$Q^{(n)}$-Species Distribution in K$_2$O · 2 SiO$_2$ Glass by 29Si Magic Angle Flipping NMR

THESIS

Presented in Partial Fulfillment of the Requirements for Research with Distinction in Chemistry in the undergraduate colleges of The Ohio State University

By

Derrick C. Kaseman,

* * * * *

The Ohio State University

2011

Thesis Committee:

Professor Sherwin Singer

Professor Philip J. Grandinetti, Adviser

Approved by

Adviser

Department of Chemistry
ABSTRACT

Two-dimensional magic angle flipping (MAF) was employed to measure the $Q^{(n)}$ distribution in a 29Si enriched potassium disilicate glass ($\text{K}_2\text{O} \cdot 2\text{SiO}_2$). Relative concentrations of $[Q^{(4)}] = 7.23\% \pm 0.339\%$, $[Q^{(3)}] = 82.97\% \pm 0.118\%$, $[Q^{(2)}] = 9.80\% \pm 0.660\%$ were obtained. Using the thermodynamic model for $Q^{(n)}$-species disproportionation these relative concentrations yield an equilibrium constant $k_3 = 0.01029 \pm 0.00084$, indicating, as expected, that the $Q^{(n)}$-species distribution is close to binary in the potassium disilicate glass. A Gaussian distribution of isotropic chemical shifts was observed for each $Q^{(n)}$-species with mean values of -82.74 ± 0.03 ppm, -91.32 ± 0.00 ppm, and -101.67 ± 0.02, and standard deviations of 3.27 ± 0.03 ppm, 4.194 ± 0.003 ppm, and 5.09 ± 0.03 for $Q^{(2)}$, $Q^{(3)}$, and $Q^{(4)}$, respectively. Additionally, nuclear shielding anisotropy values of $\zeta = -85.0 \pm 1.3$ ppm, $\eta = 0.48 \pm 0.02$ for $Q^{(2)}$, and $\zeta = -74.9 \pm 0.2$ ppm, $\eta = 0.030 \pm 0.006$ for $Q^{(3)}$ were observed in the potassium disilicate glass.
This is dedicated to my sister, Justine Kaseman.
ACKNOWLEDGMENTS

I would like to take this opportunity to thank all of those who have supported me on my academic journey. I would especially like to thank my parents, Jeffrey and Kim Kaseman, who have kept me continuously motivated. Their constant encouragement has been instrumental in this process. I would also like to thank the Brothers of the Omicron Deuteron Chapter of Phi Gamma Delta for shaping my college experience. In addition, I thank Dr. Michael C. Davis for his advice. Finally, I would like to thank Dr. Philip Grandinetti for his support and guidance over the years. Working in his lab has been one of the greatest experiences I’ve ever had. His constant guidance and patience has helped me learn more than any class could teach.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>Chapters:</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Glass</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 History of Glass</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Defining Glass</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Structural and Thermodynamic Models</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Nuclear Magnetic Resonance</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1 Overview</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 Magic Angle Spinning</td>
<td>17</td>
</tr>
<tr>
<td>1.2.3 Magic Angle Flipping</td>
<td>18</td>
</tr>
<tr>
<td>2. Determination of Anionic Species within a Potassium Disilicate Using MAF</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Experimental</td>
<td>23</td>
</tr>
<tr>
<td>2.2.1 Nuclear Magnetic Resonance Spectroscopy</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2 Sample Preparation</td>
<td>25</td>
</tr>
<tr>
<td>2.3 Results and Discussion</td>
<td>25</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>10</td>
</tr>
<tr>
<td>1.8</td>
<td>10</td>
</tr>
<tr>
<td>1.9</td>
<td>11</td>
</tr>
</tbody>
</table>
1.10 After the sample reaches a thermal equilibrium, the distribution of spins in the $+xy$ plane will be greater than the distribution of spins in the $-xy$ plane. This creates a net magnetization along the $+z$ axis.

1.11 A small magnetic field B_1 is applied along the $+y$ axis (black arrow). This causes the net magnetization, originally along $+z$ to tilt slightly toward the $+y$ axis. Once the magnetization precesses 180° B_1 is applied along the $-y$ axis which increases the tilt of the magnetization vector away from B_0.

1.12 During magnetic resonance, alternating small magnetic fields are applied to the bulk magnetization which shifts the bulk magnetization from the $+z$ axis to the xy plane.

1.13 Isotropic chemical shift ranges for each $Q^{(n)}$-species.

1.14 Nuclear shielding parameters and their effect on the NMR lineshape in a polycrystalline sample.

1.15 Anisotropic lineshapes for each $Q^{(n)}$-species.

1.16 Spinning sidebands occur when the spinning speed of the sample is less than the width of the anisotropy. Above are the spinning sideband patterns for each $Q^{(n)}$-species.

2.1 Shifted-echo Magic-Angle Flipping pulse sequence. Here t_1 is the evolution time at 90°, τ_{hop} is the time to flip the rotor between angles and τ_{echo} is the echo shift.

2.2 One dimensional 29Si Magic-Angle Spinning Bloch Decay spectrum of K$_2$O · 2 SiO$_2$ glass along with “best-fit” model lineshape and component lineshapes for $Q^{(4)}$, $Q^{(3)}$, and $Q^{(2)}$ resonances. The spectrum baseline was corrected to eliminate any artifacts due to acquisition dead time.
2.3 2D 29Si MAF NMR spectrum of K$_2$O·2 SiO$_2$ glass (average reduced χ^2 = 2.51). Twenty equally spaced contours are plotted from 5% to 95% of the maximum intensity. One-dimension projections onto the MAS and 90° dimensions. The 1D MAS projection is identical, within the noise level, to the 1D MAS spectrum of 2.2, indicating that there is no strong T_2 dependence on the MAS lineshape. Selected experimental cross sections (solid lines) are presented with spectral fits (dashed line).

2.4 Nuclear shielding anisotropy, ζ, for $Q^{(2)}$ and $Q^{(3)}$ measured using 29Si 2D MAF NMR as a function of network modifier cation field strength, with roman numerals indicating different coordination number of modifiers X = K$^+$, Na$^+$, and Ca$^{2+}$.

2.5 29Si NMR MAS results of (a) the isotropic projection of the 2D MAF dataset (squares) with the best fit (dashed line) and (b) and the integrated areas (circles) obtained from the simulated 2D MAF dataset with the Gaussian fits for each sites (solid lines).

2.6 Disproportionation equilibrium constant, k_3, measured using 29Si 2D MAF NMR as a function of network modifier cation field strength.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Nuclear shielding anisotropy parameters, ζ and η, for $Q^{(2)}$ and $Q^{(3)}$ measured in this work for K$_2$O·2SiO$_2$ compared to previous 2D MAF studies on 2Na$_2$O·3SiO$_2$, and on CaO·SiO$_2$</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Gaussian distribution parameters of isotropic chemical shifts of $Q^{(n)}$-species in potassium disilicate glass derived from analysis of its 2D 29MAF spectrum.</td>
<td>32</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction

1.1 Glass

1.1.1 History of Glass

Glassy materials have and continue to be an integral part of human civilization [1–16]. Man first used obsidian, a naturally occurring volcanic glass, to make weapons and tools [9,10,14]. The first man-made glass was created in the Middle East around five thousand years ago [1,13]. Reserved for royalty, early glass was fragile, opaque, and used only as drinking vessels [9,13]. Early glass was difficult to make until the Roman Empire developed glass blowing which allowed for the mass production of glass. Glass blowing led to speedy creation of glasses with varying compositions which made glass available to all social classes [4,9,13]. As the Roman Empire declined, religious idealism promoted the use of glass in the Middle East [9]. For example, the Koran forbade material wealth, so many people turned towards the use of glass to create the illusion of luxury. The center of glass creation then shifted to Venice, Italy during the Renaissance. During this time, glass was primarily used as an art medium to create glass beads, glass mirrors, and crystal glass, most of which was reserved for royalty [9,13]. The Roman Catholic church used glass to make, unbeknown to them, nanoparticle containing stained glass windows [11,14]. During this time period
in England, lead glasses were created for bottling and shipping needs [9,13,17]. The growing glass industry then shifted to America. As America’s first industry, glass-makers focused on making bottles and windows. The American glass industry sped up the glass making process, for the first time since the Roman Empire, with the creation of a machine press that made glass. The American glass industry also contributed an automatic bottle blowing machine that has become invaluable across many different industries today [9]. For centuries, glass technology has fueled scientific investigations; from the glass in Galileo’s telescope [13,14], to corrective lenses [7], to the research done by Descartes and Snell [13], to the volumetric glassware used in laboratories world-wide.

1.1.2 Defining Glass

Although glass has been around for over five millennia [1,9], a precise definition of a glass has been a challenge [13]. According to Zarzycki [14], a glass can be narrowly defined as a solid obtained by supercooling a liquid without crystallization, or more broadly defined as simply a non-crystalline solid. The first definition is restrictive because some glasses can also be formed by using precipitation reactions [18,19], polymerization reactions, and electrolytic deposition [20,21]. Additionally, glasses are not limited to formation from liquids; there are several techniques to create glass from solids and gases [22–30]. The second definition broadly encompasses glasses, ceramics, gels, and some nano-structures. Here, we will side step these semantics issues, and focus on the determination of atomic-level structure in non-crystalline solids, which include glasses [14].
1.1.3 Structural and Thermodynamic Models

Due to the amorphous nature of glass, atomic-level structural details have been challenging to elucidate [15,31,32]. Therefore, the structure of glass is first characterized by its short-range bonding order, which consists of a central atom coordinated to ligands (first-coordination sphere). The Zachariasen model [33], shown in Figure 1.1 explains that silicon dioxide glass is composed of a network of silica polyhedron linked by oxygen at various angles. With the introduction of network modifier cations, solid-surface interactions between the glass and modifying cation decreased the melting temperature of the glass, allowing for glass to be created by early civilizations.

The short range bonding environment in silicate glasses described by Zacharisen [33] has been confirmed experimentally using XRD, neutron diffraction, and infrared (IR) spectroscopy [34–40]. Diffraction experiments, first by Mozzi and Warren [41], and later by Neuefeind and Liss [42], obtained the radial distribution function, \(T_x(r) \),
Figure 1.2: Radial distribution function, $T_x(r)$, of a silica [42] where r is the distance from the origin in units of Angstroms.

from the Fourier transform of the acquired x-ray diffraction data. The radial distribution function is a measure of the density of atoms at a distance, r, from the atom of interest [43], as shown in Fig. 1.2. The diffraction results [42] also indicate that a range of interatomic Si-Si distances exist in silica, further indicating a range of bond angles between silicon and oxygen. In addition to silicate glasses, XRD and neutron diffraction has also been used to confirm Zacharisen’s structure model in germanium oxide [39], titanium oxide [44], and barium oxide [38] glasses.

The commonplace practice of using network modifying cations to alter the chemical properties of glass led Zachariasen to propose a further structural model [33], illustrated in Figure 1.3, to account for these changes. In this model, network modifying cations ($Na^+, K^+, Mg^{2+}, Ca^{2+}$, etc.) coordinate to oxygen and depolymerize the silicate network. Experimental studies by Warren and Biscoe [35] used x-ray diffraction
Figure 1.3: Random network model proposed by Warren and Biscoe [35] in which the network modifying cations are randomly spread throughout the glass. R represents either an alkali metal or an alkali earth metal.

(XRD) to examine the structure of network modified silicate glasses. Their results indicate that, in contrast to having an ordered distribution of modifying cations within the glass structure, as proposed by Zachariasen [33], modifying cations are randomly throughout the glass, as illustrated in Figure 1.3. In both models, network modifying cations break Si-O-Si linkages between silicate tetrahedra. Oxygen can be divided into two types, those that are corner sharing between two silicate tetrahedra, called bridging oxygen (BO), and the more negatively charged terminal oxygen on silicate tetrahedra, called non-bridging oxygen (NBO). The network modifying cations are coordinated near the non-bridging oxygen [14].

In 1985, Greaves [45] proposed the modified random network model, where the distribution of network modifying cations in the glass is not expected to be purely random, as proposed by Warren and Biscoe [35]. Instead, the network modifying cations
Figure 1.4: The modified random network model, proposed by Greaves [45], where network modifying cations (green/small circles) form channels in the glass. The silicon (blue/medium circles) and oxygen (red/large circles) form a polymerized random network.

cluster together to form ion channels within the silica-oxygen polymer network, as illustrated in Figure 1.4.

One possible way to test these different structure models of how NBO are distributed within the bulk glass is to examine the thermodynamic model for the disproportionation equilibria of $Q^{(n)}$-species, where $Q^{(n)}$ represents a silicate tetrahedron and n is the number of BO per silicon tetrahedron, ranging from $n = 0$ to $n = 4$. This thermodynamic model, proposed by Bray and coworkers [46], is given by the reaction:

$$2Q^{(n)} = Q^{(n+1)} + Q^{(n-1)} \quad \text{where } n = 3, 2, 1. \quad (1.1)$$
Figure 1.5: (A) Binary and (B) random distribution of $Q^{(n)}$-species in thermodynamic model of $Q^{(n)}$-species disporportionation [48].

The $Q^{(n)}$ concentrations are used to calculate a disproportionation constant k_n, given by

$$k_n = \frac{[Q^{(n+1)}][Q^{(n-1)}]}{[Q^{(n)}]^2}.$$ \hfill (1.2)

If the distribution of $Q^{(n)}$ in the glass is binary, then k_3, k_2, and k_1 will be zero. If the distribution is random, then $k_3 = 0.375$, $k_2 = 0.495$, and $k_1 = 0.311$ [46,47].

Raman spectroscopy has been used to identify different $Q^{(n)}$-species present in glasses [13, 49–51]. Additionally, Raman studies has been successful in describing medium-range bonding order, and studies by Malfait et al. [52] have observed that glasses with high alkali concentrations are composed of 4-6 membered rings of silicon tetrahedra. Their results were similar to studies of other glasses where distinct stretches are observed corresponding to the stretching and bending within the ring structures [49,53–57]. While XRD, IR, and Raman techniques are useful in studying...
the short range bonding order in network modified glasses, neither of these techniques is inherently quantitative preventing accurate quantification of different $Q^{(n)}$-species present within the glass.

Nuclear magnetic resonance (NMR) spectroscopy, however, has proven useful in quantifying different $Q^{(n)}$-species [58–60], since NMR is able to separate nuclei in different bonding environments through a distinct resonance shift that is observed in the NMR spectrum. The relative abundance of each $Q^{(n)}$-species can then be obtained through the total integrated area of the assigned resonance. A binary distribution of $Q^{(n)}$-species, illustrated in Figure 1.5A and experimentally observed by Bray and Dupree et al. [61, 62] in 29Si NMR studies of soda-lime glasses, has only two $Q^{(n)}$-species with the sequential appearance of other $Q^{(n)}$-species as the alkali content increases. Initially, a glass containing no network modifying cation, such as quartz glass, has only $Q^{(4)}$ sites. As network modifying cations are introduced into the glass, the concentration of the $Q^{(4)}$ decreases to zero as the concentration of $Q^{(3)}$ increases to 100%. This trend continues until enough network modifying cation is added that only $Q^{(0)}$ sites remain. For a random distribution, each $Q^{(n)}$-species can exist within the glass at a given concentration of modifying cation, where the probabilities of observing each $Q^{(n)}$-species is determined by the constraints of mass and charge balance.

1.2 Nuclear Magnetic Resonance

1.2.1 Overview

Developed in 1945, NMR is a spectroscopic technique that can be used to identify and quantify nuclei present in a sample as well as discriminate between nuclei in different bonding environments.
Macroscopic Model of Atomic Nuclei

To understand NMR it is helpful to use the analogy of the atomic nucleus as a spinning top with a magnetic dipole moment along the spinning axis. If an external magnetic field, B_0, is applied to the magnetic top (nucleus), it will precess about the external magnetic field, as illustrated in Figure 1.6, with a precession frequency given by

$$\omega = \gamma B_0$$ \hspace{1cm} (1.3)

where γ is the gyromagnetic ratio of the magnetic top, which is the ratio of the magnetic dipole moment to angular momentum of the magnetic top. As we can see from Eq. 1.3, the precessional frequency of the magnetic top is proportional to the strength of the applied magnetic field. If a loop of wire is placed parallel to B_0, the top will pass through the loop inducing an electromotive force (EMF) in the wire, as illustrated in Figure 1.7. We use Faraday’s Law,

$$\text{EMF} = -\frac{d\Phi}{dt},$$ \hspace{1cm} (1.4)

to quantify the EMF induced from the precessional frequency. Here $d\Phi$ is the magnetic flux. The EMF induced by the top as it precesses about B_0 is given by

$$EMF = \omega_0 \frac{\mu_0}{2r_{\text{coil}}} |\mu| \sin(\psi) \sin(\omega_0 t + \xi_0)$$ \hspace{1cm} (1.5)

where ω_0 is the precession frequency, $|\mu|$ is the length of the precessing magnetization vector, ψ is the angle between the z axis and the precessing magnetization vector, and ξ_0 is the initial phase of the vector, as illustrated in Figure 1.8.

If we place a sample containing a ensemble of uncoupled magnetic tops ($\approx 10^{20}$) in a magnetic field, there will initially be a random distribution of angles (ψ, ξ_0) about
Figure 1.6: A spinning magnetic top in a zero gravity environment precessing about the applied external magnetic field B_0.

Figure 1.7: A spinning magnetic top precessing about B_0 will induce an EMF in a coil wrapped parallel to B_0.

Figure 1.8: Magnetization vector $\vec{\mu}$ as it precesses about B_0.
Figure 1.9: A sample will contain an magnetization vectors, $\vec{\mu}$, precessing at different angles all precessing around B_0. Before achieving thermal equilibrium, all of these vectors cancel, leaving no bulk magnetization vector which the tops precess, as illustrated in Figure 1.9, creating a net magnetization vector of zero, and thus, a net EMF that is also zero. The sample will eventually come to thermal equilibrium at which there will be a Boltzmann distribution of magnetic moments above and below the xy plane. The difference between the magnetic moments above and below the xy plane create a net magnetic moment along the z axis, as illustrated in Figure 1.10.

Magnetic Resonance

Although a net magnetization vector is obtained at thermal equilibrium, the vector can not be detected since it lies parallel to the magnetic field. To overcome this, magnetic resonance is used, illustrated in Figure 1.11, in which a small magnetic field, B_1, is applied along $+x$ axis. The net magnetization becomes slightly tilted away from B_0 toward the $-x$ axis. The spins precess 180° and B_1 is then applied...
Figure 1.10: After the sample reaches a thermal equilibrium, the distribution of spins in the $+xy$ plane will be greater than the distribution of spins in the $-xy$ plane. This creates a net magnetization along the $+z$ axis.

Figure 1.11: A small magnetic field B_1 is applied along the $+y$ axis (black arrow). This causes the net magnetization, originally along $+z$ to tilt slightly toward the $+y$ axis. Once the magnetization precesses 180°, B_1 is applied along the $-y$ axis which increases the tilt of the magnetization vector away from B_0 along the $-x$ axis. This causes the tilt from B_0 to become greater. This process is repeated until the bulk magnetization lies along the $x-y$ plane. The magnetization will then precess around B_0, in and out of the plane of the detector coil, creating a measurable EMF.
Figure 1.12: During magnetic resonance, alternating small magnetic fields are applied to the bulk magnetization which shifts the bulk magnetization from the $+z$ axis to the xy plane.

Nuclear Shielding and Chemical Shift

One of the main advantages of NMR is the separation of nuclei on the basis of nuclear shielding. The magnetic field experienced by a nucleus is directly affected by the electronic environment around the nucleus. The external magnetic field, B_0, induces a current in the electrons which, in turn induces a magnetic field that reduces the net magnetic field at the nucleus. The nucleus will be more shielded if there is a larger density of electrons around the nucleus. Thus, the nuclear shielding can be used to distinguish nuclei in different bonding environments. The shielding of the nucleus modifies the precession frequency in an isotropic system according to

$$\omega = \gamma (1 - \sigma_{iso}) B_0,$$

where σ_{iso} is the isotropic nuclear shielding, calculated from the full nuclear shielding tensor according to

$$\sigma_{iso} = \frac{1}{3} (\sigma_{xx} + \sigma_{yy} + \sigma_{zz}),$$
where \(\sigma_{xx} \), \(\sigma_{yy} \), and \(\sigma_{zz} \) are the diagonal components of the nuclear shielding tensor.

In the NMR experiment the nuclear shielding is not measured directly since we would need a reference spectra with respect to a completely deshielded nucleus, which is not physically possible. Instead, resonances are assigned with respect to a standardized reference compound, such as tetramethylsilane (TMS) for \(^{29}\text{Si} \), referred to as the isotropic chemical shift, \(\delta_{\text{iso}} \), and given by

\[
\delta_{\text{iso}} = \frac{(\sigma_{\text{ref}} - \sigma_{\text{iso}})}{(1 - \sigma_{\text{ref}})},
\]

where \(\sigma_{\text{ref}} \) is the isotropic nuclear shielding of a reference compound.

As illustrated in Figure 1.13, the silicon nucleus in each \(Q^{(n)} \)-species is less shielded than the silicon nucleus in the TMS reference (\(\delta_{\text{iso}} = 0 \)), resulting in a negative chemical shift for all \(Q^{(n)} \)-species. As the silicon nucleus in the \(Q^{(n)} \)-species becomes more shielded, its isotropic position shifts downfield in the NMR spectrum. This is also illustrated in Figure 1.13 in the case of a \(^{29}\text{Si} \) nucleus in different \(Q^{(n)} \) environments.

Of the five \(Q^{(n)} \) environments, the silicon in the \(Q^{(4)} \) site has the smallest electron density at the nucleus and the smallest nuclear shielding. The isotropic chemical shift for \(Q^{(4)} \), therefore, will have the most negative shift, as observed in experiment -110 ppm. In contrast, the \(Q^{(0)} \) site has the largest electron density and the largest nuclear shielding, with an isotropic chemical shift around -60 ppm (downfield shift from \(Q^{(4)} \)). The isotropic chemical shifts for \(Q^{(1)} \), \(Q^{(2)} \), and \(Q^{(3)} \), which have medium electron densities and nuclear shieldings, range from -70 ppm to -100 ppm.

In liquid samples, the rapid reorientation of molecules averages the nuclear shielding and only a single isotropic contribution to the NMR frequency is observed. In solids, however, the nuclear shielding tensor results in anisotropic nuclear shielding contributions to the NMR frequency. Thus, a broad anisotropic powder pattern in
Figure 1.13: Isotropic chemical shift ranges for each $Q^{(n)}$-species [63]

polycrystalline samples is observed, as illustrated in figure 1.14. The principal values of the nuclear shielding tensor can be obtained through direct analysis of the observed NMR lineshape, as also illustrated in Figure 1.14. Following the Haeberlen convention [64], where

$$|\sigma_{zz} - \sigma_{\text{iso}}| > |\sigma_{yy} - \sigma_{\text{iso}}| > |\sigma_{xx} - \sigma_{\text{iso}}|,$$

the anisotropy can be described using the magnitude of the nuclear shielding anisotropy, ζ, given by

$$\zeta = \sigma_{zz} - \sigma_{\text{iso}},$$

and the asymmetry parameter, η, given by

$$\eta = \frac{\sigma_{yy} - \sigma_{xx}}{\zeta}.$$

While this anisotropic line broadening presents a resolution and sensitivity challenge for the NMR spectroscopist, knowledge of the principal values of the nuclear shielding
Figure 1.14: Nuclear shielding parameters and their effect on the NMR lineshape in a polycrystalline sample.

The tensor can provide additional structural detail about local electronic structure around the nucleus.

Stebbins [59] observed that each $Q^{(n)}$-species in the 29Si NMR spectrum will unique parameters for ζ and η because of the different chemical environments around the 29Si nucleus. As the symmetry of the electron density about the 29Si nucleus decreases, ζ increases. For example, for $Q^{(4)}$ and $Q^{(0)}$, where the 29Si nucleus resides in a symmetric bonding environments, ζ and η will be zero because $\sigma_{zz} = \sigma_{yy} = \sigma_{xx}$. In contrast, 29Si for $Q^{(1)}$, $Q^{(2)}$, and $Q^{(3)}$ sites will be in an asymmetrical bonding environment because there will be different number of bridging and nonbridging oxygen around 29Si and ζ and η will be nonzero. The ability of NMR to probe the local bonding environment allows multiple $Q^{(n)}$-species to be resolved in the NMR spectrum since
each for each $Q^{(n)}$ has a characteristic lineshape with a unique isotropic chemical shift will be observed, as illustrated in Figure 1.15. The anisotropic lineshapes of the $Q^{(n)}$-species span over large frequency ranges which create complicated NMR spectra when more that one $Q^{(n)}$-species is present. One way to overcome the broad anisotropic lineshapes and quantify the $Q^{(n)}$-species is to perform magic angle spinning on the sample.

1.2.2 Magic Angle Spinning

Magic angle spinning (MAS) averages the frequency anisotropy in powdered solids by mimicking the natural reorientation that occurs in liquids by rapidly spinning the sample in a packed rotor at a fixed angle during the NMR experiment. Typically, this angle is chosen to be the "magic angle" [65], which is 54.74° with respect to the external magnetic field. Under MAS, second-rank anisotropic interactions are averaged to zero assuming the spinning speed is greater than the width of the underlying anisotropy. If the spinning speed is less than the width of the anisotropy, then a series of spinning sidebands that occur at integer multiples of the spinning speed will be observed in the NMR spectrum, as shown in figure 1.16. Since NMR is
Figure 1.16: Spinning sidebands occur when the spinning speed of the sample is less than the width of the anisotropy. Above are the spinning sideband patterns for each $Q^{(n)}$-species.

A quantitative analytical technique, averaging the anisotropy through MAS increases sensitivity since the total integrated area of the broad powder pattern, observed during static experiments, is collapsed into a narrow resonance. Each $Q^{(n)}$ chemical shift range is well known [66–68]. While high speed MAS of glass averages away the frequency anisotropy, broad overlapping Gaussian lineshapes are still observed due to a distribution of isotropic chemical shifts, which, in turn, arises from a structural distributions around the $Q^{(n)}$ sites [69]. Typically, a MAS lineshape can be deconvoluted with the assumption that each $Q^{(n)}$ site’s contributions to the spectrum can be represented as a Gaussian lineshape. While there have been many previous MAS studies [52, 60, 70–72] on the structure of silicate glasses, spectral resolution is often hindered by this broad overlap of Gaussian lineshapes.

1.2.3 Magic Angle Flipping

To overcome the limitations of fitting the spectrum with a series of broad overlapping Gaussian functions when multiple $Q^{(n)}$ are present in the glass, we can employ
2D correlation experiments that combine the benefits of static NMR, where we observe broad pattern patterns that contain structural details about the local bonding environment, and the MAS experiment, where we observe narrow lineshapes that can be separated into distinct frequency regions for each $Q^{(n)}$-species. Two-dimensional experiments correlating an isotropic dimension to an anisotropic dimension include Magic Angle Hopping (MAH) [73], Magic Angle Flipping (MAF) [73], and 2D Phase Adjusted Spinning Sidebands (PASS) [74,75].

The 2D MAF experiment manipulates the spatial dependence of the anisotropy by reorienting the rotor axis during the experiment between two angles, 90° and 54.74°, with respect to the external magnetic field. At the beginning of the experiment, the magnetization is allowed to evolve for a variable evolution time, t_1, where the rotor is spun at 90° with respect to the external magnetic field. Since the magnitude of the anisotropy scales with the second-rank Legendre polynomial, $P_2(\cos \theta)$, spinning the rotor axis introduces the anisotropy during t_1 since $P_2(\cos \theta) = -0.5$. Following the evolution period the magnetization is stored as the rotor axis is mechanically flipped back to the magic angle, where $P_2(\cos \theta) = 0$ and the anisotropy is fully averaged, and the signal detected. The resulting 2D signal will be amplitude modulated in t_1 by the relative contribution from the anisotropy. A 2D Fourier transform of the dataset will then give a frequency domain spectrum that correlates a narrow dimension with only anisotropic present and a broad anisotropic dimension that has contributions from both the isotropic and anisotropic frequencies. Based on the unique isotropic chemical shift of the $Q^{(n)}$ sites, we can fit the cross sections of the data by fixing the isotropic chemical shift of each cross section. Using the ζ and η parameters of the chemical shift as constraints on the lineshape, we can integrate the peak area of
each cross section and obtain the relative concentrations of the $Q^{(n)}$-species. There are limitations to this technique including the flipping between angles, which requires specialized hardware, and the signal in the MAS dimension is reduced [73, 76].

The next chapter will focus on using MAF to determine the $Q^{(n)}$-species in a potassium disilicate glass. The relative abundances will provide insight into the structural and thermodynamic models for potassium silicate glasses.
CHAPTER 2

Determination of Anionic Species within a Potassium Disilicate Using MAF

2.1 Introduction

In earlier work Zhang et al. [77, 78] utilized the MAF NMR experiment [79, 80], which produces a two dimensional (2D) spectrum correlating isotropic and anisotropic nuclear shielding contributions to the solid-state spectrum, can be used to give over an order of magnitude improvement in quantifying $Q^{(n)}$-species concentrations when compared to conventional 29Si Magic-Angle Spinning (MAS) lineshape analysis. Additionally, this method does not require the assumption of a Gaussian distribution of isotropic 29Si chemical shifts for the different $Q^{(n)}$-species. Its accuracy and precision were demonstrated in a well-understood sodium silicate glass binary composition [77] yielding a value of $k_3 = 0.0129 \pm 0.0001$. The same approach was applied successfully on a CaO$_2$ · SiO$_2$ glass [78], which has a completely unresolved 29Si MAS spectrum, to obtain the equilibrium constants $k_1 = 0.105 \pm 0.019$, $k_2 = 0.156 \pm 0.005$, and $k_3 = 0.106 \pm 0.022$ for the disproportionation reactions in CaO$_2$ · SiO$_2$. These latter results were the first quantitative measure of $Q^{(n)}$ distributions in the alkaline earth silicate glass, and indicated a significantly greater deviation from a binary
model of $Q^{(n)}$-species disproportionation in alkaline earth silicate melts compared to alkali silicate melts.

Since 2D MAF requires a solid-state NMR probe with specialized hardware to reorient the sample rotation axis, it should also be noted that there are a number of alternative solid-state methods for obtaining the same 2D correlation of isotropic and anisotropic nuclear shielding contributions [74,75,81–83], some of which have also been applied to glasses [84–89]. In addition to improved quantification of $Q^{(n)}$-species, 2D double-quantum NMR techniques have also been used to establish connectivities between $Q^{(n)}$-species by exploiting dipolar couplings [90–93] and more recently through J couplings [52,94,95]. These experiments have also provided more accurate mean chemical shifts for $Q^{(n)}$ sites to aid in deconvolution of overlapping Gaussian lineshapes in MAS spectra.

Recently, Florian and coworkers [95] found, through ab initio calculations calibrated with experimental measurements in crystalline phases, a close-to-linear relationship between the $^2J_{\text{Si-O-Si}}$ coupling and the Si–O–Si bond angle. Additionally, they measured a 2D J-resolved MAS spectrum, which correlates 29Si isotropic chemical shifts and $^2J_{\text{Si-O-Si}}$ couplings, for a 29Si-enriched CaO$_2$·SiO$_2$ glass. Generally, the intensity in a 29Si MAS lineshape of a fully 29Si-enriched silicate glass at a given isotropic chemical shift can contain contributions from any of the $Q^{(n)}$ sites, and a 29Si nucleus in a given $Q^{(n)}$ will experience n different $^2J_{\text{Si-O-Si}}$ couplings. Thus, critical in the analysis of the 2D J-resolved MAS spectrum of CaO$_2$·SiO$_2$ glass were the 29Si chemical shift distributions for the five $Q^{(n)}$ populations in CaO$_2$·SiO$_2$ glass derived from the 29Si 2D MAF spectrum of Zhang et al. [78]. That is, knowledge of these five $Q^{(n)}$ isotropic chemical shift distributions allowed Florian and coworkers to fit
each J-resolved cross section to the appropriate number of J couplings, and use their relationship between the $^2J_{\text{Si-O-Si}}$ coupling and the Si–O–Si bond angle to determine the Si–O–Si bond angles associated with $Q^{(3)}$, $Q^{(2)}$, and $Q^{(1)}$ sites in a silicate glass for the first time.

Here we present the first of a multi-part solid-state NMR study to (1) determine the distribution of NMR parameters in a ^{29}Si enriched potassium disilicate glass ($\text{K}_2\text{O} \cdot 2\text{SiO}_2$), (2) establish relationships between NMR parameters and local structure, and (3) map measured NMR parameters distributions into structural distributions. The focus of this work is the accurate measurement of $Q^{(n)}$ populations in the potassium disilicate glass. Since its ^{29}Si MAS spectrum is completely unresolved, a simple deconvolution of the ^{29}Si MAS lineshape is not possible without additional assumptions to constrain the least-squares fit [52]. To avoid such assumptions we have utilized the 2D MAF technique to obtain accurate populations and the isotropic chemical shift distributions for each of the $Q^{(n)}$ sites. The MAF method also measures the full nuclear shielding anisotropy of each $Q^{(n)}$ site. Although less studied than the isotropic chemical shift, the nuclear shielding anisotropy can also serve a probe of the local structure [59,96–98]. Thus, another objective of this study is to obtain accurate nuclear shielding anisotropy data for further refinement of quantitative relationships to local structure.

2.2 Experimental

2.2.1 Nuclear Magnetic Resonance Spectroscopy

Experiments were performed on a hybrid Tecmag Apollo-Chemagnetics CMX II 9.4 Tesla (79.476 MHz for ^{29}Si) NMR spectrometer using a modified version of an
earlier DAS probe design [99]. The experiment was performed at ambient temperature with a sample spinning rate of 14 kHz. The 29Si relaxation time was measured using the saturation recovery experiment under MAS condition and T_1 of 89 seconds was measured. A recycle delay of 6 minutes was chosen to prevent saturation. No changes in peak shape as a function of delay time were observed, indicating no differential relaxation among different species. For Bloch decay experiments a radio frequency (rf) strength of 42 kHz was used and 256 complex data points acquired.

The MAF pulse sequence used is shown in 2.1. This is a shifted-echo [100] version of the MAF experiment [79,80], where the MAS spectrum is correlated with spectrum while spinning at perpendicular to the external field. When spinning perpendicular the frequency anisotropies are scaled [76] by a factor of $-1/2$. In the MAF experiment the number of scans was 96 (following the application of 4 dummy scans), the number of $t_1 \times t_2$ points are 64×128, with dwell time of $62.5 \mu s$ in t_1 and t_2. During the MAF experiment the magnetization is stored as Zeeman order during the hop of the rotor axis between angles. The value of τ_{hop} was 80 milliseconds. The echo shift time, τ_{echo}

\[
\begin{align*}
\pi/2 & \quad t_1 \quad \tau_{hop} \quad \tau_{echo} \quad t_2 \\
+1 & \quad 0 \quad -1 \\
p & 0.5 \\
S_z & 0.5 \\
S_x & -0.5
\end{align*}
\]

Figure 2.1: Shifted-echo Magic-Angle Flipping pulse sequence. Here t_1 is the evolution time at 90°, τ_{hop} is the time to flip the rotor between angles and τ_{echo} is the echo shift.
was 2.8 milliseconds. A Gaussian line shape convolution was applied to 2D MAF spectrum with standard deviations of 20 Hz and 100 Hz in the ω_1 and ω_2 dimensions, respectively.

In the discussion that follows we will employ the IUPAC definitions for the nuclear shielding and chemical shift interactions [64] outlined in Chapter One. The reference compound used was TMS.

2.2.2 Sample Preparation

Approximately 450 mg of sample were synthesized from high purity K$_2$CO$_3$ (Aldrich, 99+%) and 96.74% 29Si enriched SiO$_2$ (CortecNet). Before synthesis the SiO$_2$ was heat treated at 600°C for 5 hours in order to remove protons present in the sample, and was then kept and handled in an argon-filled glovebox. The starting materials were then decarbonated at 750°C for three hours, followed by melting for two hours at 1300°C. The sample was then quenched from this temperature down to room temperature by placing the bottom of the crucible into water. The weight loss during synthesis was within a few percent of nominal. The recovered sample was fully transparent and free of bubbles and was immediately put in an argon-filled glovebox for subsequent grinding. Rotor filling was performed in a argon-filled glove bag.

2.3 Results and Discussion

The one dimensional 29Si MAS spectrum of K$_2$O·2 SiO$_2$ glass is shown in 2.2. This spectrum has a broad resonance centered at -93 ppm, consistent with silicon predominately in a $Q^{(3)}$ coordination. Unlike our earlier study on the alkali silicate glass 2Na$_2$O · 3 SiO$_2$, where overlapping but separate 29Si resonances for $Q^{(2)}$ and $Q^{(3)}$ could be observed in the MAS spectrum, there is no clear resolution of $Q^{(n)}$-species
Figure 2.2: One dimensional 29Si Magic-Angle Spinning Bloch Decay spectrum of K$_2$O \cdot 2 SiO$_2$ glass along with “best-fit” model lineshape and component lineshapes for $Q^{(4)}$, $Q^{(3)}$, and $Q^{(2)}$ resonances. The spectrum baseline was corrected to eliminate any artifacts due to acquisition dead time.

in the MAS spectrum of the K$_2$O \cdot 2 SiO$_2$ glass. As noted by Malfait et al. [52], the skew in the lineshape observed down field indicates $Q^{(2)}$ sites are present. Although ill posed, we performed a least-squares analysis of the MAS spectrum using three Gaussian lineshape components for a three site model of $Q^{(2)}$, $Q^{(3)}$, and $Q^{(4)}$. From this analysis we obtained 41.6%, 57.7%, and 0.7% for $Q^{(2)}$, $Q^{(3)}$, and $Q^{(4)}$ populations. Such a result, however, is clearly at odds with the prediction from the charge balance equation,

$$\frac{K}{Si} = 4[Q^{(0)}] + 3[Q^{(1)}] + 2[Q^{(2)}] + [Q^{(3)}]$$ (2.1)

where our 1D MAS analysis yields a ratio of K/Si = 1.41 instead of K/Si = 1 expected for this composition.

2.3 shows the 2D contour plot of the 29Si MAF spectrum for the K$_2$O \cdot 2 SiO$_2$ glass. As illustrated elsewhere [77,78] the five $Q^{(n)}$ sites have well defined differences in their 29Si nuclear shielding tensors yielding characteristic anisotropic lineshapes that can distinguish between sites. In 2.3 one can see from the 90° dimension that
Figure 2.3: 2D 29Si MAF NMR spectrum of K$_2$O · 2 SiO$_2$ glass (average reduced $\chi^2 = 2.51$). Twenty equally spaced contours are plotted from 5% to 95% of the maximum intensity. One-dimension projections onto the MAS and 90° dimensions. The 1D MAS projection is identical, within the noise level, to the 1D MAS spectrum of 2.2, indicating that there is no strong T_2 dependence on the MAS lineshape. Selected experimental cross sections (solid lines) are presented with spectral fits (dashed line).
Table 2.1: Nuclear shielding anisotropy parameters, ζ and η, for \(Q^{(2)} \) and \(Q^{(3)} \) measured in this work for \(K_2O \cdot 2SiO_2 \) compared to previous 2D MAF studies on \(2Na_2O \cdot 3SiO_2 \) [77], and on \(CaO \cdot SiO_2 \) [78].

The low intensities of the MAS lineshape around \(-105\) ppm are dominated by \(Q^{(4)} \), the MAS lineshape intensities around \(-90\) ppm are dominated by \(Q^{(3)} \), and the MAS lineshape intensities around \(-80\) ppm have some contributions from \(Q^{(2)} \).

The chemical shift anisotropy lineshapes in the individual cross-sections taken parallel to the 90° dimension were least-squares analyzed to obtain the relative contribution of each \(Q^{(n)} \)-species to the MAS intensity at the MAS frequency correlated to that cross-section. The anisotropic lineshape for each site was modeled using 5 parameters. These were (1) the isotropic chemical shift position \(\delta_{iso} \), (2) the chemical shift tensor anisotropy \(\zeta \), (3) the chemical shift tensor asymmetry parameter \(\eta \), (4) the integrated intensity, and (5) a Gaussian line broadening. All sites in each cross-section shared the same isotropic chemical shift and that value was fixed by the isotropic dimension. In initial least-squares analyses those cross-sections dominated by one \(Q^{(n)} \)-species showed little variations in \(\zeta \), \(\eta \), and Gaussian line broadening for the line shape of the dominant species. In cross-sections with strong overlap of \(Q^{(n)} \)-species and/or low signal-to-noise the least-squares analyses gave discontinuous
unphysical variations in the parameters. Therefore, in performing the final least-squares analysis of each cross-section the nuclear shielding tensor anisotropy \(\zeta\) and asymmetry parameter \(\eta\) for a given \(Q^{(n)}\) site were held fixed at the values obtained when that \(Q^{(n)}\) site was the dominate species in the cross-section. Thus all sites were constrained to have the same optimized Gaussian line broadening of 563 Hz in the 90\(^\circ\) dimension, with \(\zeta\) and \(\eta\) fixed at \(\zeta = -85.0 \pm 1.3 \text{ ppm}, \eta = 0.48 \pm 0.02 \text{ for } Q^{(2)}\), \(\zeta = -74.9 \pm 0.2 \text{ ppm}, \eta = 0.030 \pm 0.006 \text{ for } Q^{(3)}\), and \(\zeta = 0.0 \text{ ppm}, \eta = 0.0 \text{ for } Q^{(4)}\).

The magnitude of \(\zeta\) values for both \(Q^{(2)}\) and \(Q^{(3)}\) are larger than those found in our previous 2D MAF studies on 2 Na\(_2\)O \cdot 3SiO\(_2\) [77], and CaO\(_2\) \cdot SiO\(_2\) [78] glass as shown in 2.1. We find a strong correlation, shown in 2.4, between the \(\zeta\) for \(Q^{(2)}\) and \(Q^{(3)}\) and the modifier cation field strength, calculated using the ionic radii of Whittaker and Muntus [101]. Even after taking into account the possibility of different modifier cation coordination numbers, indicted by roman numerals in 2.4, the correlation still appears to be relatively linear. This trend is consistent with previous observations by Stebbins [102]. It arises because the silicon–non-bridging oxygen distance increases with increasing modifier cation field strength, and as explained by Grimmer and coworkers [96,97], a longer Si–O distance corresponds to less \(^{29}\)Si shielding.

Shown in 2.3 are the 1D projections of the 2D spectrum onto the MAS and 90\(^\circ\) dimensions. Additionally, selected 90\(^\circ\) dimension cross sections associated with specific isotropic chemical shifts are shown with its “best fit” anisotropic lineshape along with component contributions. From the integrated area of each \(Q^{(n)}\) component line shape in each 90\(^\circ\) dimension cross section we construct the distribution of isotropic chemical shifts for each of the \(Q^{(n)}\) resonances, shown in 2.5. Since the derived isotropic chemical shifts distributions appear to be approximately Gaussian each distribution was
Figure 2.4: Nuclear shielding anisotropy, ζ, for $Q^{(2)}$ and $Q^{(3)}$ measured using 29Si 2D MAF NMR as a function of network modifier cation field strength, with roman numerals indicating different coordination number of modifiers $X = K^+$, Na^+, and Ca^{2+}.

fit to a Gaussian distribution to improve our accuracy in determining the integrated areas. The relative concentrations (\pm one standard deviation) obtained from this analysis are given in 2.2 for the three $Q^{(n)}$-species. As mentioned earlier, it is important to emphasize that the distribution of the chemical shifts of each $Q^{(n)}$-species obtained from the 2D MAF analysis are not likely to match that obtained by a least-squares analysis of the 1D MAS spectrum, particularly when the MAS spectrum is unresolved, as was the case in 2.2.

Our measured MAF-derived populations agree with the expected K/Si ratio of the charge balance equation. Each $Q^{(n)}$-species has a charge of $-(4-n)$, which is balanced by the +1 charge of the potassium cations. For this composition the expected K/Si ratio is 1. The K/Si ratio calculated using Eq. (2.1) and the relative populations in 2.2
Figure 2.5: 29Si NMR MAS results of (a) the isotropic projection of the 2D MAF dataset (squares) with the best fit (dashed line) and (b) and the integrated areas (circles) obtained from the simulated 2D MAF dataset with the Gaussian fits for each sites (solid lines).

is 1.026 ± 0.007. This value agrees reasonably well with the expected value and offers additional evidence that our measured populations are accurate. The slight deviation from unity is likely due to weight loss during synthesis and thus a slight change in stoichiometry. Some deviation could additionally arise from small defects in the glass network (uncompensated negative charge). The existence of small concentrations of $Q^{(2)}$ and $Q^{(3)}$ with different ζ and η, as observed by Maekawa et al. (1991) [60], could also affect measured concentrations, influencing the calculated potassium to silicon ratio, and interfere with the three site model used when fitting the 2D MAF dataset.
<table>
<thead>
<tr>
<th>Site $Q^{(n)}$</th>
<th>Relative Area</th>
<th>Mean Position/ppm</th>
<th>Standard Deviation/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^{(2)}$</td>
<td>9.8 ± 0.7%</td>
<td>−82.74 ± 0.03</td>
<td>3.27 ± 0.03</td>
</tr>
<tr>
<td>$Q^{(3)}$</td>
<td>83.0 ± 0.1%</td>
<td>−91.321 ± 0.004</td>
<td>4.194 ± 0.003</td>
</tr>
<tr>
<td>$Q^{(4)}$</td>
<td>7.2 ± 0.3%</td>
<td>−101.67 ± 0.02</td>
<td>5.09 ± 0.03</td>
</tr>
</tbody>
</table>

Table 2.2: Gaussian distribution parameters of isotropic chemical shifts of $Q^{(n)}$-species in potassium disilicate glass derived from analysis of its 2D 29Si MAF spectrum.

Figure 2.6: Disproportionation equilibrium constant, k_3, measured using 29Si 2D MAF NMR as a function of of network modifier cation field strength.
A popular model, used in understanding the energetics and thermodynamic mixing properties of silicate melts [103, 104], and suggested as part of a mechanism for alkali ion transport in alkali silicate glasses [105, 106], involves the disproportionation equilibria between $Q^{(n)}$-species,

$$2Q^{(n)} \rightleftharpoons Q^{(n-1)} + Q^{(n+1)}, \quad (2.2)$$

with the equilibrium constant at the glass transition temperature,

$$k_n = [Q^{(n+1)}][Q^{(n-1)}]/[Q^{(n)}]^2. \quad (2.3)$$

The equilibrium constant for this disproportionation reaction ranges from $k_n = 0$ for a highly ordered (i.e. binary) distribution of silicate anionic species to $k_3 = 0.375$, $k_2 = 0.439$, and $k_1 = 0.311$ for a completely random distribution [107, 108]. Using the $Q^{(n)}$ populations obtained in this study we can calculate an equilibrium constant of $k_3 = 0.0103 \pm 0.0008$ for this composition. This value is consistent with previous studies [52, 60, 109] which indicate that potassium silicate glasses have a highly ordered distribution of silicate anionic species. Comparing this value with k_3 values obtained in our two previous 2D 29Si MAF studies of $2\text{Na}_2\text{O} \cdot 3\text{SiO}_2$, and $\text{CaO}_2 \cdot \text{SiO}_2$ glass we observe a strong correlation between k_3 and modifier cation field strength, as shown in 2.6. The trend is consistent with earlier conclusions that higher charged cations shift the disproportionation reaction of Eq. (2.2) to the right [102, 110]. Even after taking into account the possibility of different modifier cation coordination numbers, indicted by roman numerals in 2.6, the correlation still appears to be relatively linear.
2.4 Summary

We have obtained and analyzed a 2D MAF spectrum of 29Si enriched K$_2$O · 2 SiO$_2$ glass, whose 1D MAS spectrum is completely unresolved. By exploiting differences in 29Si anisotropic lineshapes characteristic for each $Q^{(n)}$-species we have obtained accurate and quantitative $Q^{(n)}$ populations. Even though the spectral analysis was unconstrained by composition and charge balance, the $Q^{(n)}$ populations obtained were found to be consistent with those constraints. These $Q^{(n)}$ populations were used to calculate the equilibrium constant for the disproportion reaction of $Q^{(3)}$ occurring in the melt, and confirmed that a close to binary distribution of anionic species exists in the potassium disilicate glass. The observed k_3 value is also consistent with the expected trend of increasing $Q^{(n)}$ disproportionation with increasing network modifier cation strength. In fact, based on previous MAF studies of sodium and calcium silicate glasses it appears that this relationship may be close to linear. Finally, the nuclear shielding anisotropy observed for both $Q^{(2)}$ and $Q^{(3)}$ sites were found to be consistent with established trends in which the 29Si nuclear shielding increases linearly with decreasing silicon–non-bridging oxygen bond length, which, in turn, increases when the non-bridging oxygen is coordinated by a modifier cation of lower field strength.

[38] J. Zarzycki, Congres intern. de verre, Trav. IV Szkice i materiay historyczne z XIX i XX wieku (1956) 323.

[92] K. Glock, O. Hirsch, P. Rehak, B. Thomas, C. Jäger, Novel opportunities for studying this short and medium range order of glasses by MAS NMR, 29Si

