Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region

Christa Haase, Jinjun Liu*, Frédéric Merkt, Laboratorium für physikalische Chemie, ETH Zürich

*current address: Department of Chemistry, Laser Spectroscopy facility, The Ohio State University.
Freon-11:
CFC compound, high ozone depletion potential, widely used as refrigerant in past

Chloroform:
volatile organic compound, can contribute to the formation of harmful ground-level ozone

Relevant atmospheric compounds.
THz region: between 0.1-11 THz (1 THz = 33.36 cm$^{-1}$)

Spectroscopy in THz region challenging because:
 i) generation of coherent, narrowband, relatively high-power radiation difficult
 ii) sensitive detection difficult

Rotational transitions of light molecules (for example diatomics)

Low-frequency vibrational transitions of molecules and clusters
Overview

Our Method of Generating THz Radiation
Pulsed, widely tunable, narrow-bandwidth, high peak-power source

The CHCl$_3$ and CFCl$_3$ Molecules (and Isotopomers)
The fundamental of the ν_6 mode
Spectra
Analysis

Towards Mass-Selective THz Spectroscopy
High-resolution spectroscopy in a molecular beam

Conclusions
Experimental Configuration

Pulse length:
40 ns (10 ns - 1 µs),
Programmable pulse shape

Repetition rate:
25 Hz

Peak power:
~10 - 100 µW

Frequency:
tunable between 0.1-11 THz

Bandwidth:
FWHM ~ 10 MHz
(Fourier-transform limited)

→ Ideally suited for 1+1’ two-photon excitation/ionization experiments under jet-cooled conditions
Existing Spectra of Asymmetric Deformation Mode

Difficult to find actual IR spectra, although values for transition frequency known (very weak band):

\[{^{12}C}H^{35}Cl_2^{37}Cl : 259.9 \text{ cm}^{-1} \] [2]
\[{^{12}C}H^{35}Cl_3 : 261 \text{ cm}^{-1} \] [3]
\[{^{12}C}F^{35}Cl_3 : 243 \text{ cm}^{-1} \] [4]

Frequencies of different chlorine isotopomers not resolved

Values of certain rovibrational constants not very accurately determined

The ν_6 vibrational mode of CHCl$_3$, CFCl$_3$ and Isotopomers

Molecule is of C_{3v} symmetry

ν_6 of E symmetry (doubly degenerate)

Fundamental transition frequency of this mode in 12CH35Cl$_3$ at 7.82 THz (261 cm$^{-1}$)

Vibrational transition frequencies and vibrational motion of other isotopomers (and CFCl$_3$) similar
A: Spectra of 12CHCl$_3$ and chlorine isotopomers, simulated contours.

B: Spectra of 12CDCl$_3$ and chlorine isotopomers.

C: Spectra of 13CHCl$_3$ and chlorine isotopomers.

Peaks marked by asterisk*: impurities from other chloroform isotopes.

Pure vibrational transition frequencies determined by simulation.

Spectra of CHCl$_3$ and Isotopomers

Natural abundance of different chlorine isotopomers:
- yCX35Cl$_3$: 43.52%
- yCX37Cl35Cl$_2$: 41.73%
- yCX37Cl$_2$35Cl: 13.34%
- yCX37Cl$_3$: 1.42%

Bands for isotopomers of C_s symmetry (37Cl & 35Cl) should split into A’ and A” mode, no evidence at this resolution.

Spectra of 12CFCl$_3$ and chlorine isotopomers also measured, not shown here.

Values given in units of THz.

a Calculated values at MP2/cc-pVTZ level of theory.

b Experimental uncertainty is larger for 12CFCl$_3$ than for the other molecules because of partial overlap with a water line.

Current Work: Ionization-Detected THz Spectroscopy

Supersonic jet expansion

Vibrational excitation followed by photoionization of upper vibrational level (VUV photon)

Tuning of THz source, detection of ions → mass/conformation-selective vibrational spectra

Excitation Scheme

A: VUV generation by four-wave mixing
B: Ionization of molecule/cluster

THz spectroscopy of Rydberg states by pulsed-field ionization possible
Conclusions

A laser-based source of tunable THz radiation has been used to obtain information on low-frequency vibrations of chloroform, freon-11 and several of their isotopomers.

Fundamental transition frequencies of CCl$_3$ asymmetric deformation mode of these molecules were determined with precision of better than 3 GHz.

Development of experimental configuration that makes it possible to record mass-selective THz spectra in a molecular beam in progress, (close to completion).
The diagonal elements in the energy matrix are given by:

\[T_6(1, J, K) = \nu_0 + B_6 J(J+1) + (C_6 - B_6) K^2 - D^J J^2 (J+1)^2 \]
\[- D^K J(J+1) K^2 - D^K K^4 - 2(C\zeta)_6 KL \]

The off-diagonal elements due to \(l(2,2) \) resonance (coupling between \(\Delta l=\Delta K=2 \) levels):

\[\langle \nu_6=1, l_6=-1; J; K-1 | H | \nu_6=1, l_6=+1; J; K+1 \rangle \]
\[= -1/2 q_6 [J(J+1) - K(K-1)]^{1/2} [J(J+1) - K(K+1)]^{1/2} \]

The value of \((C_6 - B_6 - C_6 \zeta_6)\) was determined very accurately with microwave spectroscopy. However, \(C_6\) and \(\zeta_6\) cannot be determined independently, a calculated value for \(C_6\) is therefore used.

Nd:YVO₄

Ti:Sa ring laser (fixed)

Nd:YVO₄

Ti:Sa ring laser (tunable)

AOM

FR

PBS

AOM

FR

 PBS

frequency stabilization and calibration

frequency stabilization

Ti:Sa

Nd:YAG

FR

PBS

AOM

FR

PBS

OIF

OF

DAST

OAPM

PE

THG chamber

monochromator

pump

Nd:YAG

532 nm

Dye Laser 2

833 nm

355 nm

Dye Laser 1

BBO

250 nm

SFG around 92000 cm⁻¹ using the Xe 5p⁷6p[1/2] ← Xe 5p⁶ resonance at 80118.974 cm⁻¹
OAPM

THz generation

main chamber

mono-chromator

bolometer

THG chamber
Outlook

Vibrational Spectroscopy of rare-gas clusters will most likely need development of multipass or other configuration that increases absorption-path length

Possibility of recording spectra of molecules whose torsional motion lies in the THz frequency range (one example: dimethyl ether)...

Possibility of doing THz spectroscopy on Rydberg states (absorption strength not expected to be a problem)
Advantages of working in a molecular beam:

i) Low temperature (less spectral congestion)
ii) No pressure broadening
iii) Easier to measure rare-gas clusters later on

Advantages of detecting ions:

i) background-free
ii) detection of absorption (not transmission)
iii) isotopomer-selective (no need for isotopically pure sample)

Avoid problem of interfering water lines