^a\)	0.6
SLA (m\(^2\)/kg)	13.5\(^a\)	0.1	12.1\(^a\)	0.3	14.6\(^a\)	0.2	12.8\(^a\)	0.4
\(L_t\) (\(\mu\)m)	136\(^a\)	3.1	146\(^b\)	1.7	128\(^a\)	3.7	137\(^b\)	2.9

Notes: Leaves were sampled for N, C, and specific leaf area (SLA) following gas-exchange measurements in 1995 and 1996 and for leaf thickness \(L_t\) prior to harvest in 1996. Leaf N is expressed on both a mass \((N_m)\) and an area \((N_a)\) basis; \(n = 5\) replicate chambers per \(\text{CO}_2\) and soil-N availability treatment. Within a row means with the same lowercase superscript letter are not significantly different at \(P < 0.05\).
Figure 2. The concentration of starch, soluble sugar (Sol. Sugar), and total non-structural carbohydrates (TNC) in *Populus tremuloides* leaves after 2.5 seasons of growth in low-N (open bars) or high-N (solid bars) soil and at ambient (A) or elevated (E) CO₂. Data are means and 1 SE; *n* = 5 replicate chambers per CO₂ and soil-N-availability treatment.

Compared to a ~7-fold increase in low-N soil. Carbon dioxide enrichment resulted in a significant increase in both leaf area and stem volume in year 2, but only in high-N soil. In that soil treatment, the increase in stem volume was nearly equally distributed between second-year growth (+28%) and first-year growth (+35%). Second-year stem volume was over twice that of first-year stem volume in low-N soil but only 20–30% greater in high-N soil.

The CO₂ and soil-N-availability effects on growth observed in year two continued into year three (Fig. 3, Table 6). In high-N soil, elevated CO₂ increased both leaf area (+28%) and stem volume (+37%), but CO₂ had no effect in low-N soil. In high-N soil, all yearly growth classes showed increased stem volume at elevated compared to ambient CO₂. Wood density increased significantly in low- compared to high-N soil and due to CO₂ enrichment in first- and second-year wood in low-N soil (Table 6). Elevated CO₂ caused an increase in harvested stem mass in all yearly growth classes in high-N soil, resulting in a 34% increase in total aboveground wood production. In low-N soil, no year class responded significantly to CO₂ enrichment, and total wood production was consequently unaffected by CO₂ treatment.

This pattern of treatment response was reflected in the ANOVA of harvested leaf area and stem mass (Table 3). The effects of CO₂ and soil-N availability were highly significant, as was the interaction between atmospheric CO₂ and soil-N availability. The effect of genotype also was significant for these measures, as was the genotype × soil N interaction. For example, in low-N soil there was no difference in final leaf area among genotypes while in high-N soil genotype 1L had over twice the leaf area as genotypes 42E and 51E (Fig. 4). A similar response was observed for final stem volume and mass, and for stem volume and leaf area in year two (data not shown). At the final harvest, we found no genotype × CO₂ or genotype × CO₂ × soil N interaction, indicating a similar aboveground growth response to CO₂ by all genotypes in each soil N treatment.

The vertical distribution of leaf area in year three was not markedly affected by CO₂ treatment (Fig. 5). In high-N soil, CO₂ enrichment increased leaf area throughout the canopy, with a somewhat greater response in the upper third of the canopy compared with the lower sections. However, the relative distribution of leaf area among canopy-position classes was unchanged. There was no effect of CO₂ on leaf area in any canopy position in low-N soil.

Stem volume growth efficiency increased with increasing chamber leaf-area index (LAI) across the three years of the experiment (Fig. 6). Although final LAI was highest at elevated CO₂ and in high-N soil, and trees in high-N soil had over twice the leaf area as did those in low-N soil, we were unable to distinguish separate functional relationships between *Eₚ* (aboveground volume growth efficiency) and LAI for the different treatment combinations. That is, all treatments appeared to have similar *Eₚ* at equivalent LAI. Stem mass growth efficiency, obtained at the final harvest, showed...
Table 6. Stem volume (S_v), stem density (S_d), and stem dry mass (S_{dm}) per tree of *Populus tremuloides* grown in low- or high-N soil and at ambient or elevated CO$_2$.

Year	Stem parameter	Low-N soil			High-N soil					
	Ambient CO$_2$	Elevated CO$_2$			Ambient CO$_2$	Elevated CO$_2$				
	Mean (cm3)	SE								
1994	Total S_v	1.4b	0.2	1.8b	0.6	12.8a	3.9	16.2a	3.0	
1995	S_v1 (cm3)	35.7b	4.4	41.4b	9.7	318.6a	42.4	431.0a	62.0	
	S_v2 (cm3)	83.7c	8.9	84.3c	17.3	411.5b	29.3	527.5a	41.4	
	Total S_v (cm3)	119.4c	13.1	125.7c	25.3	730.1b	52.2	958.5a	99.4	
1996	S_v1 (cm3)	81.7c	10.0	100.3c	15.1	480.3b	56.5	648.3a	77.2	
	S_v2 (cm3)	205.6c	19.3	204.3c	33.4	829.4b	28.2	1094.9a	44.2	
	S_v3 (cm3)	82.2c	10.6	92.2c	21.5	411.5b	29.3	527.5a	41.4	
	Total S_v (cm3)	370.8c	34.3	396.3c	65.7	1575.4b	70.3	2150.2a	109.4	
	S_{dm1} (g/cm3)	0.444c	0.010	0.472b	0.011	0.388a	0.005	0.395a	0.002	
	S_{dm2} (g/cm3)	0.400c	0.007	0.449b	0.010	0.361a	0.007	0.338a	0.006	
	S_{dm3} (g/cm3)	0.369c	0.012	0.502a	0.043	0.376a	0.008	0.414a	0.059	
	Total S_{dm} (g)	35.0c	4.2	43.9c	6.1	182.1b	19.2	250.6a	31.2	
	S_{dm2} (g)	78.6c	8.1	82.6c	11.1	282.8b	5.6	356.4a	14.2	
	S_{dm3} (g)	32.0c	3.6	37.5c	7.7	93.0b	7.8	139.4a	9.3	
	Total S_{dm} (g)	145.6c	13.9	164.1c	22.2	557.9b	19.2	746.5a	47.7	

Notes: In 1994 and 1995, S_v was estimated from non-destructive branch measurements and in 1996 from harvest data. In 1995 and 1996, measurements were further subdivided according to the year class of growth (subscript 1 = year class 1, etc.); n = 5 replicate chambers per CO$_2$ and soil-N availability treatment. Within a row, means with the same lowercase superscript letter are not significantly different at $P < 0.05$.

a similar pattern, with no significant CO$_2$ effects on E_{dm} within soil N treatments (Fig. 6). Similar results were obtained when all trees, not just the central individuals in each chamber, were included in the analysis (data not shown).

DISCUSSION

Elevated-CO$_2$ effects on A (leaf-level light-saturated net CO$_2$ assimilation) in our study followed a pattern typical of many woody species, with multi-year increases in A_p (A at growth CO$_2$ partial pressure) (Norby et al. 1992, Tissue et al. 1993, Eamus et al. 1995) but also variation in the magnitude of this response temporally (Gunderson et al. 1993, Lewis et al. 1996) and with soil fertility (Tissue et al. 1993). In high-N soil, we found little evidence for A_{accl} (acclimation of A at high CO$_2$) in elevated-CO$_2$-grown plants, similar to the results of Curtis et al. (1995), Will and Ceulemans (1997), and Kalina and Ceulemans (1997), all working with hybrid poplar. In low-N soil, however, A_{accl} was apparent by the second year of our study and had increased in magnitude by the third year. The physiological and environmental factors leading to A_{accl} at high CO$_2$ have been the focus of much experimental and theoretical work (Sage 1994, Lloyd and Farquhar 1996). One factor consistently associated with A_{accl} in both woody and herbaceous species is a decline in leaf tissue N concentration (McGuire et al. 1995, Peterson et al. 1999), although not all plants with lower leaf N at high CO$_2$ show strong A_{accl} (e.g., Will and Ceulemans 1997). It is important in that regard to distinguish between a net reduction in N per unit leaf mass or leaf area that is attributable to a reduction in N content, and a reduction in N concentration due to the dilution effect of leaf starch accumulation without a change in N content. Reduced Rubisco (Ribulose bis-phosphate carboxylase-oxygenase) content is generally the assumed consequence of lower leaf N and is considered a primary physiological mechanism by which A_{accl} occurs (Stitt 1991). However, plants may compensate for lower leaf-N concentration (mass basis) with additional mesophyll cells, thereby maintaining or even increasing photosynthetic capacity per unit leaf area (Luo et al. 1994).
Our results support the model of Luo et al. (1994) identifying reciprocal changes in N_m (leaf N on a mass basis) and SLA (specific leaf area) as important controls over the direction and magnitude of CO$_2$ effects on A. In high-N soil, the modest decline in N_m is entirely compensated for by increasing leaf thickness and lower SLA, with the result that N_i (leaf N on an area basis) remains unchanged in elevated-compared to ambient-CO$_2$-grown plants, and there is no A_{accl}. With a greater reduction in N_m as seen on low-N soil, there was only partial compensation by lower SLA in CO$_2$-enriched plants and therefore N_i declined, leading to significant A_{accl}. Our data also suggest that the fundamental A:N relationship, reflecting leaf-level allocation of N into different photosynthetic and non-photosynthetic constituents, was unchanged by either CO$_2$ or soil-N treatments. That is, at a common C_i (leaf internal CO$_2$ partial pressure) of 56 Pa, all treatments fell along a common line relating $\log(A_{accl})$ to $\log(N_m)$, and whose slope (1.31) was similar to that reported by Reich et al. (1997) for a collection of 111 species across six biomes (1.41). The effect of CO$_2$ enrichment was to change the intercept of that line, but not its slope. This is equivalent to an increase in photosynthetic nitrogen-use efficiency (Peterson et al. 1999). At equal leaf N_m, high-CO$_2$-grown plants in our study would have a 93% greater A_{accl}. The acquisition of soil N and its allocation within the plant, both temporally and spatially, is thus clearly of central importance in understanding the long-term consequences of rising CO$_2$ on photosynthesis in Populus tremuloides.

Aboveground biomass accumulation in Populus tremuloides after 2.5 seasons of growth in soil of low or high N availability and at ambient (open bars) or elevated (shaded bars) CO$_2$. The percentage increase due to CO$_2$ is indicated to the left of the shaded bars ($^*P < 0.05$).
and other, members of the genus Populus tremuloides grown in low-N (open symbols) or high-N (solid symbols) soil and at ambient (circles) or elevated (squares) CO$_2$. Growth efficiency was estimated for plants growing in the center of each chamber on the basis of annual stem volume increment (E, symbols without $+$) or harvested stem mass (E_{har}, symbols with $+$). Data are means ± 1 SE; $n=5$ replicate chambers per CO$_2$ and soil-N-availability treatment.

The second winter likely resulted in increased lateral branch production and relatively greater LA lower in the canopy, these effects should be independent of either CO$_2$ or soil N treatments since all plants were similarly treated.

Populus tremuloides shows substantial genotypic variation in a number of growth and physiological characteristics, including trunk morphology, lateral-branch abscission, timing of leaf drop (Barnes 1959), and sensitivity to ozone stress (Karnosky et al. 1989). Indeed, the large amount of genetic variation present in this, and other, members of the genus Populus has provided ample opportunity for breeding and improvements in biomass yield (Farmer 1996). We also observed significant genotypic variation in growth characteristics and in responses to changing soil-N availability. However, we found no genotype × CO$_2$ interactions, indicating a uniform growth response to CO$_2$ enrichment by all six genotypes in our study. This is perhaps not surprising given the small number of genotypes examined and the relatively short duration of the experiment. We have found CO$_2$ × genotype interactions in these same genotypes for condensed tannin production (Mansfield et al. 1999) and early season photosynthetic rates (X. Wang, unpublished data), both of which might eventually influence biomass accumulation. There has been little other work conducted on intraspecific variation in CO$_2$ responses within woody plant species. Radaglou and Jarvis (1990) reported variation in leaf structural characteristics at high CO$_2$ among hybrid poplar genotypes, while Kalina and Ceulemans (1997) found greater A_{sat} at high CO$_2$ in a slow-growing poplar genotype compared to a fast-growing genotype. Rising atmospheric CO$_2$ clearly has the potential to act as a selective agent (Curtis et al. 1996) and hence alter both ecosystem composition and function. Identification of traits that are responsive to CO$_2$ enrichment and that contribute directly to growth and fitness should receive continued attention by forest geneticists and evolutionary biologists.

Whole-plant net C gain is a function of the assimilatory capacity of leaves, the area and arrangement in space and time of leaf surface, and the loss of carbon through respiration, tissue abscission, and processes such as rhizodeposition and volatile organic-carbon emissions. Elevated CO$_2$ has the potential to affect each of these processes, and it is therefore not surprising that there is no simple relationship between, for example, CO$_2$ effects on A and CO$_2$ effects on harvested biomass. Measures that integrate assimilatory and allocational processes over time, such as those obtained through growth analysis, may be more useful in interpreting and predicting environmental effects on production than are short-term physiological measures such as A. In forests, as with herbaceous crops, productivity is strongly related to total light interception, and stand growth, or yield, may be estimated by a knowledge of maximum canopy leaf-area index (LAI) and growth efficiency (E, wood production per unit leaf area per unit time) (Waring 1983). As stand development proceeds, E typically declines due to increased competition for light and allocation to non-photosynthetic tissue (Cannell 1989). However, productivity will continue to increase as long as LAI increases faster than E decreases. Heilman and Xie (1994) found a linear relationship between stand productivity and LAI in poplar hybrids up to an LAI of ~6, with a declining rate of increase at higher LAI.

Growth efficiency was low in our experiment during the first year of growth, likely due to the energy costs of root establishment following outplanting from cuttings. Although we could not measure total belowground biomass prior to harvest, a decline in root-to-shoot ratio with plant age, as is typical in young Populus plants (Sheppard and Smith 1993), would result in increasing E with time, as was observed in our study. This trend would be opposed by increasing competition for light as LAI increased and by greater sapwood respiratory demand with increasing stem volume. Neither soil-N availability nor CO$_2$ enrichment had any apparent effect on the relationship between LAI and E_r, however. That is, while at any point in time plants in high-N soil were larger than plants in low-N soil, and CO$_2$ enrichment increased plant size in high-N soil, at equivalent stages of canopy development all treatments produced stem volume with equal efficiency. The basic allometric relationship between LA and stem volume (or mass) increment was unaltered by CO$_2$ enrichment, and we would therefore expect no change in aboveground stand wood volume or mass at equivalent LAs, at least through an LAI of ~6. These results support...
others showing little effect of elevated CO₂ on woody-plant allometry (Gebauer et al. 1996, Zak et al. 2000a).

However, important questions remain. In particular, we do not know whether E will remain equivalent between CO₂ treatments as LAI increases. If quantum yield is increased by high CO₂, as suggested by Long and Drake (1991), we would expect E to be sustained as LAI increases to a greater extent in elevated- compared to ambient-CO₂-grown plants due to reduced self-shading effects on carbon assimilation. We also do not know maximum LAI for any of the treatment combinations, another important determinant of long-term stand productivity. For example, maximum LAI in low-N soil or at ambient CO₂ may never reach that obtained in high-N soil or at elevated CO₂. Answers to these questions require experiments at temporal and spatial scales beyond those achievable with open-top chambers.

These results illustrate several important issues regarding tree growth at high CO₂. The first is that increased Aᵣ does not necessarily lead to increased E. For P. tremuloides in high-N soil, higher Aᵣ due to CO₂ enrichment was offset by higher rates of carbon loss, via increased leaf and stem respiration and from greater fine-root turnover (Pregitzer et al. 2000). In effect, increased stem-biomass accumulation could be accounted for entirely by greater LA. In low-N soil, CO₂ stimulation of Aᵣ was less, and varied between years, but also did not translate into significantly greater E. The second issue is that knowledge of the dynamic response of E with respect to LAI will be necessary to answer the question of whether trees will grow larger or simply grow faster during stand development (Eamus and Jarvis 1989). Our data suggest the latter. That is, in high-N soil stand productivity increased at high CO₂, but the fundamental relationship between tree growth and canopy development appeared unchanged (see also Zak et al. 2000a).

Summary and implications

Elevated atmospheric CO₂ had a sustained, positive effect on carbon-gain capacity and aboveground biomass accumulation in P. tremuloides, but only under conditions of high soil-N availability. Carbon dioxide enrichment increased photosynthetic N-use efficiency regardless of soil-N availability but in low-N soil growth at elevated CO₂ resulted in lower leaf-N concentration. This led to a reduction in photosynthetic capacity relative to plants at ambient CO₂. Gains in net CO₂-assimilation rate under elevated CO₂ were largely offset by increased dark respiration and fine-root turnover, resulting in no net increase in growth efficiency at high CO₂. Nonetheless, increased stand productivity with elevated CO₂ and high soil-N availability could shorten harvest rotation intervals for this economically important species and speed ecological succession in aggrading northern hardwood forests.

Acknowledgments

We thank Diana Randlett and Bill Holmes for help in experimental design and execution, Mark Kalnin for leaf anatomical work, and Richard Norby for comments on an earlier draft. This work was funded through grants from the National Institute for Global Environmental Change (DOE-NIGEC), Program for Ecosystem Research (DOE-PER Grant DE-FGOZ-93ER6166), the University of Michigan Project for the Integrated Study of Global Change, and the University of Michigan Biological Station.

Literature Cited

Reynolds, J. F., P. R. Kemp, B. Acocot, J.-L. Chen, and D. L. Moorhead. 1996. Progress, limitations, and challenges in...

