ANCIENT HISTORY: THE AGE OF THE INDIAN POINT (LYMAN) EARTHWORKS, 33-LA-2, LAKE COUNTY, OHIO

by James L. Murphy, Grove City, Ohio

A recently published “chronicle” of Ohio archaeology illustrates the steep cliff of Chagrin Shaie bordering the north bank of Paine Creek and demarcating the southern edge of the Indian Point or Lyman hilltop fort in Lake Co., Ohio (Lepper 2005: 202). Charles Whittlesey’s original map of the earthworks (Fig. 1), published in 1851, is also illustrated but there are no more recent references to the earthworks, which are described as “Late Prehistoric” in age. Reading this assumption or assertion about the age of these parallel earthen walls causes considerable surprise, for ever since excavating at the site in 1967 it has seemed apparent to this author that the earthworks are Early Woodland in age (Murphy 1968, 1971, 1972). In fact, to my way of thinking, this is nothing less than ancient history, and it is particularly unfortunate that such an error has been promulgated in a venue intended for a popular audience.

As is clear from the literature, the Lyman Site, 33-La-2, is multicomponent, with the Archaic, Early and Middle Woodland, and Late Prehistoric periods represented. There are two main reasons for assigning an Early Woodland age to the actual Lyman or Indian Point embankments. One is the radiocarbon date obtained on charcoal recovered from the base of a trench excavated through the inner earthwork. The charcoal occurred 4 feet 10 inches below the top and approximately 3 feet from the inner edge of the wall. The date determined is 2090 ± 150 years, uncorrected, or 137 B.C. ± 183, calibrated with the online Colloge Radiocarbon Calibration and Paleoclimate Research Package. I do not reason to distrust this radiocarbon date, and it seems inconsistent of Lepper to accept radiocarbon dates that archaeologically are no less or even more dubious (specifically, the late dates from reexcavated portions of the Adams County Serpent Mound; see Fletcher, Cameron, Lepper, Wymer, and Pickard 1996) and not accept this one.

The second reason is more open to construction. While it is true that there was a thin deposit of Late Prehistoric “Whittlesey” (actually McFate; see Murphy 1972) material near the western end of the “point” this is scarcely abundant enough to represent a “village,” as Lepper dubs it, and the material did not extend nearer than 550 feet to the impressive double earthen walls (8-10 feet high according to Whittlesey) and ditches to the east (Fig. 2). Furthermore, as mentioned, the site is clearly multicomponent (Fig. 3) and the lithic material occurring nearest the double earthwork is late Archaic and Early Woodland in age. (It should be mentioned that Whittlesey’s map shows a third, much lower, earthen embankment nearer the western end of the plateau, but no trace of it could be discerned in 1967 and all of the Late Prehistoric material appeared to lie to the west of where this third wall would have stood.) This second argument boils down to nothing more than proximity or adjacency – the diagnostic artifact material found closest to the earthworks is much earlier than the Late Prehistoric material confined to the tip of Indian Point and more consistent with the derived radiocarbon date.

Proximity or adjacency, as more than one archaeologist has learned to their regret, is a weak argument, for neither constitutes direct association. Surprisingly, while Fletcher, Cameron, Lepper, Wymer, and Pickard (1996: 115, 33-134) recognize this, they somewhat inconsistently first reject the argument of adjacency in discounting Greenman’s (1934) and Griffin’s (1943) thesis that the presence of a conical Adena mound and Adena ceramics near the Serpent Mound indicate an Early Woodland age for the effigy mound and then turn around and use the argument that the existence of a nearby Fort Ancient component (actually a multi-component Early Woodland and Late Prehistoric site) strengthens their case for Serpent Mound being Late Prehistoric in age. Of course it does no such thing, any more than the Fort Ancient component at Fort Ancient makes that earthwork complex Late Prehistoric in age. By the same token, the presence of Late Prehistoric McFate ceramics at the western tip of Indian Point does not make this fortified hilltop Late Prehistoric in age any more than the presence of Early and Middle Woodland lithics nearer the double walls make the embankments Early or Middle Woodland in age.

When I first suggested that the Indian Point (Lyman) earthworks were Early Woodland (Murphy 1968: 27), the idea was generally ignored, even though perhaps because – this was the first radiocarbon date published for a northern Ohio hilltop embankment. It appears to have been largely ignored ever since (e.g., Rusnak 1999, Abrams in Lepper 2005: 87). Shane had excavated and radiocarbon-dated the Leimbach Site, which was a typical hilltop fort with a dominant Early Woodland component, but in his dissertation he was either equivocal about the age of the associated earthworks (Leimbach and Seaman’s Fort could be either Early or Late Woodland) or took pains to suggest that at least one (Burrell Fort) was Late Woodland in age, based upon slender archaeological evidence (Shane 1967a: 148; cf Murphy 1972: 27-28). In his published report on the Leimbach Site, however, Shane mentions a double earthen wall and deep ditch, but these were not excavated or dated, and he simply notes that “the site is located in a physical setting which utilizes natural topographic features as defensive elements” (Shane 1967b: 100). The radiocarbon date of 520 B.C. ± 310 was associated with a feature containing Leimbach Thick pottery but not with the earthen walls or trench. By 1973 (Prufler and Shane 1976: 290; revised December 1973) Leimbach Phase sites were described as “small semi-permanent villages defended by earthen walls, ditches, and palisades” notably Leimbach, Heckelman, and Seaman’s Fort, with dates estimated at 500-100 B.C., although the only specific date cited is one of A.D. 575 ± 180 for a Late Woodland feature at Leimbach. It was really only with the excavation and dating of Seaman Fort in Erie Co. (DeMuth 1990, 1991; see also Stothers, Schneider, and DeMuth 1998) that additional dates from a hilltop fort earthen embankment became available. All of these authors were limiting their scope to northern Ohio so may be excused for ignoring the Indian Point radiocarbon date, although such an early date from a hilltop fort in northeastern Ohio might seem to be relevant. In any case, the Early Woodland age of at least some of Whittlesey’s hilltop forts – specifically the Indian Point earthworks – has been recognized for some forty years and the earthworks should not be considered Late Prehistoric. Ancient history, indeed!

REFERENCES

DeMuth, George
1990 The Seaman Fort Site (33ER-65); an Early Woodland Site in Erie County, Ohio. Ohio Journal of Science 90(2): 27.
Greenman, Emerson F.
Griffin, James B.
Lepper, Bradley T.
Murphy, James L.
1971 The Lyman Site (33-La-2), Lake County, Ohio. Pennsylvania Archaeologist 41(3): 12-25, 12 fig.
Prue, Olaf H., and Orrin C. Shane
Rusnak, Michael
1999 Indian Point in the Lake County Metro Parks: Well Preserved Earthworks, with a View. Ohio Archaeologist 59(3): 10-11.
Shane, Orrin C.
Stothers, David M., Andrew M. Schneider, and George B. DeMuth
Whittlesey, Charles
1965 Descriptions of Ancient Works in Ohio. Smithsonian Contributions to Knowledge, 3(7); Smithsonian Institution, Publication 37. Washington, D.C.

Figure 1. Charles Whittlesey’s Map of the Indian Point or Lyman Earthworks. From Smithsonian Contributions to Knowledge, Vol. 3. Image courtesy of Ohio State University, Rare Books and Manuscripts Library.

Figure 2. Aerial View of Indian Point with Excavated Areas Shown in White. Dashed Lines Indicate Bluff Where Obscured by Foliage, and Solid Lines Indicate Existing Earthworks. Photo Courtesy of Tom Offutt III.

Figure 3. Lithic Material from the Lyman (Indian Point) Excavations. Early and Middle Woodland Materials in Bottom Row from Collection of Dennis Dodd, Painesville, Ohio.