INDIAN MOUND WANNABES: THE SHOAF “MOUNDS,”
FRANKLIN COUNTY, OHIO

by
James L. Murphy
Grove City, Ohio

Introduction

Isolated natural features, whether glacial (e.g., kames, drumlins) or erosional (hills of circumalluviation, knobs, monadnocks) can often indiscriminately be called as “mounds” by pioneer landowners, and such early misinterpretations have frequently been buttressed by years of subsequent tradition, often with considerable exaggeration and romanticism. Even today, non-archaeologists, girded more with wishful thinking than scientific information, are often prone to accept any bump on the horizon as an “Indian mound.”

Nor does a liberal college education prevent the credulous from being fooled. In the early 1960s, an Ohio University undergraduate working for the Institute for Regional Development got excited when the university president’s secretary called to say that the president was curious about an Indian mound he had spotted while looking out a picture window at a cocktail party. Alas, the natural feature proved to be only an erosional knob of weathered limestone — and the beginning of one student’s prolonged and profound disillusionment with academic administrators.

Franklin County was heavily glaciated and is home to a number of natural features that have mistakenly been labeled as prehistoric burial mounds. Prominent among these are the so-called Shoaf Mounds (Figs. 1, 2), the remnants of which can still be seen northwest of the intersection of Obetz Road and Parsons Avenue, about a mile east of U. S. Route 23.

Geology of the Shoaf “Mounds” — The first detailed mapping of the surface deposits in south-central Franklin Co. was accomplished by George D. Hubbard (Hubbard et al. 1915). A small portion of his map is presented in Figure 3, which shows a large rectangular area of “terminal moraine” east of the Scioto Valley and north of Shaderville, with a linear extension of isolated segments extending northward along Parsons Avenue, in Sections 9, 10, 15, 16, 21, and 22 of Hamilton Township. This clearly includes the area of the Shoaf “Mounds” in the eastern part of Section 16. The text simply states that “The moraine and kames that extend 2 miles northward from Shaderville may have been built in a notch or reentrant of the ice front” and does not specifically mention the ridge of moraine or till extending further north along Parsons Avenue.

No more detailed mapping of the Shoaf “Mounds” is known. Goldthwait’s 1958 map of glacial deposits of Franklin County indicates the area north of Shaderville, in Hamilton Townships, as well as the area of Baker Hill, just to the north of the Marion Township line, as “kames and eskers” but does not indicate the irregular line of rises in between, along Parsons Avenue. The same is true of the larger scale Glacial Map of Ohio (Goldthwait et al. 1961).

Kames and eskers are often intimately associated with terminal moraine but are distinguished by being water-laid deposits. Glacial meltwater at or under the ice margin. Kames and eskers are stratified deposits, unlike ground and end moraine. Terminal or end moraine accumulates at the ice edge, as the ice melts, so it is deposited parallel to the ice margin as unstratified masses of till. Unfortunately, no detailed study of the deposits along Parsons Avenue has been made subsequent to Hubbard’s work. Construction work and Phase II archaeological survey of the proposed Andover housing development in 1995 (Murphy 1995b) included study of several trenches excavated across the width of three natural rises. Location of the trenches and cross sections are shown in Figures 4 and 5. In Figure 4, a portion of the project map for Andover housing development provided by Deltar Corporation, the 739, 740, and 741 foot contour intervals have been highlighted to show the linear and connected nature of the glacial features. The cross-sections shown in Figure 5 show the asymmetry of the ridge, and the considerable amount of slope erosion due largely to years of cultivation.

The western end of the trench through the southernmost ground swell is shown in Figure 6, where the shiny impressions of the teeth on the backhoe bucket clearly indicate a substantial amount of clay in the till. The gravelly, unsorted nature of the subsoil is also clearly shown. Figure 7 shows a close-up of the unweathered gravelly substratum as revealed in an excavation for a manhole. None of the exposed substratum revealed any signs of bedding or stratification and the deposits included considerable amounts of clay. The greater thickness of the cores of these three “mounds,” lack of pebble orientation, and somewhat greater proportion of sand and gravel lend merit to Hubbard’s interpretation. Although it is questionable whether the term “terminal moraine” would be used today, it is evident that we are dealing with glacially transformed till.

One problem with identifying this linear feature as a terminal moraine is the northsouth orientation, for end moraines obviously are oriented perpendicular to the direction of ice flow and retreat. The Shoaf deposits would require glacial movement along an east-west axis, an interpretation contrary to the Pleistocene history of the area. Rick Pavey of the Ohio Division of Geological Survey has noted that the Shoaf feature is more likely an instance of sub-ice fluting, a streamlined molding of the till by moving ice into low ridges, parallel to the direction of ice flow (Pavey, pers. comm., September 6, 2006). This interpretation would explain the kame- or esker-like form of the Shoaf deposits and the absence of stratified, water-laid material in their composition. They are in effect ground moraine (till) that has been overridden by a later advance that has thickened and molded the deposit, without the influence of glacial meltwater.

History of the Shoaf “Mounds”

Many “mounds” are indicated on early maps of Franklin County, notably Brand’s 1883 wall map (Fig. 8) and Caldwell’s 1875 atlas (Fig. 9). Both indicate two mounds on the land of John Shoaf, but they also so label huge glacial landforms such as Spangler Hill, at the intersection of Route 23 and Rathwell Road, and Baker Hill in the north-central portion of Hamilton Township, with nothing said as to their natural or prehistoric nature. Williams’ 1880 History of Franklin and Pickaway Counties cursorily mentions several mounds in the township but does not address the Shoaf Mounds.

Wetmore (1888) lists two Shoaf Mounds in his catalog of mounds in Franklin County but makes no comment on their nature other than that they had been nearly leveled by cultivation. His references to mounds on Baker and Spangler Hills suggests that he realized that these large masses of glacial till were natural features but it remains unclear how he interpreted the Shoaf “Mounds.” Wetmore’s work is important for his description of the two O’Harra mounds, located about a half mile north of the Shoaf Mounds. These are merely an extension of the low ridge on which the Shoaf Mounds lie, and Wetmore notes that a large portion of the southern O’Harra Mound had been removed for gravel. No prehistoric artifacts were reported from these large-scale excavations. Having been dubbed “mounds,” though, they
remain so, like the Shoaf mounds, without there being any evidence of prehistoric human activity.

W. C. Milis, in his 1914 *Archaeological Atlas* indicates a series of no fewer than thirteen mounds stretching along the west side of Parsons Avenue a distance of six miles, from South Columbus to near Spangler Hill, including the Shoaf Mounds. Dancey (1984) has demonstrated the unreliability of Milis' Atlas, and since Milis' original data have not been preserved, the precise location of each of these mounds cannot be determined: but he probably simply relied upon the Brand and Caldwell county maps. At some point, the two largest Shoaf mounds were given the trinomial designation 33-Fr-24, lending further credence to the ill-founded belief that they are artificial prehistoric features. Once such misinterpretations become embedded in the popular mind, they are difficult to correct, in large part because people want them to be Indian mounds.

The existence of recent place names such as Indian Mounds Park and Indian Mounds Apartments are results of accretions without historic foundation and have no relevance to the question of whether the Shoaf "Mounds" were used as burial grounds in prehistoric times.

1995 Study of the Shoaf "Mounds"

Preliminary work on the Andover housing project in the spring of 1995 drew attention to the Shoaf Mounds and raised the perennial question of whether they were prehistoric burial mounds. The author was requested by Samuel P. Boyd of Deltar Corporation to conduct a Phase I literature review and field reconnaissance of the construction site, in response to claims made by Mark Henderson that the site incorporated three large Adena mounds "in a semi-lateral line parallel to the Scioto River." Mr. Henderson also reported six flint "leaf points" that were shown to Martha Otto, who "expressed strong indications that they were indeed Adena points." When pressed for more precise provenience, however, Mr. Henderson informed the Ohio Historic Preservation Office that the points were found well to the west of the low ridge of which the Shoaf Mounds are a part. Clearly, Mr. Henderson wanted to believe that these were prehistoric burial mounds. Careful surface survey of the Andover project area revealed only one small, unutilized lamellar flake of light Flint Ridge flint. This was found about five meters east of the ridge and the same distance north of the southern boundary of the property. Found on the surface, it is culturally undiagnostic and in any case lacks sufficient context to relate it to the Shoaf landform.

Henderson's belief that the Shoaf Mounds were Adena clashes with the opinion of Ohio Department of Transportation archaeologist James Addington, who wanted to believe that they were Hopewell burial mounds. Addington, at the behest of Ken Irwin of the Ohio Council on Native American Burial Rights, made "a quick reconnaissance" that was cut short because of rain. There are a number of errors of fact in his report, beginning with his belief that the site lies on an ancient Scioto River valley "upper terrace": the site actually lies on an interfluvial plain modified by deposition of late Pleistocene till and not on a stream-cut terrace. Both Addington and Henderson described a large "borrow pit" east of the mounds but this is nothing more than a natural depression typical of the "swell and swale" topography of till plains.

Addington examined the excavation for a manhole, which he dubbed "Feature 2" but misinterpreted the soil profile, imagining a "relatively uniform topsoil or loam from the top to the bottom of the cut at about 6 ft. below surface" [a total of 11 - 12 feet below the top of the mound]. Actually, there is a ca. six inch layer of brown Eldean silt loam topsoil that contrasts strikingly with the subsoil. Addington also suggests that the "topsoil to a depth of at least 12 feet is so weathered that any traces of aboriginal basket-loading have disappeared." This is not correct, and the soil profiles agree well with the description of Eldean silt loam provided by McLoda and Parkinson (1980: 32-33). As shown by the cross-sections in Fig. 5, all of the rises have a substantial core of unweathered till. If the material had been deposited by aboriginal basket-loading, it would have been well-preserved. The northern and southern rises have a maximum elevation of about five feet above the surrounding plain, but excavations for sewer lines and exploratory trenches excavated for the Phase II archaeological assessment revealed as much as twelve additional feet of unweathered gravelly till in the cores of the the hillocks (Murphy 1995)

Finally, Addington is simply wrong in stating that these features are consistent with other sites along the Scioto Valley, which have been identified as Hopewellian earthworks." Even when plowed down, burial mounds usually display a degree of symmetry that is not shown by any of the features in the Andover project area. They also reveal substantial amounts of artifact and human detritus.

Conclusions

There is no evidence supporting interpretation of the Shoaf "Mounds" as prehistoric burial grounds. No artifact material or features suggestive of human occupation have been found on or near these rises and careful study of excellent cross-section exposes support the contention that they are simply deposits of glacial till. No natural or prepared "ground floor" is present at the base of these landforms, as they are an integral part of the underlying ground till. Much the same conclusion was reached by Bruce Savage of Geotechnical Consultants, who examined the project area on June 5, 1995. These conclusions were also accepted by the Ohio Historic Preservation Office, and construction was permitted to proceed. The Shoaf Mounds remain a prime example of how natural features can be mistakenly identified as man-made burial sites and the mistake entrenched in the popular mind by hearsay, oral tradition and wishful thinking.

References

- Caldwell, J. A. 1872 *Caldwell's Atlas of Franklin Co. and of the City of Columbus, Ohio, Columbus, Ohio.*
- Wetmore, Prosper M. 1888 *Earthworks of Franklin County, Ohio. Ohio-Archaeological and Historical Quarterly 1: 340-347.*
Figure 1. (Murphy) View of remnant of the southern Shoaf Mound, looking northeast into the completed Andover housing project.

Figure 2. (Murphy) Distant view of southernmost groundswell in Indian Mound Park (center) and remnant of Shoaf Mound 2 (right).

Figure 3. (Murphy) Portion of geologic map (Hubbard 1915) showing irregular line of "terminal moraine" running northward from Spangler Hill, including the Shoaf Mounds.
Figure 4. (Murphy) Portion of Andover housing project map with 739, 740, and 741 foot contours highlighted to show the linear nature of the deposits. A, B, and C locate the backhoe trenches excavated during the Phase II study.

Figure 5. (Murphy) Cross sections of the three backhoe trenches excavated across the northern (A), central (B) and southern (C) of the Shoaf Mounds. Note the asymmetry of the cross-sections (including the undisturbed subsoil) and the large amount of eroded topsoil and subsoil on either side.

Figure 6. (Murphy) The western end of the trench through the southernmost ground “Shoaf Mound” groundswell. The 6 cm scale marks the base of the subsoil. Note the shiny impressions of the teeth on the backhoe bucket, which clearly indicate a substantial amount of clay in the till, and the gravelly, unsorted nature of the subsoil.

Figure 7. (Murphy) Unweathered gravelly substratum, as revealed in an excavation for a manhole in the southern of the two Shoaf landforms. No stratification, bedding, or basket-loading is present.
Figure 8. (Murphy) Portion of Hamilton Township from Brandt's 1883 wall map of Franklin Co. showing Shoaf "Mounds" and O'Hara mounds just to the north.

Figure 9. (Murphy) Portion of Hamilton Township from Caldwell's 1872 atlas of Franklin Co. showing the Shoaf "mounds".