Removal of Heavy Metal Pollutants (Copper, Chromium and Lead) by a Bi-Phasic Rain Garden Ecosystem

Darlene C. Florence, Hanbae Yang, Edward L. McCoy, Parwinder Grewal and Warren A. Dick

Abstract

Rain gardens are a relatively new best management practice (BMP) to treat urban stormwater runoff while additionally providing for an aesthetically pleasing landscape. The runoff, diverted from the storm sewer, is treated in the rain garden before recharging the groundwater. Heavy metals in urban areas are a concern due to both their persistence in the environment and potentially adverse health effects. Three replicated rain gardens were constructed using a novel bi-phasic design that consists of both an anaerobic (oxygen-deprived) and an aerobic (oxygen-rich) zone. A field study was conducted where multiple rainfall events were applied to collect simulated stormwater runoff from a concrete pad. During each simulated rain, water samples were collected at three sampling points: 1) the inlet to the rain garden, 2) the interface between the anaerobic and aerobic zone, and 3) at the final discharge of the aerobic zone. The water samples were analyzed for copper (Cu), chromium (Cr) and lead (Pb) to determine removal efficiency. Initial concentrations of the metals in the water entering the rain gardens were in excess of the legally enforceable Environmental Protection Agency’s (EPA) Maximum Contamination Level standards (MCL) by at least 7.5 times. The rain gardens were effective in removing metals with results showing a decrease in the heavy metal concentrations at both sampling points 2 and 3 overall, the removal was a greater than 99%. Of the 36 samples analyzed from the aerobic (final) discharge pipe, all were also below the MCL.

Introduction

As water moves through a watershed, it collects and transports pollutants present. In urban areas, impervious surfaces are one of the leading sources of pollution of surface waters and can also contaminate groundwater. Large areas devoted to roadways, parking lots, buildings and sidewalks create the need to manage the water that results from storms. As people continue to migrate into urban areas, concerns regarding the effect of impervious areas on the environment will continue to increase.

Rain gardens are a specific type of bio-retention system and are a relatively new best management practice (BMP) approach to treat stormwater runoff while providing an aesthetically pleasing landscape. The main components include a ponding area, a mulch layer, a soil layer, a gravel layer and, optionally, an under-drain. Plants, often species native to the area, promote evapotranspiration, biological activity, pollutant uptake and help maintain efficient infiltration.

Materials & Methods

- This study is part of a larger experiment described by Yang et al. (2009), in press. Construction began in the fall of 2007 and was completed the following spring at the Ohio Agricultural Research and Development Center (OARDC) in Wooster, Ohio. Each of the three rain gardens consist of an inner anaerobic (oxygen-deprived) zone and outer aerobic (oxygen-rich) zone. The soil media, which is a mixture of 60% sand, 20% compost and 20% topsoil, is designed for a 1-hour storm with a 10-year return frequency. In May of 2008, seedlings of six plant species native to Ohio were introduced. A layer of mulch, approximately 3 cm thick, was added in June.

- The experiment was carried out over 12 days under multiple-rainfall conditions (Table 1).

Results

- Effluent water samples were collected on day 2 only. Influent concentrations are based on solutions applied for the two days.

- Results are in Table 2.

Discussion & Conclusions

- This is the first study to utilize a high input level of pollutants. Previous studies focused on remediation of on-site pollutants, which were at levels below the EPA’s MCL.

- Each rain garden was capable of reducing the heavy metal pollutants to below regulatory levels. Overall, the anaerobic and aerobic zones reduced the concentration of heavy metals by greater than 99%.

- Further studies into the long-term capabilities of the rain gardens to remediate heavy metals would aid in determining their capacity and potential lifespan. Techniques to not only retain the heavy metals, but also accumulate them in ways that could be easily removed and then properly disposed would increase the lifespan of the rain gardens. Possible avenues of investigation include using plants that accumulate heavy metals or using specially designed removable filters that bind and immobilize the heavy metals.

Acknowledgments

The authors thank all members of Dr. Dick’s and Dr. Grewal’s labs and OSU-OARDC facility services staff for aid in construction of the rain gardens. The authors acknowledge Dr. John Colluna and Mr. Donald Beam for selecting and establishing plant species in the systems. This study was funded by the Center for Urban Environment and Economic Development (CUEED) Program of The Ohio Agricultural Research and Development Center (OARDC) in Wooster, Ohio and by funds appropriated to The Ohio State University and OARDC.

Table 1: Summary of heavy metal concentrations, dates of application and associated runoff volume. Note that no pollutants were applied on day 11. EPA MCL standards are also indicated.

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Simulated rainfall event</th>
<th>Runoff volume (L)</th>
<th>Cu (mg/L)</th>
<th>Cr (mg/L)</th>
<th>Pb (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>0.5 in (1.27 cm) for 1 hr</td>
<td>880</td>
<td>10.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Day 6</td>
<td>5.0 in (1.27 cm) for 1 hr</td>
<td>880</td>
<td>10.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Day 11</td>
<td>6.5 in (10.01 cm) for 24 hrs</td>
<td>14,500</td>
<td>10.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>EPA MCL Standards</td>
<td></td>
<td></td>
<td>1.3</td>
<td>0.1</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Table 2: Heavy Metal Data for each rain garden. An asterisk (*) indicates the value is in excess of the EPA’s MCL standards.