Environmental Assessment of Industrial Tailing Migration and Reclamation Tactics, Cobalt, Ontario

Ashley-Michael McCarthy

Objective

Starting in 1904 through the mid 1930's, Cobalt's mines and mills operated continuously. From then until 1989, operations were intermittent. Mining practices predating the 1930's left significant pollution. Evident as; historic remnant mine workings, waste rock piles, and tailings ponds. Within the Cobalt mining camp, we must familiarize ourselves with the geomorphic setting to properly facilitate the rehabilitation of the tailings as well as the environment. Cobalt's mining legacy has taught us how arsenic has poisoned the landscape, but what is there to learn from this, and how can we revitalize Ontario’s most historic City.

Geology

- Ores occur predominately in veins of a complex assemblage of minerals
- Native silver, cobalt, and nickelarsenides, sulphides, sulpharsenides, sulpharsenites, antimonides, sulphantimonides, sulfbismuthinites
- Secondary alteration products also present
- Gangue is predominately carbonate
- The most significant impurities are antimony, arsenic and mercury.

Mining Practices

The complexity and unique character of Cobalt's silver ore presented problems for metallurgists

• Hand sorting occurred from the years 1904-1906
• 1907 Stamp Mills were introduced to Cobalt
• Post pulverization, gravity concentration was used to separate ores

- Concentrates from gravity concentration were processed
- The waste product formed is known as tailings
- In 1909, cyanidation was brought to Cobalt
 - In the cyanide process ground ore was mixed with potassium cyanide dissolving the silver
 - Powdered aluminum was then added, causing the silver to precipitate
 - During World War I, many mills switched to flotation separation

- In 1911, the Nipissing high grade mill (NHGM) was brought into operation.
 - In this high grade mill, high grade ore was ground in mercury and potassium cyanide
 - The tailings from high grade mills like the Nipissing mill contain mercury, arsenic, nickel and cobalt

Results

- Arsenic (III) generally accounts for less than 15% of the total arsenic in surface waters, with the remainder of the arsenic occurring as arsenic (V). In contrast, the ground water samples of the Farr Creek Basin area contained up to 77% of the total as arsenic (III)

Reclamation

- Natural re-vegetation occurs on some areas where tailings exist.
- Re-vegetation from anthropogenic and plant sources has occurred “on accident”, but discovered a positive player in site remediation
- Bioleaching is an eco-friendly technology for the mining area remediation process drainage (BacTech, 2009)

Summary

Very limited mitigation has occurred since mining stopped. With this, contamination of the surface drainage system from leaching of the widespread mine waste continues. Both cobalt, and nickel correlate with arsenic in surface waters, suggesting that the possible source for metals is more likely ephemeral secondary minerals produced by the weathering of arsenides, sulpharsenides, cobalt and nickel.

Future Study

Future monitoring in the area should include continued sampling of water draining these tailings, to determine current arsenic concentrations. Photographs correlating to each area(s) should be taken on a yearly basis for comparison on site-specific re-vegetation efforts.

References

Acknowledgments

Shell Oil Corporation, Dr. Garry McKenzie, Dr. Frank Schwartz, Dr. Anne Carey, Deb Leslie, Charles G. Dumaresq M.Sc, Megan Harris