Measurement of rotational levels of the homonuclear helium dimer cation by extrapolation of Rydberg series

Daniel Sprecher, Jinjun Liu, Martin Schäfer, Tobias Krähenmann, and Frédéric Merkt

Laboratory of Physical Chemistry, ETH Zurich, Switzerland

International Symposium on Molecular Spectroscopy
Ohio State University, June 21-25, 2010
RE03, June 24, 9:04am, 2015 McPherson Lab
Introduction: the He_2^+ molecule

- three-electron system, candidate for highly accurate \textit{ab initio} calculations
Introduction: the He$_2^+$ molecule

- three-electron system, candidate for highly accurate \textit{ab initio} calculations
- not much experimental data available:
 - 9 rovibrational $v=0\rightarrow1$ transitions in $^3\text{He}^4\text{He}^+$ (uncertainty 18 MHz) [1]
 - 7 rovibronic $X\rightarrow A$ ($v=22,23\rightarrow0,1$) transitions in $^4\text{He}_2^+$ (uncer. 0.2-2 MHz) [2]

Introduction: the He_2^+ molecule

- three-electron system, candidate for highly accurate \textit{ab initio} calculations
- not much experimental data available:
 - 9 rovibrational $v=0\rightarrow1$ transitions in $^3\text{He}^4\text{He}^+$ (uncertainty 18 MHz) [1]
 - 7 rovibronic $X\rightarrow A$ ($v=22,23\rightarrow0,1$) transitions in $^4\text{He}_2^+$ (uncer. 0.2-2 MHz) [2]
- many studies on the Rydberg states of He_2 [M.L. Ginter et al. 1965-89]

Introduction: the He_2^+ molecule

- three-electron system, candidate for highly accurate ab initio calculations
- not much experimental data available:
 - 9 rovibrational $v=0\rightarrow1$ transitions in $^3\text{He}^4\text{He}^+$ (uncertainty 18 MHz) [1]
 - 7 rovibronic $X\rightarrow A$ ($v=22, 23\rightarrow0, 1$) transitions in $^4\text{He}_2^+$ (uncer. 0.2-2 MHz) [2]
- many studies on the Rydberg states of He_2 [M.L. Ginter et al. 1965-89]
- He_2 is a Rydberg molecule according to G. Herzberg [3]:

A molecule which has an essentially repulsive ground state and all excited states are Rydberg states

Picture taken from: [Buchenua et al. JCP 95, 8134 (1991)]
Rydberg states of atoms and molecules

H

other atoms

<table>
<thead>
<tr>
<th>n+2</th>
<th>n+1</th>
<th>n</th>
</tr>
</thead>
</table>

Ionization energy E_i

Rydberg formula:

$$E_{n,\ell} = E_i - \frac{\hbar c R_M}{(n - \delta_\ell)^2}$$

Quantum defect
Rydberg states of atoms and molecules

H other atoms

He$_2$ molecule

Energy

\(n \)
\(n+1 \)
\(n+2 \)

\(\ell = 0 \)
\(\ell = 1 \)
\(\ell = 2 \)

Rydberg formula:

\[E_{n,\ell} = E_i - \frac{\hbar c R_M}{(n - \delta_{\ell})^2} \]

quantum defect

ionization energy \(E_i \)
Experimental
Experimental

chamber

detector

pump

N^+ = N^- - 2

N^+ = N^-

a^3Σ_u^+

N^-
Experimental

Nozzle and discharge

Experimental chamber

\[N^+ = N'' - 2 \]

\[a^3\Sigma_u^+ \]

\[N'' \]
Experimental Glass fiber

Nozzle and discharge

Solid-state laser system

HeNe-cw-laser
Etalon, FSR=149.966 MHz
Etalon, FSR=161.653 MHz
Wavemeter
l_0 calibration
Nd:YVO_4; cw-pump 532 nm
699 Ti:Sa-cw-ringlaser 875 nm
Nd:YAG
532 nm

AOM

\(\nu_{\text{ex}} + 1 \text{ GHz} \)

Fresnel rhomb
Faraday isolator
Filter for \(\lambda < 850 \text{ nm} \)

Nd:YAG
532 nm

Photo diode
Telescope

KDP
BBO

3 (\(\nu_{\text{ex}} + 1 \text{ GHz} \))
to the experimental chamber

N_p = N'' - 2
\(a^3 \Sigma_u^+ \)
Experimental
Nozzle and discharge

Solid-state laser system

- pulse length ~ 40 ns
- bandwidth ~ 20 MHz
- pulse energies
 - @875nm: ~ 15 mJ
 - @438nm: ~ 2 mJ
 - @292nm: ~ 150 μJ
Experimental

Nozzle and discharge

- electrode
- PEEK
- stainless steel

Solid-state laser system

- HeNe-cw-laser
- Etalon, FSR=149.966 MHz
- Etalon, FSR=161.653 MHz
- Wavemeter
- I\textsubscript{2} calibration
- Nd:YVO\textsubscript{4}; cw-pump 532 nm
- 699 Ti:Sa-cw-ring laser 875 nm

Experimental chamber

- detector
- pump

- field delay: 2 \mu s
- field strength: 12.8 V/cm

- pulse length \sim 40 ns
- bandwidth \sim 20 MHz
- pulse energies
 - @875nm: \sim 15 mJ
 - @438nm: \sim 2 mJ
 - @292nm: \sim 150 \mu J
Overview Q-region

$N^- = 7 \rightarrow N^+ = 7$

[Graph showing electron signal in arbitrary units against wave number in cm$^{-1}$ with significant peaks at 34275, 34280, 34285, 34290, 34295, and 34300 with labels 5→5, 3→3, and 1→1]
Resolved fine structure of the triplet a state
Resolved fine structure of the triplet a state

[Focsa et al. JMS 191, 209 (1998)]
Resolved fine structure of the triplet a state

$1 \rightarrow 92p \ (N^+=1)$
$3 \rightarrow 38p \ (N^+=3)$
$5 \rightarrow 110p \ (N^+=5)$

[Ref: Focsa et al. JMS 191, 209 (1998)]
The $N^+ = 5$ Rydberg series

notation: $N'' \rightarrow n \ell N^+_N$
The $N^+ = 1,3$ Rydberg series

notation: $N'' \rightarrow n \ell N^+_N$
Overview over all observed states

Quantum number N associated with the total angular momentum excluding spins
Extrapolation of Rydberg series with multichannel quantum defect theory (MQDT)

\[E_{n,\ell} = E_i - \frac{hcR_M}{(n - \delta_\ell)^2} \]

quantum defects from MQDT (adjusted to reproduce positions of 600 \(n<25 \) states)

[Ginter et al. JCP 81, 6013 (1984)]
[Raunhardt et al. JCP 128, 164310 (2008)]
Extrapolation of Rydberg series with multichannel quantum defect theory (MQDT)

\[E_{n,\ell} = E_i - \frac{hcR_M}{(n - \delta_\ell)^2} \]

quantum defects from MQDT (adjusted to reproduce positions of 600 \(n<25 \) states)

[Ginter et al. JCP 81, 6013 (1984)]
[Raunhardt et al. JCP 128, 164310 (2008)]
Results of the extrapolation

\[N^+ = 5 \quad 198.3666(4) \text{ cm}^{-1} \]

\[N^+ = 3 \quad 70.9395(4) \text{ cm}^{-1} \]

This work

\[N'' = 5 \]

Focsa et al.
Results of the extrapolation

\[\begin{array}{|c|c|c|c|}
\hline
N^+ & \text{Exp.} & \text{Calc. [1]} & \Delta \\
\hline
5 & 198.3666(4) & 198.39 & -0.02 \\
3 & 70.9395(4) & 70.95 & -0.01 \\
\hline
\end{array} \]

All values in cm\(^{-1}\).
Conclusions

- Transitions to triplet np Rydberg states (n up to 150) of He$_2$ have been resolved.
- The ionization energy of the $a \ ^3\Sigma_u^+$ state of He$_2$ was determined with an uncertainty of 0.006 cm$^{-1}$ (180 MHz).
- The energy spacing between the first three rotational states of He$_2^+$ could be extracted with an accuracy of 0.0004 cm$^{-1}$ (12 MHz).

Results of the extrapolation

<table>
<thead>
<tr>
<th>N^+</th>
<th>Exp.</th>
<th>Calc. [1]</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>198.3666(4)</td>
<td>198.39</td>
<td>-0.02</td>
</tr>
<tr>
<td>3</td>
<td>70.9395(4)</td>
<td>70.95</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Merk group
ETH Zurich
Switzerland
(March 2009)
Molecular Rydberg states and MQDT

Eigen quantum defect $\mu_{\ell,\ell'}^{S,\Lambda}$

Quantization condition:

$$\det \left| U_{i\alpha} \sin[\pi(\mu_\alpha + \nu_i)] \right| = 0$$

with $\nu_i = n - \delta_i$

Triplett pp eigen quantum defects have been adjusted to reproduce positions of almost 600 $n<25$ states:

[D.S. Ginter et al. JCP 81, 6013 (1984)]
[M. Raunhardt et al. JCP 128, 164310 (2008)]

$E_n = E_i - \frac{\hbar c R_M}{(n - \delta)}$
HeNe stabilized etalon