Properties of size selected sodium doped solvent clusters

Ingo Dauster

Institute of Physical Chemistry, University Göttingen
Tammannstr. 6, 37077 Göttingen, Germany

61st Ohio State University International Symposium on Molecular Spectroscopy
June 19–23, 2006

RF13 - Radicals and Ions
Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia cluster\(^{a,b}\) \(\text{Na(NH}_3\text{)}_n\)
- sodium doped water cluster\(^b\) \(\text{Na(H}_2\text{O)}_n\)

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia clustera,b \(\text{Na(NH}_3\text{)}_n \)
- sodium doped water clusterb \(\text{Na(H}_2\text{O)}_n \)

\textarrow{\textleftarrow} show a strong size dependence of the IP
\textarrow{\textleftarrow} only show a size dependent decrease for clusters up to \(n=4 \), for larger clusters the IP is constant

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia cluster\(^a\,^b\) \(\text{Na(NH}_3\text{)}_n\)
- show a strong size dependence of the IP
- sodium doped water cluster\(^b\) \(\text{Na(H}_2\text{O)}_n\)
- only show a size dependent decrease for clusters up to \(n=4\), for larger clusters the IP is constant

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia clustera,b \[\text{Na(NH}_3\text{)}_n \]
 \begin{itemize}
 \item show a strong size dependence of the IP
 \item sodium doped water clusterb \[\text{Na(H}_2\text{O)}_n \]
 \item only show a size dependent decrease for clusters up to n=4,
 for larger clusters the IP is constant
 \end{itemize}

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia cluster\(^{a,b}\) \(\text{Na(NH}_3\text{)}_n\)
- sodium doped water cluster\(^b\) \(\text{Na(H}_2\text{O)}_n\)

\(\Rightarrow\) show a strong size dependence of the IP
\(\Rightarrow\) only show a size dependent decrease for clusters up to \(n=4\), for larger clusters the IP is constant

What is with other systems?

- methylated water \(\Rightarrow\) methanol
- learn more about the properties and the structures of these clusters
- learn more about solvation of electrons

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:
- sodium doped ammonia cluster\(^{a,b}\) \(\text{Na(NH}_3\text{)}_n\)
- sodium doped water cluster\(^b\) \(\text{Na(H}_2\text{O)}_n\)

- show a strong size dependence of the IP
- only show a size dependent decrease for clusters up to \(n=4\), for larger clusters the IP is constant

What is with other systems?
- methylated water ⇒ methanol
- learn more about the properties and the structures of these clusters
- learn more about solvation of electrons

\(\text{O} \quad \text{H} \quad \text{CH}_3\)

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- sodium doped ammonia clustera,b $\text{Na(NH}_3\text{)}_n$
- show a strong size dependence of the IP
- sodium doped water clusterb $\text{Na(H}_2\text{O)}_n$
- only show a size dependent decrease for clusters up to $n=4$, for larger clusters the IP is constant

What is with other systems?

- methylated water \Rightarrow methanol
- learn more about the properties and the structures of these clusters
- learn more about solvation of electrons

Motivation

Size dependent ionization potential (IP) of sodium doped solvent clusters:

Systems that have already been measured:

- Sodium doped ammonia cluster\(^{a,b}\) \(\text{Na(NH}_3\text{)}_n\)
- Sodium doped water cluster\(^b\) \(\text{Na(H}_2\text{O)}_n\)

\(\text{↪}\) only show a size dependent decrease for clusters up to \(n=4\), for larger clusters the IP is constant

What is with other systems?

- Methylated water \(\Rightarrow\) methanol
- Learn more about the properties and the structures of these clusters
- Learn more about solvation of electrons

Experimental setup
Experimental setup

Na pickup cell

Ingo Dauster

Properties of size selected sodium doped solvent clusters
Experimental setup
Mass spectrum of Na(MeOH)_n

$\lambda_{\text{ion}} = 370 \text{ nm}$
Mass spectrum of Na(MeOH)$_n$}

\[\lambda_{ion} = 370 \text{ nm} \]
DFT calculations

\[\text{Na(MeOH)}_1 \]

\[\Delta E = 434 \text{ kJ/mol} \]
\[\Delta E = 437 \text{ kJ/mol} \]
\[\Delta E = 111 \text{ kJ/mol} \]

\[\Rightarrow \text{no fragmentation} \]

UB3LYP / 6-31+G(d,p)

(Bing Gao and Zhi-feng Liu, Chinese University of Hong Kong)
DFT calculations

Motivation

Experimental setup

First results

Outlook

Acknowledgements

Properties of size selected sodium doped solvent clusters

Na(MeOH)$_2$

\Rightarrow no fragmentation

UB3LYP / 6-31+G(d,p)

$\Delta E=80 \text{ kJ/mol}$

$\Delta E=458 \text{ kJ/mol}$

$\Delta E=381 \text{ kJ/mol}$

$\Delta E=-10 \text{ kJ/mol}$

$\text{Na}^+(\text{MeOH})_2$

$\text{Na}^+_a(\text{MeOH})_2$

$\text{Na}^+_a(\text{MeOH}) + \text{MeOH}$

$\text{Na}^+(\text{MeOH})_2$

\Rightarrow no fragmentation
DFT calculations

\[\text{Na(MeOH)}_3 \]

\[\Delta E = 426 \text{ kJ/mol} \]

\[\Delta E = 339 \text{ kJ/mol} \]

\[\Delta E = 9 \text{ kJ/mol} \]

\[\Delta E = 51 \text{ kJ/mol} \]

\(\Rightarrow \) no fragmentation

\(\Rightarrow \) soft ionization

UB3LYP / 6-31+G(d,p)
determination of the size selective IP of Na(MeOH)$_n$ is running
more DFT calculations of bigger clusters
size selectiv IR action spectroscopy of Na(MeOH)$_n$ clustersa
determination of the size selective IP of Na(MeOH)$_n$ is running
more DFT calculations of bigger clusters
size selectiv IR action spectroscopy of Na(MeOH)$_n$ clustersa
- determination of the size selective IP of Na(MeOH)$_n$ is running
- more DFT calculations of bigger clusters
- size selectiv IR action spectroscopy of Na(MeOH)$_n$ clustersa

Acknowledgements

Udo Buck

Financial support: GRK 782 of DFG
www.pcgg.de

Ingo Dauster
Properties of size selected sodium doped solvent clusters
Thank you for your attention!