Anticyclone F has become very intense.
A wave appears to have developed on the secondary front "j".
Front j' has become merged in j.
Wave j^2 has developed into a shallow cyclone and is passing through Bass Strait. Anticyclone H has moved on an unusual course; later it merges into the high pressure east of New Zealand.
A cyclone is moving Adélie Land and a much deeper one approaching Queen Mary Land.
Pressure changes indicate that cyclone H has passed Queen Mary Land.
Wave a_2 has developed into a cyclone. This appears to be the culmination of a process in this area, where low pressure has prevailed for several days. Cyclone a_4 has probably filled up as it moved southward. Its cold front alone appears to have affected Cape Evans where a blizzard was blowing next day.
Cyclone a has developed a long occlusion. A fresh cyclone is approaching Queen Mary Land. Note the extraordinarily heavy rainfalls on the Queensland coast associated with a small depression.
Cyclone has passed south of Queen Mary Land. There is very widespread rain over New Zealand.
Wave by has approached Cape Evans.

WED. 10TH APRIL 1912
The temperature is high at Macquarie Island.
The temperature fell at Macquarie Island during the day as the front passed.
Anticyclone B is rather intense with an outbreak of cold air on its eastern side.
Anticyclone B is still intense. Front B has been moving fast. Possibly the northern portion as shown is no longer a true front, having been over-run in the upper air. The passage of front v was well marked on the Macquarie Island barogram.

SUN. 14TH APRIL 1912
The temperature fell gradually at Macquarie Island but changes actually at the fronts were slight. The passage of the occlusion of the trough in the barogram.
There are evidences that wave b_2 has deepened east of New Zealand, while a wave is developing also on the secondary front b^3.
Front c is being carried northward over anticyclone B, while its more northern part is becoming stationary. The shape of wave C5 and the advanced state of occlusion are consequences of this development.
The western portion of front \(r \) has been separated from the remainder and is disappearing. Note the northerly wind at Cape Evans. The cyclone \(F \) is drawn to account for wind and pressure changes during this and the next two days.
A blizzard is blowing at Cape Evans. Easterly winds prevail over northern Australia and front d is taking an east to west orientation.
Little activity is shown by any of the fronts. The position is rather one of stagnation and analysis is difficult.
Anticyclone D has suddenly become intense and extensive and much of front e has dissipated. Note the series of pressure, temperature, and wind changes at Macquarie Island and the pressure and wind changes at Adélie Land.
Anticyclone D is still intense and extensive. This and the cyclonic developments in Antarctica are probably associated. The peak in the Adélie Land barogram during the night of the 22nd is not understood.
Wave d has developed into an intense cyclone. Note the secondary fronts in the cold air.
Cyclone d, has deepened and there are strong gales and heavy rain about it. The series of secondary fronts to d are strongly developed and waves form on some of them. On the other hand conditions are unfavourable for the propagation of the northward portions of fronts f and g.

WED. 24TH APRIL 1912
Secondary fronts continue to develop behind d. Note the wind discontinuity and the rain over Victoria. A deep cyclone is approaching Adelie Land. The wind direction was not recorded at Cape Evans.
A cyclone is centred near Adélie Land while a low-pressure trough is passing Cape Evans; note the northerly wind at the latter station. A small cyclone is approaching Macquarie Island also; the temperature there rose steadily till 16 hours when a steady fall followed. There are westerly or west-north-westerly gales in New Zealand.
There are still strong gales and widespread rain in New Zealand. The recent series of developments there is typical of what happens in a strong and extensive south-westerly current. The wind direction was not recorded at Cape Evans but was probably south-east and the cyclone passing to the north.
Anticyclone D was intense and persistent over Australia and probably marks the onset of winter conditions. It is now being crossed by front h.

The latter was accompanied by marked temperature changes at Macquarie Island.
The movement of the northern part of front A appears very fast and it is possibly not a true front there.
Anticyclone D is still intense. Southerly gales persist in New Zealand.