Ultrafast Dynamics of Resonance Energy Transfer in Myoglobin

Justin J. Link
Jeffrey A. Stevens
Ya-Ting Kao
Dongping Zhong
The Ohio State University
Department of Physics
General Prospective of RET to Study Protein Dynamics

1948 ~ Theodor Förster’s paper puts RET on the map
Zwischenmolekulare Energiewanderung und Fluoreszenz
“Intermolecular Energy Migration and Fluorescence”
Annalen der Physik (2, 55-75)

1958 ~ Sperm Whale Myoglobin crystal structure solved by
Kendrew et al., Nature (Mar 8) 181 (4610):662-6

1971 ~ Protein Data Bank established at Brookhaven National Laboratory

Today ~ RET has proven to be a powerful tool used to study protein-protein interactions, protein-DNA interactions, protein conformational changes, reaction kinetics, and molecular motors all on diverse time scales
Femtosecond Up-Conversion

\[I(t) = \sum_{i=1}^{n} I_i e^{-k_i t_i} \]
Resonance Energy Transfer

\[k_{RET} = \frac{1}{\tau_D} \left(\frac{R_0}{r} \right)^6 \]

\[R_o^6 = (8.79 \times 10^{23}) \kappa^2 n^{-4} \phi_d J_{da} \]

From Literature:
- \(n \) – Index of refraction
- \(\tau_D \) – Donor lifetime

Can Accurately Calculate:
- \(\phi_d \) – Quantum efficiency of donor probe
- \(J_{da} \) – Integral overlap of donor emission spectrum with absorption spectrum of acceptor
- \(k_{RET} \) – From experimental fitting

Unknowns:
- \(r \) - Distance from donor and acceptor
- \(\kappa^2 \) - Transition dipole orientation factor

\[\kappa^2 = (\cos \alpha_{DA} - 3 \cos \alpha_D \cos \alpha_A)^2 \]

Justin J. Link
The Ohio State University
Department of Physics
Sperm Whale Myoglobin (Mb)
κ^2 Theory

Trp:

Heme:

Z. Gryczynski et. al., Meth. Enzyme 278 (1997) 538-569

Justin J. Link
The Ohio State University
Department of Physics
Solvation Dynamics

Delay Time (ps)

0 10 20 30 40 50

Normalized Fluorescence Intensity (a.u.)

305 nm 310 nm 315 nm 320 nm 330 nm 340 nm 360 nm

W7 Native

Apo Mb

Justin J. Link

The Ohio State University

Department of Physics
Apo vs. Holo

No Heme Heme

Normalized Fluorescence Intensity (a.u.)

Delay Time (ps)

Apo-W14
- 310 nm
- 330 nm
- 340 nm

Holo-W14
- 310 nm
- 330 nm
- 340 nm

Justin J. Link
The Ohio State University
Department of Physics
W14 vs. W7

NOTE: Different Time Scales

Justin J. Link
The Ohio State University
Department of Physics
Complete Results

<table>
<thead>
<tr>
<th>Trp</th>
<th>ϕ_d</th>
<th>J (cm3/M)</th>
<th>r (Å)</th>
<th>τ_D (ns)</th>
<th>τ_{RET} (ps)</th>
<th>n</th>
<th>R_0 (Å)</th>
<th>κ^2 Exp.</th>
<th>κ^2 1JP6</th>
</tr>
</thead>
<tbody>
<tr>
<td>W14</td>
<td>0.17</td>
<td>5.04x10$^{-14}$</td>
<td>15.14</td>
<td>2.6</td>
<td>20</td>
<td>1.33</td>
<td>34.08</td>
<td>0.65</td>
<td>0.75</td>
</tr>
<tr>
<td>W7</td>
<td>0.20</td>
<td>5.69x10$^{-14}$</td>
<td>21.40</td>
<td>2.8</td>
<td>111</td>
<td>1.33</td>
<td>36.65</td>
<td>0.76</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Z. Gryczynski et. al., Meth. Enzyme 278 (1997) 538-569

Justin J. Link
The Ohio State University
Department of Physics
Future Work

- Further mutations will be studied to further probe various regions of Mb
- Conformation dynamics will be studied via photolysis of ligands (CO, NO, O₂)
- Use RET as a tool to study protein dynamics in other heme proteins