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ABSTRACT
Astrometric measurements of microlensing events can in principle determine both the ““ parallax ÏÏ r8 Eand the ““ proper motion ÏÏ k of an individual event, which (combined with the Einstein timescale intE)turn yield the mass, distance, and transverse velocity of the lens. We show, however, that the parallax

measurements are generically several orders of magnitude less precise than the proper-motion measure-
ments. Fortunately, astrometric measurements by the Space Interferometry Mission (SIM) are simulta-
neously photometric measurements, and since SIM will be in solar orbit, these allow SIM to be used as a
classical (photometric) parallax satellite. We show that SIM photometric parallaxes are of precision com-
parable to that of its astrometric proper-motion measurements. For I\ 15 bulge stars, complete solu-
tions with D5% accuracy in mass, distance, and transverse velocity can be obtained from about 5 hr of
observation, 100È10,000 times shorter than would be required for a purely astrometric solution of similar
precision. Thus, it should be possible to measure directly the mass functions of both the bulge and the
inner disk (including both dark and luminous objects) with only a few hundred hours of SIM obser-
vations.
Subject headings : astrometry È Galaxy : stellar content È gravitational lensing È Magellanic Clouds

1. INTRODUCTION

Boden, Shao, & Van Buren (1998) have shown that it is in
principle possible to obtain complete solutions for micro-
lensing events from a series of astrometric measurements
using the Space Interferometry Mission (SIM) or possibly
ground-based interferometers. This would be extremely
important if practical because two major questions that are
difficult to answer on the basis of present-day data could
then be easily resolved.

First, after almost a decade of observations, the nature of
the events currently being detected toward the Large
Magellanic Cloud (LMC) by the MACHO (Alcock et al.
1997b) and EROS (Aubourg et al. 1993) collaborations is a
complete mystery. On the one hand, the observed optical
depth qD 2 ] 10~7 is an order of magnitude higher than
expected from known populations of stars. On the other
hand, if the lenses lie in the Galactic halo and so comprise of
order half the dark matter, then their masses (inferred from
the event timescales and kinematic models of the halo) are
of order half a solar mass. Thus, the objects could not be
made of hydrogen or they would easily have been dis-
covered from star counts (Alcock et al. 1997b and references
therein). Direct measurements of the mass and distance of
the lenses would unambiguously resolve this question.

Second, there appears to be a large excess of short-
timescale events toward the Galactic bulge relative to what
would be expected if bulge stars had a mass function similar
to that seen in the solar neighborhood (Han & Gould 1996).
The events would be explained easily if the mass function
were rising more steeply toward low masses (Zhao, Spergel,
& Rich 1995 ; Han 1997), but recent observations of the
bulge by Holtzman et al. (1998) show that the bulge lumi-
nosity function is very similar to the local one. By now
hundreds of events have been discovered toward the bulge,
although only about 50 have been published (Udalski et al.
1994 ; Alcock et al. 1997a). If individual masses, positions,
and velocities of even 10% of these could be measured, our
knowledge of the bulge population (both dark and
luminous) would be dramatically increased.

In addition, the PLANET (Albrow et al. 1999) and MPS
(Rhie et al. 1999) collaborations are currently searching for
planetary systems by closely monitoring ongoing micro-
lensing events seen toward the Galactic bulge. Ordinarily,
these observations can yield only the planet/star mass ratio
and their projected separation in units of the Einstein radius
of the lens (Mao & 1991 ; Gould & Loeb 1992).Paczyn� ski
Complete solutions of the event would enable one to trans-
late these quantities into planet masses and physical pro-
jected separations.

At present, the only quantity routinely measured for all
events is the Einstein timescale, which is a complicatedtE,combination of the physical parameters that one would like
to know,

tE\ hE
k

, k \ v
Dol

, (1)

where v is the transverse speed of the lens relative to the
observer-source line of sight, k is the proper motion, and hEis the angular Einstein radius,

hE\
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Here M is the mass of the lens, and and are theDol, Dos, Dlsdistances between the observer, lens, and source. There are
numerous ideas on how to get additional information about
individual events, but these often require special circum-
stances. For example, if the source crosses a caustic in the
lens geometry, then it is possible to measure the proper
motion k and so, from equation (1), the Einstein radius
(Gould 1994a ; Nemiro† & Wickramasinghe 1994 ; Witt &
Mao 1994). In fact, a variant of this technique has recently
been used to measure the proper motion of a lens seen
toward the Small Magellanic Cloud (SMC) and so demon-
strate that the lens almost certainly resides in the SMC
(Afonso et al. 1998 ; Albrow et al. 1999 ; Alcock et al. 1999 ;
Udalski et al. 1998 ; Rhie et al. 1999). However, such caustic
crossing events are rare, and the great majority of them are
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binaries (and hence may not be representative of the lens
population as a whole).

A second type of information can come from parallax
measurements. If the event is sufficiently long, then the
normal light curve is distorted by the accelerated motion of
the Earth about the Sun, allowing one to measure the Ein-
stein radius projected onto the observer plane, r8 E,

r8 E\ DhE (3)

(Gould 1992). Several parallaxes have been measured for
bulge events (Alcock et al. 1995 ; D. Bennett 1998, private
communication), but all for events that are substantially
longer than typical. It would be possible to measure the
parallaxes of microlensing events routinely by launching a
satellite into solar orbit (Refsdal 1966 ; Gould 1995b). The
event would have a di†erent time of maximum magniÐ-
cation, and di†erent impact parameter, b, as seen fromt0,the Earth and the satellite. From the di†erences in these
quantities, and *b, and using the known Earth-satellite*t0separation, and known angle c between the line ofd

^vs
,

sight and the Earth-satellite vector, one could reconstruct
both the size of the projected Einstein ring, and ther8 E,direction of motion, /, relative to the satellite-Earth vector :

r8 E \ d
^vs

o sin c o

[(*b)2] (*t0/tE)2]1@2
, tan /\ *b

*t0
. (4)

A rather technical but in the present context very impor-
tant point is that it is signiÐcantly easier to measure the
di†erence in times of maximum, than it is to measure*t0,the di†erence in impact parameters, *b. There are two
interrelated reasons for this, which are investigated in detail
by Gould (1994b, 1995b), Boutreux & Gould (1996), and
Gaudi & Gould (1997). First, the sign of the impact param-
eter, b, measured by a single observer is intrinsically ambig-
uous because the light curve contains no information about
the side of the lens on which the source passes. Hence, from
the two individual impact-parameter measurements, b

^and it is possible to reconstruct four di†erent values ofb
s
,

Second, one must determine b and*b\^(b
^

^ b
s
). t0from the light curve simultaneously with three other param-

eters, and the latter two being the Ñuxes from thetE, F0, F
b
,

source star and any unlensed background light that is
blended into the photometric aperture of the source. While

is virtually uncorrelated with any of the other threet0parameters, b is highly correlated with all of them, in partic-
ular with Hence b (and so *b) is more poorly measuredF

b
.

than (and While it is possible to break the fourfoldt0 *t0).discrete degeneracy, this requires measurement of a higher
order e†ect.

No dedicated parallax satellite is currently planned.
However, the Space Infrared Telescope Facility (SIRT F)
could be used to measure parallaxes of at least some events.
Because SIRT F makes its measurements in passbands that
are inaccessible from the ground, the relative blending
between the Earth and satellite is completely unconstrained,
so measurement of *b is not simply difficult, it is virtually
impossible. Nevertheless, if is well constrained by*t0Earth-satellite observations, then it is possible to determine
*b from vigorous ground-based observations (Gould
1999a).

In the best of all possible worlds, one would measure
both and These (together with the routinely measuredhE r8 E.and the approximately known source distance) wouldtE

then yield a complete solution for M, and v (e.g., GouldDol,1995c). For example,

M \ c2
4G

hE r8 E . (5)

At present, this is possible by ground-based measurements
only for certain rare classes of events (Hardy & Walker
1995 ; Gould & Andronov 1999 ; Gould 1997). If there were
a parallax satellite, then it would also be possible for those
rare events which happened to be accessible to proper-
motion measurement. However, astrometric microlensing
opens the possibility, at least in principle, that such com-
plete measurements might be made for a large unbiased
sample of events in the future.

2. ASTROMETRIC MICROLENSING : PROMISE AND

LIMITATIONS

As Boden et al. (1998) discuss, astrometric measurements
are sensitive to two distinct e†ects. First, the center of lensed
light from the source is displaced from the actual position of
the source by

dh \ u
_

u
_
2 ] 2

hE , (6)

where is the projected position of theu
_

4l(t [ t0)/hEsource relative to the lens in units of angular Einstein
radius, assuming rectilinear motion as would be observed
from the Sun. That is,

u
_

(t) \
C(t [ t0)2

tE2
] b2

D1@2
. (7)

This deviation traces out an ellipse with semimajor and
semiminor axes,

h
a
\ 1

2(b2] 2)1@2 hE , h
b
\ b

2(b2] 2)
hE . (8)

The major axis is aligned with the direction of motion of the
lens relative to the source. Hence, by measuring this e†ect,
one can solve for both and the direction of motion. AhEmeasurement of is often called a ““ proper-motion ÏÏ mea-hEsurement because, from equation (1) it can be combined
with the known Einstein timescale to yield the magnitude of
the proper motion. However, in the case of astrometric
measurements, it also yields the direction, /, and so the full
vector proper motion, l. Note that because the astrometric
e†ect dies o† very slowly (Pu~1), stars not associated with
the photometric microlensing event can cause signiÐcant
shifts in the apparent position of the source. However,
because this shift remains nearly constant during the event,
it does not interfere with the measurement of l (Dominik &
Sahu 1999).

The second e†ect is a parallax deviation caused by
motion of the Earth about the Sun. The exact formula for
the combined parallax and proper-motion e†ect can be
found by substituting

u
^

\ u
_

[ nü Â nü Â a
r8 E

(9)

in equation (6). Here is the unit vector in the direction ofnü
the source, and a is the position vector of the Earth relative
to the Sun. Thus, the magnitude of the perturbative term is
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which might be D10%È30% for typical lensingDAU/r8 E,events. This would seem to imply that one could determine
the parallax about 10%È30% as accurately as the(r8 E)proper motion for the same set of measurements.(hE)Unfortunately, the situation is not so favorable. The per-
turbation in equation (9) is not directly observable because
there are no comparison observations from the Sun. Con-
sider the limit which is typical for events seentE> yr/2n,
toward the Galactic bulge. In this case, the EarthÏs velocity
would barely change during the event or even for the Ðrst
few after it. One would then see the same ellipse astEdescribed by equation (8), but with a b di†erent from the
one that would have been seen from the Sun. Ninety days
after the event, the direction of apparent source motion
would have changed by an angle where is thev

^
/v8 , v8 4 r8 E/tEspeed of the lens projected onto the observer plane, and

km s~1 is the speed of the Earth. According tov
^

\ 30
equation (6), this would introduce an astrometric deviation
of order Since is essentially deter-(v

^
/v8 )(tE/90 days)hE. hEmined from the major axis of the ellipse (eq. [8]), which is

approximately the relative size of the astrometric2~1@2hE,parallax and proper-motion measurement errors is roughly
given by

!ast@ast4
p
r8 E,ast/r8 E

phE,ast/hE
D

v8
v
^

60 days
tE

. (10)

In fact, equation (10) is too optimistic in that it implicitly
assumes that the direction of the major axis of the ellipse
can be determined with inÐnite precision. As we will show
in ° 5, this is very far from the case. Hence, the true ratio of
errors is generally larger than that implied by equation (10).
For typical bulge-bulge lensing events, km s~1. Forv8 D 800
typical halo events seen toward the LMC, kmv8 D 300
s~1. For lenses in the LMC, is a factor of 3È10 higher still.v8

The above analysis implies that astrometric microlens
parallax measurements are several orders of magnitude less
accurate than proper-motion measurements. This would
not present much of a problem if very accurate proper-
motion measurements could be made with a modest
amount of observing time. However, as we will show in ° 5,
even for bright (ID 15) sources seen toward the bulge,
proper-motion measurements accurate to 5% require about
5 hr of observations. Very few events seen toward the LMC
are brighter than V D 20, and therefore D40 times more
observing time is needed to achieve the same precision.
Hence, this analysis appears to imply that no more than a
few accurate microlens parallaxes could be obtained in any
reasonable observing program.

3. PHOTOMETRIC MICROLENSING PARALLAXES

WITH SIM

SIM is not designed to do photometry, and it would seem
completely hairbrained to waste this precision astrometric
instrument on measurements that could be done more effi-
ciently from the ground using telescopes with collecting
areas that are several orders of magnitude larger. Neverthe-
less, two unrelated factors combine to make SIM the ideal
device to measure microlens parallaxes photometrically
(rather than astrometrically).

3.1. Photometry with SIM
First, SIM works by counting photons as a function of

position in the interference pattern in order to Ðnd the cen-

troid of the central fringe. The photons are distributed in
this fringe as NF(h)dh, where N is the total number of
photons in the central fringe,

F(h) \ 1
nh

f
cos2

A h
2h

f

B
, h

f
4

j
2nd

, (11)

d is the distance between the mirrors, and j is the wave-
length of the light. The astrometric precision is given by
(e.g., Gould 1995a)

ph\ N~1@2
CP

dh F(h)
Ad ln F

dh
B2D~1@2 \ N~1@2h

f
, (12)

and hence the fractional photometric precision (pph\
N~1@2) is related to the astrometric precision by

pph\ ph
h
f

. (13)

3.2. One-dimensional Photometric Parallaxes
Second, as discussed in ° 1, the real problem in obtaining

microlens parallaxes photometrically is that the microlens
parallaxes are inherently two-dimensional. In e†ect, by
measuring one determines and by measuring*t0, cos //r8 E,*b, one determines where / is the angle of source-sin //r8 E,lens relative motion with respect to the direction of the
SIM-Earth axis at the moment when the event is a
maximum as seen from the SIM-Earth midpoint. It is only
by measuring both of these quantities that one can deter-
mine Since *b is difficult to measure, obtaining a preciser8 E.is also difficult.r8 E As discussed in ° 1, it is possible in principle to break the
degeneracy in *b photometrically if the photometry is good
enough. We will show in ° 5 that SIM photometry is suffi-
ciently precise for this task provided that the observations
are carefully planned. However, it is also the case that SIM
astrometric measurements by themselves often determine /
(from the orientation of the ellipse) with sufficient precision
to break the degeneracy in *b. In these cases, can ber8 Edetermined from a measurement of alone. In this paper*t0we will consider both methods of breaking the degeneracy,
but in the remainder of this section we will assume that the
degeneracy is broken astrometrically. This will allow us to
estimate the relative precision of SIM photometric!ph@ast,parallax measurements to SIM astrometric proper-motion
measurements. (Recall from the discussion following eq. [4]
that blending does not signiÐcantly a†ect the measurement
of and therefore it will not be considered in this section.*t0,We will give a thorough discussion of blending in ° 4.)

As currently designed, SIM will Ñy in a SIRT F-like orbit,
drifting away from the Earth at about 0.1 AU yr~1. Let the
distance at the time of the observations be Then cand

^vs
. r8 Ebe determined from the measured (and the known value*t0of /) by

r8 E\ d
^vs

tE
o*t0 o

o cos / o . (14)

Gould (1999a) analyzed how to optimize measurements of
when he investigated microlens parallaxes with SIRT F.*t0For photon-limited photometry, one should concentrate

the measurements near times before and after the peak,t
Bwhere The error in is then givent

B
\ t0^ (5/3)1@2btE. t0,s
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approximately by

p
t0,s

D n~1@2pph
b
0.5

tE (b [ 0.5) , (15)

where n is the total number of measurements in these two
regions. We will assume that the ground-based measure-
ments to determine have precision similar to that of thet0,^SIM measurements. Equation (14) then implies that the
fractional error in is given byr8 E

p
r8 E

r8 E
\ 21@2 p

t0,s
o*t0 o

\ 21@2 v8 p
t0,s

d
^vs

o sec / o . (16)

Then, assuming that a similar number of measurements are
used to determine the semimajor axis of the ellipse, andh

a
,

to determine (they are somewhat the same*t0measurements), the ratio of the photometric precision of the
parallax to the astrometric precision of the proper motion is

!ph@ast \
p
r8 E
/r8 E

pha/ha
D

r8 E pph(b/0.3) o sec / o /d
^vs

ph/(hE/3)
, (17)

where we have approximated equation (8) as h
a
\ hE/3.

Using equations (5) and (13), this can be rewritten as

!ph@ast D b
4GM

c2d
^vs

h
f

o sec / o

D
b

0.25
M

0.3 M
_

A d
^vs

0.2 AU
B~1

o sec / o , (18)

where we have adopted mas, which is appropriateh
f
\ 2.5

if the Ñux-weighted harmonic mean wavelength of the
source is 0.8 km, and the mirrors are separated by 10 m.
Equation (18) implies that for typical lenses, the photo-
metric parallax will be of comparable precision to the
astrometric proper motion, in sharp contrast to the large
ratio for astrometric parallaxes found in equation (10).

In fact, the o sec / o dependence in equation (17) is too
pessimistic because we have ignored all photometric infor-
mation about *b. We show in ° 5 that except for the case
cos /^ 0 (where the discrete degeneracy becomes astrom-
etrically incorrigible) it is possible essentially to eliminate
the o sec / o term in equation (17) using a combination of
astrometric and photometric data.

4. SIMULATIONS

The estimates given in the previous two sections are
useful because they elucidate the relation between the
physics of the event and the measurement process, on the
one hand, and the errors in the microlensing parameters, on
the other. By the same token, however, they cannot capture
the full range of experimental conditions, and so are neces-
sarily approximate. The actual errors for any given event
will depend both on the precise event parameters and on the
observational strategy. While a full investigation of the best
observational strategy lies well beyond the scope of the
present study, it is important to make a rigorous calculation
of the statistical errors for some representative examples in
order to obtain more precise estimates and to investigate
more subtle e†ects that are not captured by the rough
analysis given above.

For this purpose, we consider a set of somewhat idealized
observations. First, we assume that the principal measure-
ments are carried out at uniform time intervals that are
short compared to beginning when the magniÐcationtE,Ðrst reaches A\ 1.5 and ending at a time that will be deter-
mined below from signal-to-noise ratio (S/N) consider-
ations. The assumption of uniform observations is quite
reasonable for observations toward the LMC (near the
ecliptic pole) but is obviously not really possible toward the
bulge (near the ecliptic). For the bulge, we therefore assume
that the measurements are interrupted when the bulge is
within 60¡ of the Sun. This measurement strategy can
actually be very far from ideal, and we modify it somewhat
in ° 4.2 below. The assumption that events can be recog-
nized at A\ 1.5 is reasonable, but whether observations
can begin as soon as the events are recognized requires
additional discussion. SIM design characteristics are not
yet Ðxed, but A. Boden (1999, private communication) has
provided us with the following summary of the current
status based on discussions with the SIM Deputy Project
Scientist and the SIM Mission Planning Manager. The
current ““ requirement ÏÏ for target-of-opportunity response
is 4 days, with a ““ goal ÏÏ of 2 days, where a ““ requirement ÏÏ is
what the project is using as a basis for planning and a
““ goal ÏÏ is what the project will attempt to support if
resources are available. The mechanics of operating the
spacecraft limit the response time absolutely to a minimum
of about 16 hr, but to achieve this much faster response
would be costly in dollars. Thus, the actual response time of
SIM will be set by balancing the scientiÐc returns against
costs that ultimately limit other capabilities of the satellite.
For simplicity, we here assume that observations can
always begin at A\ 1.5. Clearly, the Ðnite response time
will degrade this to some degree, particularly for the short-
est events. Since the experiment being proposed in this
paper will probably stress the target-of-opportunity capa-
bility of SIM at least as much as any other, a more detailed
study of the e†ects of the delay should be made in the near
future. However, this is beyond the scope of the present
paper.

Second, we assume that the exposure times are of equal
duration, so that the S/N is better near the peak of the
event. Third, we assume mas and AU,h

f
\ 2.5 d

^vs
\ 0.2

although the Ðrst will clearly vary from star to star, and the
second will change during the course of the mission. For the
LMC (at the ecliptic pole), the time of year at which the
event is discovered plays no role, but for the bulge it does.
We will assume that the bulge Ðeld lies at B\ [6¡ from
the ecliptic, close to the (northern) winter solstice. The
Earth-satellite separation projected onto the sky is there-
fore at a maximum at the summer solstice and is

at other timesd
^vs

(1 [ cos2 t cos2 B)1@2 D d
^vs

o sin t o
of the year, where t is the phase of the EarthÏs orbit relative
to the autumnal equinox. As discussed in detail by Gaudi &
Gould (1997), the orbital phase t has two conÑicting e†ects.
First, when cos tD 0 (near the summer solstice), the SIM-
Earth projected separation is at a maximum, and hence
the measurement errors of and *b are reduced to a*t0minimum. On the other hand, the relative velocity of SIM
and the Earth projected onto the plane of the sky is at a
minimum, and breaking the degeneracy in *b depends criti-
cally on this relative velocity. Hence, it is most difficult to
break the degeneracy at the summer solstice. As the phase
moves away from the summer solstice, the projected separa-
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tion slowly declines (making the measurements of and*t0*b less accurate), but the projected velocity di†erence
rapidly increases (allowing more secure degeneracy
breaking). If one relies on photometry to break the degener-
acy, the optimal events are those that peak about 45 days
from the summer solstice (see, e.g., Fig. 6 of Gaudi & Gould
1997). On the other hand, if it is possible to break the degen-
eracy astrometrically, then events that peak at the solstice
are optimal, since the measurement errors are reduced by
D2~1@2. In this paper, we will simulate primarily events
peaking at t\ 225¡, i.e., about May 7. However, we will
also discuss events that peak at the summer solstice
(t\ 270¡).

Next, we will assume for deÐniteness that the ground-
based photometric observations have the same precision as
the SIM observations. Finally, we will ignore blending in
the SIM measurements, except blending by the lens. Blend-
ing will have an important impact on the overall precision,
and hence on the strategy for SIM measurements, but, as
we show below, it will not a†ect the main conclusions of this
paper, which concern the relative precision of SIM astro-
metric and photometric microlens parallaxes. This is espe-
cially true toward the bulge, which will be the main focus of
analysis. A proper treatment of blending would therefore
make the paper substantially more complex without clari-
fying any of the central points. Hence, we defer consider-
ation of this important e†ect to a later paper on
observational strategy.

Why can blending be ignored to Ðrst order in this
analysis ? First, Han & Kim (1999) have shown that all
potential blends lying more than 10 mas from the source
can be eliminated by the SIM observations themselves.
Since the density of Ðeld stars having even a modest fraction
of the source Ñux is much less than 104 arcsec~2, this essen-
tially eliminates all blends not directly associated with the
event, namely, the lens itself, binary companions to the lens,
and binary companions to the source. For bulge events, 10
mas corresponds to 80 AU, so a substantial fraction of
binary companions are also eliminated. Second, to mini-
mize observation time, SIM observations must be almost
entirely restricted to very bright stars (relative to other stars
in the Ðeld). This means clump giants toward the bulge and
either clump giants or early main-sequence stars toward the
LMC. The chance that a bulge clump star has a companion
within 80 AU and with more than a few percent of its own
Ñux is small because their progenitors are about 50 times
fainter than the stars themselves. The primary e†ect of a few
percent blend would be to change the shape and orientation
of the proper-motion ellipse and (assuming the shape
change went undetected) to therefore change the inferred
direction of the lens-source relative proper motion, also by
a few percent. This would in turn a†ect the parallax inferred
from which depends on this direction through the angle*t0,/. See equation (14). However, this e†ect on the parallax
measurement will also be a few percent. As we will show in °
5, it is quite possible to achieve accuracies of a few percent
for bulge events, so a careful investigation of the e†ect of
blending on parallax and proper-motion measurements
should be undertaken as part of a more thorough analysis
of the problem. Unfortunately, a proper analysis of blend-
ing from binary companions to the source requires simu-
lated Ðts to the entire di†raction pattern, not just the
centroid, and so is substantially more involved than the
present study. By contrast, low-level blending by the lens

can be treated within the framework of the centroid analysis
given here, and we therefore include it.

The situation is more complicated toward the LMC
because the chance that an early main-sequence star has a
companion of comparable brightness is larger, probably a
few tens of percent. Even clump stars have brighter com-
panions toward the LMC than toward the bulge because
they are younger and so have brighter progenitors. Also, the
10 mas limit on detecting blends directly (Han & Kim 1999)
corresponds to 500 AU toward the LMC compared to 80
AU toward the bulge. Nevertheless, even toward the LMC,
the majority of sources will not have companions with more
than 10% of the source Ñux, and hence even here it is appro-
priate to ignore blending by companions in a Ðrst treat-
ment.

Toward both the bulge and the LMC, it is very unlikely
that the lens itself will contribute more than a small fraction
of the source light if the source is bright. We therefore allow
for lens blending in our simulated Ðts but assume that the
actual blending is very small.

Note that we will not ignore blending in the ground-
based photometric observations, since there is no way to
eliminate Ðeld star blends for the ground-based obser-
vations.

4.1. Parameterization
We will simulate simultaneous observations from SIM

and from the ground. There will be four measured quan-
tities : (1) G1, the Ñux observed from the ground, (2) G2, the
Ñux observed from SIM, (3) G3, the x astrometric position,
and (4) G4, the y astrometric position. These give rise to four
observational equations :
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where A(u) \ (u2] 2)/[u(u2] 4)1@2] is the magniÐcation, l
sis the absolute proper motion of the source, is the trueh0position of the source at time t \ 0,

a \ [ nü Â nü Â a
AU

, (22)

is the parallax of the source, and and are deÐnedn
s

u
SIM

u
^similarly to equation (9), i.e.,

u
SIM
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_

] ia
SIM

, u
^

\ u
_

] ia
^

, i 4
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r8 E

, (23)

with

u
_

4 (q
_
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_

sin /, q
_

sin /] b
_

cos /) ,

q
_

4
t [ t0,_

tE,_
. (24)
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The terms in equation (20) can be understood as follows.
The Ðrst term is the ellipse characterized by equation (8),
modiÐed by the motion of the Earth (i.e., Theu

_
] u

SIM
).

second term is the parallactic motion of the source. The
third and fourth terms represent the ordinary proper
motion and position of the source. The last term is the
perturbation due to the luminosity of the lens, which is
written out explicitly in (21). Here the Ðrst term is the di†er-
ence between the ““ ellipse ÏÏ in equation (20) and the relative
lens-source position while the second is the( [ u

SIM
hE),relative parallax of the lens and the source.

There is a total of 15 parameters : and aret0,_, b
_

, tE,_the standard event parameters as the event would be seen
from the Sun, / is the direction of source motion relative to
the lens with respect to the SIM-Earth direction, is thehEEinstein radius, i is the inverse projected Einstein radius
(normalized in AU), is the parallax of the source, is then

s
l
sproper motion of the source, is its position at t \ 0,h0 F

s
1

and are the source Ñuxes as received by the Earth andF
s
2

satellite observatories, and and are the backgroundF
b
1 F

b
2

Ñuxes.
To determine the uncertainties in these parameters, we

evaluate the covariance matrix (e.g., Gould & Welchc
ij1996)

c \ b~1 , b
ij
\ ;

l/1

4
;
k/1

N
p
kl
~2 LGl(t

k
)

La
i

LGl(t
k
)

La
j

, (25)

where are the 15 parameters, are the times ofa1, . . . , a15 t
kthe observations, and is the error in the measurement ofp

klGl at time We enforce the condition of weak blending byt
k
.

setting after taking the derivatives in equationF
b
1\F

b
2\ 0

(25).

4.2. ModiÐcation of Observing Strategy
The full problem of optimization of SIM microlensing

observations lies outside the scope of this paper, but it is
straightforward to determine the optimum duration of
observations once the (arbitrary) strategy of uniform obser-
vations has been adopted : one changes the interval over
which the observations are carried out while holding the
total observing time Ðxed, and inspects the resulting errors.
We carry out this exercise and Ðnd that the optimal dura-
tion to determine is short, typically a few tens of days forr8 Evarious combinations of parameters, while the optimal
duration to determine is well over 100 days. The reasonhEfor this is clear. The measurement of is determined pri-r8 Emarily from photometry, and the photometric microlensing
event is essentially over after On the other hand, is2tE. hEdetermined from the astrometric event, which lasts many
times Only after the astrometric event is essentially overtE.
is it possible to determine and so remove the correlationl

sbetween this parameter and hE.We address this inconsistency of timescales by modifying
the observational strategy. We take observations uniformly
over various intervals but with Ðxed total observing time, T ,
and then take three additional observations, each with
observing time T /20, at 3 months, 9 months, and 12 months
after the peak of the event. Thus, the total observing time is
1.15T . We then Ðnd that the precision of both and isr8 E hEroughly constant when the continuous observations last
anywhere from 30 to 120 days. Any choice in this range
would lead to essentially the same result. We adopt 50 days,
since it is away from the edges of the interval but still on the

shorter side (thus keeping the observations away from the
time when the Sun comes close to bulge Ðelds).

4.3. S/N: Assumptions and Scalings
We assume that all bulge sources have magnitude I\ 15,

which is typical of the brighter microlensing events seen
toward the bulge. For example, of the 143 bulge events
alerted by the MACHO Collaboration1 during 1997, 1998,
and the Ðrst part of 1999, eight had I¹ 15.5 (assuming
V [R \ R[I). Three of the 13 bulge events alerted by the
OGLE Collaboration2 in the Ðrst part of 1999 had I¹ 15.5.
In our calculations, we normalize the astrometric precision
by assuming that 4 kas accuracy (in one dimension) can be
achieved in 1 minute of observation on an I\ 11 star. That
is, our Ðducial I\ 15 stars require 40 minutes to reach 4
kas. We allow a total of 5 hr of observation for each event.
It is then straightforward to scale our results to other
assumed conditions. For example, for an I\ 20 source, the
errors reported in the next section must be multiplied by 10.
Alternatively, the same errors could be achieved by allow-
ing 500 hr of observations. If our astrometric error estimate
proves too pessimistic, so that it is possible to achieve 4 kas
precision in a minute on an I\ 12 star, then the errors
should be divided by 1.6.

Toward the LMC, we assume that the source is V \ 20,
which is near the bright end of the events detected in this
direction. Because the LMC sources are fainter and the
LMC events are rarer than those seen toward the bulge, we
assume a total SIM integration time of 20 hr. Note that
since about 50 times more photons are received from an
I\ 15 star than from a V \ 20 star, and since we have
assumed a fourfold increase in integration time toward the
LMC, photon statistics alone will produce (50/4)1@2D 3.5
times larger errors toward the LMC compared to the bulge.
There will be additional di†erences due to the di†erent
geometries.

5. RESULTS

5.1. Bulge
We consider two geometries. The Ðrst is a bulge line of

sight at 6¡ from the ecliptic. The source and lens are both in
the bulge, with kpc and kpc. Hence D\ 24Dos\ 8 Dol\ 6
kpc. (See eq. [2].) The speed of the lens relative to the
observer-source line of sight is v\ 200 km s~1. We vary M,
/, and b. Formally b is deÐned as the impact parameter of
the event as seen from an observer at the Earth-SIM mid-
point, but in practice it is very similar to the b observed
from the Earth. All events are assumed to peak (as seen
from the midpoint) on May 7, i.e., 45 days before the
(northern) summer solstice. This is the most favorable time
to break the discrete degeneracy in *b photometrically (see
Gaudi & Gould 1997), but the intrinsic errors in *b and *t0are larger by D21@2 than they would be at the summer
solstice. We will therefore later investigate whether the dis-
crete degeneracy in *b can be broken astrometrically so
that observations could take place at the solstice. In order
to better understand this and several other issues, we
conduct two sets of simulations, one using SIM measure-

1 See http ://darkstar.astro.washington.edu/.
2 See http ://www.astrouw.edu.pl/Dftp/ogle/ogle2/ews/ews.html.
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ments alone (both astrometric and photometric) and the
other combining astrometry with photometry from both
SIM and the ground.

Table 1 shows the results. The data are grouped in sec-
tions for each pair of input parameters M and b. The Ðrst
column gives the input parameter /. Columns (2) and (3)
show the errors in / from SIM measurements only and
with the addition of ground-based measurements. Columns
(4)È(9) show the fractional errors in various quantities both
without and with ground-based photometry. Columns (4)
and (5) show the errors in columns (6) and (7) show ther8 E,errors in and columns (8) and (9) show the errors inhE, Finally, columns (10) and (11) show theM \ r8 E hE c2/4G.
fractional errors in and in based on combinedD\ r8 E/hE, n

sdata from SIM and the ground.
These results are in rough qualitative agreement with the

predictions of equations (10) and (18). In particular, they
conÐrm that the fractional error in is orders of magni-r8 Etude larger than the fractional error in if one is restrictedh8 Eto SIM data, while the two errors are comparable if one
combines astrometric with photometric data.

However, there are a number of additional important
conclusions that can be drawn from Table 1. First,
restricting consideration to impact parameters b \ 0.5, the
fractional errors in M, D, and are all typically about 5%,n

salthough these errors do vary somewhat in particular cases.
This means 5 hr of observation produce very precise indi-
vidual solutions for the mass, distance, and velocity of the
lens, and also for the distance and velocity of the source,
implying that a few hundred hours of SIM time could yield
a very detailed inventory of the material between the Sun
and the Galactic center.

Second, while the errors in do deteriorate towardr8 E/\ 90¡, the trend is not as drastic as predicted by equation
(18). For b \ 0.5, the errors are 50%È100% worse at
/\ 90¡ compared to /\ 0, although equation (18) pre-
dicts that they should be inÐnite. The fundamental reason
for this is that the continuous degeneracy in *b is not very
severe, so that if one assumes that the discrete degeneracy is
broken, then there is actually quite a lot of information
about this component of in the photometric measure-r8 Ements. In fact, the values in Table 1 implicitly do assume
that the discrete degeneracy is broken. This is because they
are based on equation (25), which gives a purely local error
analysis.

Recall that there are two discrete degeneracies. We focus
initially on the one that a†ects the magnitude of *b and
defer consideration of the one that a†ects only the sign of
*b. To determine whether this discrete degeneracy is
broken photometrically, we examine the work of Gaudi &
Gould (1997), in particular their Figure 6. Under the obser-
vational conditions they considered, the discrete degeneracy
is broken 90% of the time for M \ 0.3 t\ 225¡, andM

_
,

satellite separations This is twice the separa-d
^vs

\ 0.4AU.
tion that we have assumed. However, Gaudi & Gould
(1997) have assumed photometry errors of 1% for the Earth
and 2% for the satellite, for a total of about 70 observations.
If our 5 hr of observing time were divided among 70 obser-
vations, the photometric precision would be 1.2%. That is,
our assumed e†ective errors are smaller by a factor
[(1.22] 1.22)/(12] 22)]1@2\ 0.75. For small Earth-satellite
separations, there is a direct trade-o† between measurement
error and satellite separation, so our 0.2 AU separation
corresponds to 0.25 AU in their simulations. Inspection of

the Gaudi & Gould (1997) Figure 6 shows that the degener-
acies would be broken 70% of the time. To determine how
this e†ectiveness scales with lens mass, we turn to Figure 4
of Gaudi & Gould (1997). This shows that degeneracy
breaking becomes more difficult at lower masses. The Ðgure
is drawn for the case AU, whereas the argumentd

^vs
\ 1

just given implies that with 5 hr of observation, our 0.2 AU
separation is equivalent to 0.25 AU in the Gaudi & Gould
(1997) simulations. Hence, comparing the Gaudi & Gould
(1997) Figures 4 and 6, we estimate that 35% of the degen-
eracies would be broken for M \ 0.1 If the exposureM

_
.

times were multiplied by a factor of 4È20 hr, this fraction
would rise to about 70%.

We now turn to the question of how well the degeneracies
can be broken astrometrically. For the geometry considered
here, Hencer8 E \ 7.5(M/0.3 M

_
)AU. *bD d

^vs
/r8 ED 0.025,

which is quite small compared to typical values of b. This
means that for most events the discrete degeneracy will be
between solutions with *bD 0.025 and *b^ 2b D 0.5.
Since the high *b solution will almosttan /\ *b/*t0,always correspond to angles 90¡^ 2¡ or 270¡ ^ 2¡, while
the low *b solution (assuming that it is the real one) will be
at some random angle. Thus, to distinguish the two solu-
tions, one must have independent information about / with
errors that are a factor of D3 smaller than o 90¡ [ / o or
o 270¡ [ / o . Is / this well constrained by the observations?
Looking at column (2) of Table 1, / seems to be very well
constrained. However, this precision measurement is based
primarily on the photometric measurements of *b and *t0and so implicitly assumes that the discrete degeneracy has
been broken. Hence we should use only SIM data (col. [2]).

We see from column (2) of Table 1 that the errors in / are
generally small for /¹ 60¡ but deteriorate toward /\ 90¡.
This means that the discrete degeneracy is broken astro-
metrically at the 3 p level for /¹ 60¡ but cannot be broken
if the angle gets close enough to 90¡. Table 1 does not have
sufficient resolution to determine the transition, but we Ðnd
by more detailed calculations that for b \ (0.2, 0.4) this
occurs at (70¡, 65¡), for M \ 0.1 at (75¡, 70¡), forM

_
,

M \ 0.3 and at (80¡, 75¡), for M \ 0.5 Hence, theM
_

, M
_

.
degeneracy is usually broken astrometrically, but less fre-
quently at low masses. Since the degeneracy is more difficult
to break at low masses both photometrically and astro-
metrically, it would be prudent to commit more observation
time (say 20 hr rather than 4 hr) to the shortest events
(which are likely to be low mass).

The fact that the degeneracy can be broken astro-
metrically for most events seems to argue against restricting
observations to periods that are 45 days from the summer
solstice. Recall that we adopted this restriction in order to
permit better photometric degeneracy breaking, which now
no longer seems so necessary. However, we Ðnd that for
events peaking at the solstice, the errors in / (when the
Earth-based observations are ignored ; col. [2]) are substan-
tially higher than the values in column (3), implying that it is
often not possible to break the discrete degeneracy astrom-
etrically or photometrically at the solstice.

As we have noted, the above discussion actually applies
to only one of two discrete degeneracies, the one involving
two di†erent magnitudes of *b. This is the more important
degeneracy because it a†ects the estimate of the size of r8 Eand so of the mass, distance, and speed of the lens. However,
there is also another degeneracy involving the sign of *b
but not its magnitude. Boutreux & Gould (1996) and Gaudi



TABLE 1

UNCERTAINTIES OF PARAMETERS : BULGE (I\ 15, t\ 225¡, 5 hr)

pÕ p
r8 E
/r8 E phE/hE p

M
/M

/ S S] = p
D
/D pns/ns

(deg) (deg) (deg) S S] = S S] = S S] = S] = S] =

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

M \ 0.1 M
_

, b \ 0.2

0 . . . . . . . 2.3 1.1 0.981 0.015 0.041 0.041 0.980 0.044 0.043 0.035
30 . . . . . . 2.5 1.0 1.265 0.017 0.041 0.041 1.265 0.045 0.044 0.035
60 . . . . . . 4.3 0.9 2.713 0.020 0.040 0.040 2.713 0.046 0.045 0.034
90 . . . . . . 9.2 0.7 6.005 0.022 0.040 0.039 6.012 0.045 0.045 0.033

M \ 0.1 M
_

, b \ 0.4

0 . . . . . . . 2.7 2.2 1.962 0.036 0.046 0.045 1.955 0.059 0.057 0.035
30 . . . . . . 3.5 2.1 2.564 0.041 0.047 0.046 2.559 0.063 0.061 0.036
60 . . . . . . 7.9 1.9 5.394 0.056 0.046 0.046 5.394 0.075 0.071 0.036
90 . . . . . . 17.0 1.6 11.382 0.070 0.052 0.044 11.408 0.084 0.082 0.035

M \ 0.1 M
_

, b \ 0.6

0 . . . . . . . 4.0 3.0 4.271 0.075 0.060 0.053 4.248 0.095 0.088 0.036
30 . . . . . . 6.9 2.9 5.500 0.080 0.060 0.055 5.482 0.100 0.094 0.036
60 . . . . . . 16.5 2.7 11.109 0.111 0.057 0.055 11.108 0.128 0.121 0.037
90 . . . . . . 27.0 2.5 18.428 0.173 0.084 0.054 18.491 0.185 0.177 0.036

M \ 0.3 M
_

, b \ 0.2

0 . . . . . . . 1.1 0.9 0.446 0.019 0.021 0.021 0.446 0.029 0.028 0.037
30 . . . . . . 1.2 0.9 0.570 0.021 0.021 0.021 0.570 0.030 0.030 0.037
60 . . . . . . 2.0 0.9 1.195 0.026 0.020 0.020 1.196 0.034 0.033 0.036
90 . . . . . . 4.3 0.8 2.768 0.030 0.019 0.019 2.772 0.035 0.035 0.035

M \ 0.3 M
_

, b \ 0.4

0 . . . . . . . 1.3 1.2 0.900 0.047 0.024 0.024 0.899 0.053 0.052 0.038
30 . . . . . . 1.7 1.2 1.132 0.054 0.024 0.024 1.132 0.059 0.058 0.038
60 . . . . . . 3.5 1.2 2.267 0.075 0.023 0.023 2.270 0.079 0.077 0.038
90 . . . . . . 8.5 1.2 5.639 0.097 0.026 0.022 5.653 0.100 0.100 0.037

M \ 0.3 M
_

, b \ 0.6

0 . . . . . . . 2.0 1.6 1.906 0.098 0.030 0.029 1.899 0.103 0.101 0.038
30 . . . . . . 3.2 1.6 2.321 0.109 0.030 0.029 2.317 0.114 0.112 0.038
60 . . . . . . 6.8 1.6 4.280 0.158 0.029 0.029 4.284 0.162 0.159 0.038
90 . . . . . . 14.8 1.6 9.849 0.252 0.047 0.027 9.888 0.254 0.252 0.038

M \ 0.5 M
_

, b \ 0.2

0 . . . . . . . 0.9 0.8 0.313 0.022 0.017 0.017 0.313 0.027 0.027 0.038
30 . . . . . . 0.9 0.8 0.395 0.024 0.016 0.016 0.396 0.029 0.029 0.038
60 . . . . . . 1.5 0.8 0.820 0.031 0.015 0.015 0.821 0.034 0.034 0.037
90 . . . . . . 3.0 0.8 1.999 0.035 0.015 0.015 2.002 0.038 0.038 0.036

M \ 0.5 M
_

, b \ 0.4

0 . . . . . . . 1.0 1.0 0.623 0.054 0.019 0.019 0.623 0.057 0.057 0.039
30 . . . . . . 1.3 1.0 0.783 0.062 0.019 0.019 0.784 0.065 0.065 0.039
60 . . . . . . 2.4 1.0 1.536 0.089 0.018 0.018 1.539 0.091 0.091 0.038
90 . . . . . . 6.5 1.0 4.352 0.115 0.020 0.016 4.362 0.115 0.116 0.038

M \ 0.5 M
_

, b \ 0.6

0 . . . . . . . 1.5 1.2 1.386 0.113 0.023 0.023 1.384 0.116 0.115 0.040
30 . . . . . . 2.3 1.2 1.633 0.129 0.023 0.023 1.634 0.132 0.131 0.040
60 . . . . . . 4.6 1.3 2.903 0.195 0.023 0.022 2.909 0.197 0.196 0.039
90 . . . . . . 12.3 1.3 8.190 0.293 0.039 0.020 8.224 0.294 0.293 0.039

M \ 1.0 M
_

, b \ 0.2

0 . . . . . . . 0.7 0.6 0.211 0.026 0.014 0.013 0.212 0.029 0.029 0.040
30 . . . . . . 0.7 0.7 0.266 0.029 0.013 0.013 0.267 0.032 0.032 0.039
60 . . . . . . 1.0 0.7 0.540 0.038 0.012 0.012 0.541 0.039 0.040 0.039
90 . . . . . . 2.1 0.7 1.458 0.044 0.012 0.012 1.460 0.044 0.046 0.038
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TABLE 1ÈContinued

pÕ p
r8 E
/r8 E phE/hE p

M
/M

/ S S] = p
D
/D pns/ns

(deg) (deg) (deg) S S] = S S] = S S] = S] = S] =

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

M \ 1.0 M
_

, b \ 0.4

0 . . . . . . . 0.7 0.7 0.410 0.065 0.016 0.015 0.412 0.066 0.067 0.041
30 . . . . . . 0.9 0.8 0.502 0.077 0.016 0.015 0.504 0.078 0.079 0.040
60 . . . . . . 1.5 0.8 0.963 0.115 0.015 0.014 0.967 0.115 0.116 0.040
90 . . . . . . 4.6 0.9 3.268 0.137 0.016 0.013 3.276 0.136 0.139 0.040

M \ 1.0 M
_

, b \ 0.6

0 . . . . . . . 1.0 1.0 0.975 0.137 0.019 0.018 0.979 0.138 0.138 0.042
30 . . . . . . 1.5 1.0 1.122 0.164 0.019 0.018 1.126 0.166 0.165 0.042
60 . . . . . . 2.9 1.1 1.908 0.262 0.019 0.016 1.916 0.262 0.262 0.041
90 . . . . . . 10.2 1.1 6.937 0.333 0.034 0.015 6.967 0.333 0.334 0.041

NOTE.ÈM is the mass of the lens, b is the impact parameter in Einstein radius units, / is the angle of lens motion
relative to the satellite-Earth vector. ““ S ÏÏ and ““ S] = ÏÏ designate two cases : Ðrst, SIM astrometry and photometry
measurements ; second, SIM measurements plus ground-based photometry. is the projected Einstein radius (eq. [3]),r8 Eis the angular Einstein radius (eq. [2]), is given in eq. (2), and is the parallax of the source.hE D\ r8 E/hE n

s

& Gould (1997) refer to the Ðrst of these as the ““ speed
degeneracy.ÏÏ We call the second the ““ direction degener-
acy.ÏÏ The direction degeneracy becomes difficult to break
when i.e., when /D 0¡ or /D 180¡, soo*b o> o*t0 o /tE,that the two degenerate solutions are close in /. From
column (2) in Table 1, we Ðnd that the error in / from the
astrometric data alone is generally quite small for /\ 0,
and hence is adequate to break the direction degeneracy
unless / lies within a few degrees of either 0¡ or 180¡.
However, in this case the e†ect of the degeneracy is very
small.

Finally, we note that we have examined the errors in
(although we do not display them). We Ðnd that theyF

b
/F

sare typically a few percent, implying that a luminous lens
could be detected if it were more than a few percent of the
Ñux of the source.

5.2. L MC
The second line of sight is toward the LMC at the south

ecliptic pole. The source lies at kpc, while the lensDos \ 50
is assumed to be in the halo at kpc. Hence D\ 21Dol\ 15
kpc, which is very similar to the bulge value. This means
that at Ðxed mass, the bulge events considered in ° 5.1 will
have about the same as the LMC events considered here.r8 EThe speed of the lens relative to the observer-source line of
sight is v\ 250 km s~1, slightly larger than for the bulge.
Recall that we are assuming that the source is V \ 20 and
that the total observing time is 20 hr.

Table 2 shows the results. Apart from the factor of D3.5
larger errors that results simply from photon statistics, they
are qualitatively similar to those for the bulge. The largest
di†erence is that the fractional error in is larger, whichn

ssimply reÑects the fact that the LMC is more distant.
Of the eight microlensing events detected by Alcock et al.

(1997b) during their Ðrst two years of observations, none of
the sources were brighter than V \ 20 (after removing
blended light), which is the nominal limit for SIM. Future
microlensing surveys could improve the rate of detection by
an order of magnitude (Gould 1999b ; Stubbs 1998).
However, only a factor of 3 of this improvement would be

due to the coverage of a larger area. The rest would come
from going deeper, which would not yield any more bright
sources. Hence, the total rate of events that are accessible to
SIM will not be high. Most of the usable events that are
detected are likely to be close to the magnitude limit. We
Ðnd that with our assumed source magnitudes and expo-
sure times, the mass and distance estimates will be accurate
to about 10%È20% (although they rise to D40% for the
case of b \ 0.4). This would be an acceptableM \ M

_
,

level of precision to resolve the question of the nature of the
lenses assuming that more than a handful of events can be
measured. The errors in the measurement of / without
making use of the Earth-based observations (col. [2]) are
typically 8¡. Hence in many cases it will not be possible to
break the *b degeneracy astrometrically.

To determine whether the photometry is sufficiently
precise to break the degeneracy, we compare our simulation
with that of Boutreux & Gould (1996), who speciÐcally con-
sidered an Earth-satellite separation of 0.26 AUÈclose to
our value of AU. In their Monte Carlo simula-d

^vs
\ 0.2

tion, the ““ speed degeneracy ÏÏ (between di†erent scalar
values of *b) was broken 40%È60% of the time in the mass
range 0.1È1 We Ðnd that their assumed photometricM

_
.

errors are about twice the ones assumed here. Therefore, it
seems likely that the SIM photometric observations would
be adequate to break this degeneracy in the majority of
cases.

Inspection of column (2) of Table 2 shows that the direc-
tion degeneracy will usually be broken astrometrically. The
simulations of Boutreux & Gould (1996) show that it is
about as difficult to break the direction degeneracy as the
speed degeneracy. Thus, it should usually also be possible to
break this degeneracy photometrically. In any event, as in
the case of the bulge, the direction degeneracy is much less
important than the speed degeneracy.

Of course, not all halo lenses can be expected to be at
kpc. We also considered kpc andDol\ 15 Dol\ 10 Dol\ 25

kpc. For the Ðrst case, we Ðnd that the fractional errors are
smaller than those in Table 2 by a factor of D0.8 for
M ¹ 0.5 and D0.5 for (except for whichM

_
M DM

_
pns,



TABLE 2

UNCERTAINTIES OF PARAMETERS : LMC (V \ 20, arbitrary t, 20 hr)

pÕ p
r8 E
/r8 E phE/hE p

M
/M

/ S S] = p
D
/D pns/ns

(deg) (deg) (deg) S S] = S S] = S S] = S] = S] =

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

M \ 0.1 M
_

, b \ 0.2

0 . . . . . . . 6.7 2.5 5.353 0.032 0.145 0.145 5.356 0.145 0.145 0.827
30 . . . . . . 7.1 2.1 1.124 0.035 0.138 0.138 1.128 0.141 0.141 0.788
60 . . . . . . 7.8 1.8 0.580 0.046 0.124 0.120 0.587 0.127 0.127 0.689
90 . . . . . . 8.5 1.4 0.438 0.049 0.110 0.110 0.449 0.120 0.120 0.626

M \ 0.1 M
_

, b \ 0.4

0 . . . . . . . 7.4 5.7 8.326 0.078 0.166 0.159 8.362 0.180 0.177 0.852
30 . . . . . . 8.8 5.7 2.302 0.092 0.159 0.156 2.316 0.187 0.177 0.834
60 . . . . . . 9.5 5.3 1.234 0.134 0.141 0.138 1.241 0.202 0.184 0.757
90 . . . . . . 10.3 3.9 0.955 0.166 0.124 0.124 0.955 0.205 0.212 0.672

M \ 0.1 M
_

, b \ 0.6

0 . . . . . . . 8.8 8.1 11.455 0.170 0.219 0.191 11.561 0.262 0.247 0.880
30 . . . . . . 13.4 8.5 5.675 0.187 0.205 0.191 5.749 0.279 0.255 0.877
60 . . . . . . 14.1 9.2 3.362 0.279 0.177 0.170 3.405 0.350 0.301 0.849
90 . . . . . . 14.8 8.1 2.634 0.456 0.148 0.148 2.641 0.481 0.477 0.767

M \ 0.3 M
_

, b \ 0.2

0 . . . . . . . 4.2 2.8 2.507 0.039 0.110 0.110 2.496 0.117 0.117 0.891
30 . . . . . . 4.6 2.8 0.707 0.046 0.106 0.099 0.707 0.110 0.110 0.831
60 . . . . . . 6.0 2.5 0.357 0.057 0.088 0.081 0.361 0.103 0.099 0.697
90 . . . . . . 6.7 2.1 0.272 0.064 0.074 0.074 0.286 0.095 0.099 0.612

M \ 0.3 M
_

, b \ 0.4

0 . . . . . . . 4.9 4.6 3.843 0.117 0.124 0.124 3.850 0.163 0.173 0.933
30 . . . . . . 5.7 4.9 1.245 0.131 0.117 0.113 1.245 0.177 0.170 0.912
60 . . . . . . 7.1 5.7 0.654 0.177 0.099 0.095 0.658 0.205 0.194 0.845
90 . . . . . . 8.1 4.9 0.520 0.219 0.085 0.085 0.527 0.226 0.240 0.750

M \ 0.3 M
_

, b \ 0.6

0 . . . . . . . 6.0 5.7 5.218 0.279 0.152 0.145 5.271 0.311 0.318 0.983
30 . . . . . . 7.8 6.4 2.581 0.311 0.138 0.134 2.606 0.343 0.332 0.969
60 . . . . . . 9.9 8.1 1.556 0.442 0.113 0.113 1.566 0.467 0.445 0.969
90 . . . . . . 11.0 8.8 1.255 0.665 0.103 0.099 1.241 0.651 0.689 0.940

M \ 0.5 M
_

, b \ 0.2

0 . . . . . . . 4.2 3.2 2.524 0.049 0.113 0.106 2.496 0.117 0.117 0.912
30 . . . . . . 4.6 3.2 0.841 0.053 0.103 0.095 0.845 0.113 0.110 0.856
60 . . . . . . 5.7 2.8 0.467 0.071 0.085 0.078 0.474 0.106 0.103 0.707
90 . . . . . . 6.4 2.5 0.378 0.078 0.071 0.067 0.389 0.103 0.106 0.612

M \ 0.5 M
_

, b \ 0.4

0 . . . . . . . 4.6 4.2 3.345 0.156 0.124 0.120 3.330 0.191 0.205 0.972
30 . . . . . . 5.7 4.9 1.107 0.173 0.113 0.110 1.114 0.212 0.202 0.955
60 . . . . . . 7.1 6.0 0.633 0.233 0.092 0.088 0.640 0.255 0.244 0.894
90 . . . . . . 7.8 5.7 0.527 0.265 0.078 0.078 0.534 0.272 0.279 0.831

M \ 0.5 M
_

, b \ 0.6

0 . . . . . . . 5.3 4.9 3.737 0.403 0.145 0.141 3.769 0.421 0.435 1.025
30 . . . . . . 7.4 6.4 1.824 0.445 0.127 0.127 1.849 0.470 0.456 1.018
60 . . . . . . 9.5 8.5 1.177 0.587 0.103 0.099 1.191 0.601 0.590 1.043
90 . . . . . . 10.6 9.2 1.022 0.682 0.095 0.092 1.011 0.668 0.707 1.022

M \ 1.0 M
_

, b \ 0.2

0 . . . . . . . 3.9 3.5 1.881 0.166 0.110 0.106 1.856 0.194 0.202 0.898
30 . . . . . . 4.6 3.5 0.537 0.198 0.099 0.095 0.534 0.219 0.223 0.852
60 . . . . . . 5.7 4.6 0.297 0.152 0.081 0.078 0.301 0.159 0.184 0.810
90 . . . . . . 6.4 5.3 0.233 0.110 0.067 0.067 0.240 0.127 0.131 0.806
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TABLE 2ÈContinued

pÕ p
r8 E
/r8 E phE/hE p

M
/M

/ S S] = p
D
/D pns/ns

(deg) (deg) (deg) S S] = S S] = S S] = S] = S] =

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

M \ 1.0 M
_

, b \ 0.4

0 . . . . . . . 4.2 4.2 2.630 0.424 0.120 0.120 2.648 0.445 0.438 0.997
30 . . . . . . 6.0 5.7 0.725 0.385 0.110 0.110 0.739 0.403 0.396 0.997
60 . . . . . . 7.4 6.7 0.424 0.279 0.085 0.081 0.431 0.290 0.297 0.965
90 . . . . . . 7.8 7.1 0.350 0.237 0.074 0.074 0.357 0.244 0.255 0.937

M \ 1.0 M
_

, b \ 0.6

0 . . . . . . . 4.6 4.6 2.956 0.940 0.145 0.134 3.016 0.969 0.933 1.057
30 . . . . . . 7.8 7.1 1.280 0.788 0.124 0.120 1.326 0.827 0.771 1.138
60 . . . . . . 9.9 9.5 0.810 0.612 0.088 0.088 0.824 0.622 0.612 1.142
90 . . . . . . 9.5 9.2 0.693 0.541 0.088 0.088 0.689 0.527 0.562 1.057

is una†ected). For the second case, we Ðnd that these errors
are larger than those in Table 2 by a factor of D1.6 for
M ¹ 0.5 and D3 for Thus, the resultsM

_
M DM

_
.

reported in Table 2 apply qualitatively to a broad range of
halo distances for M ¹ 0.5 but not forM

_
M D M

_
.

If the lenses detected toward the LMC are in the LMC
itself (rather than in the halo), then we Ðnd that neither r8 Enor can be detected, let alone measured, in our ÐducialhE20 hr of observation. However, even nondetections of these

two quantities would be highly signiÐcant, as it would
demonstrate that the lens was in the LMC.

We thank Scott Gaudi for his careful comments on the
manuscript. After this manuscript was almost complete, we
learned of closely related work by Cheongho Han. This
research was supported in part by grant AST 97-27520 from
the NSF and in part by grant NAG 5-3111 from NASA.
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