Note the series of changes observed by the "Aurora" west of Macquarie Island.
Note the temperature changes at Macquarie Island. Front i appears to have crossed it three times.
The northern part of front i has been dissipated in anticyclone E. A blizzard has now set in at Cape Evans.
The air behind front i is very cold and there are many thunder and hail showers in New Zealand with snow on the ranges of the South Island.
South-westerly gales still prevail over New Zealand. Front a has passed the "Aurora" and Macquarie Island. The temperature rose prior to its passage and though falling subsequently did not reach so low a value as in the preceding outbreak.
There was no trace of front b at Cape Evans. Note the shapes of the occlusions of waves on a which has winds with a southerly component on both sides of it.
A deep cyclone is passing over Cape Evans. The movements of the front in northern Queensland and the wave on it and the rain there are unusual. Anticyclone A has intensified and winds have increased to both north and south. This is possibly associated with the outbreak of cold air over New Zealand since the 2nd June.
There is a blizzard at Cape Evans. Another strong outbreak of cold air has occurred over New Zealand. There is snow on the ranges in the South Island but temperatures are not so low as in the previous outbreak. Note the gale at Norfolk Island. Anticyclone A is now very intense.

Wave e in Queensland is increasing in energy and widespread rain is falling.
Note the rain near the centre of Anticyclone A which is still very intense. Wave a has caused some heavy rains but is dying out. b is becoming a very active front.
The south-eastern part of the depression has moved rapidly east and north and is crossing A. The northern part has remained stationary and active occluded waves have developed on it in the field of the older depression. Very heavy rains have fallen over eastern Australia where severe floods developed.
The warm front of wave d' has probably become diffuse and the whole front, the supply of cold air in rear of it having ceased, is dissipating. Rain is still widespread, however, along the east coast of Australia. There was a very sharp fall of temperature of 31° when front d passed Macquarie Island. There is still a blizzard at Cape Evans.
Anticyclone B is centred unusually far south. There is still a tendency for storm activity over south-eastern Australia. Note the continuance of the blizzard at Cape Kwans; also the south-westerly gales in south-west Western Australia.
The activity over south-eastern Australia is still noticeable but is beginning finally to die out. Note the secondary fronts in the south-westerly outbreak which has extended from Western Australia into South Australia. There is no trace of these fronts at Macquarie Island. The development is typical but seen more often over New Zealand where latitudes are higher.
A cyclone is passing to the north of Cape Evans, otherwise there is little activity.
It is not possible to say whether the two branches of front are joined. The situation is a quiet one.
There is little doubt that it is now a continuous front. It was well marked at Macquarie Island causing a sharp fall of temperature.
Note the developments in Tasmania, at Macquarie Island, and over the south Tasman Sea. The analysis in this region is based largely on the barograms and thermograms at Macquarie Island and the barogram at Melbourne. A deep cyclone is approaching Queen Mary Land.
Front e is intensifying over New Zealand.
Waves are forming on front e with which e' is being merged. A cyclone is now centred north of Cape Evans. The northern part of front f is suffering frontolysis.
Cyclone g_1 has now moved away from Cape Evans while g_2 has approached Adélie Land. Depression z_2 over the North Island of New Zealand is causing widespread and heavy rain. These developments over New Zealand are associated with the invasion of low latitudes by cold air flowing round the intense anticyclone D.

THURS. 20TH JUNE 1912
Note the temperature changes at Macquarie Island during the preceding 24 hours. There are rapid fluctuations due to hailstorms.
A very deep cyclone has passed Queen Mary Land. Note the winds and the marked freetogenesis in Queensland and surrounding areas. Some heavy rains fell in the succeeding 24 hours.
Cyclone h_2 is approaching Cape Evans (note the northerly wind), h_1 Adelie Land, and a new one h_4 Queen Mary Land. Anticyclone E is intense and a south-westerly gale is blowing at Eucla while over eastern Australia there is a rather marked drift from the north-east. This is leading to the development of a cyclone south of South Australia.
Front 9, which has been quasi-stationary, is now reaching the east coast of Australia; remarkably heavy and widespread rains are associated with it. Cyclone 9', also has become intense and caused much heavy rain. There is a very deep cyclone over Adelaide Land. Anticyclones D and E are both intense.
A second wave δ_2 is moving into cyclone δ_1, which, however, is beginning to lose energy. Anticyclones D and E are still intense.
The pressure field in the Australia-New Zealand region is losing energy. The northern part of front A was not traceable across anticyclone E. There is a blizzard at Cape Evans.
Note the westerly wind at Queen Mary Land; a cyclone has passed to the south. The blizzard has intensified at Cape Evans.
Cyclone j_3 is approaching Cape Evans. Another, j_4 is near Macquarie Island. Fronts g', h, and i are all well-marked at Macquarie Island, and followed by very unstable conditions.
Front is crossing anticyclone E, the western part is lagging and the front consequently taking an east to west orientation.
Front i is dividing in its western part; the eastern part is rather active. A fresh cyclone is approaching Queen Mary Land.