The “Number Game:”
Sources of Public Support for Xenophobic Voting in Post-Soviet Russia

Mikhail A. Alexseev
San Diego State University
Political Science Department
5500 Campanile Dr. MC 4427
Nasatir Hall 105
San Diego, CA 92182-4427
(619) 594-0190
alexseev@mail.sdsu.edu

Prepared for delivery at the Conference on Post-Soviet In/Securities at the Mershon Center, Ohio State University, October 7-8, 2005.

* * *

To what extent is xenophobic voting—defined as voting for parties with anti-immigrant, exclusionist agendas—by members of majority ethnic groups within a state a public response to changes in ethnic composition within their state? At first glance, rigorous large-scale studies of voting for the extreme right-wing parties in Western Europe offer an unambiguous answer: the larger the percentage of citizens of immigrant stock in any given state or province within a state, the more ballots are likely to be cast for the extreme right (Lubbers, Gijsberts and Scheepers 2002, Lubbers and Scheepers 2002, Golder 2003). Moreover, Golder’s (2003) study of 165 national elections in 19 West European countries from 1970 to 2000 found that immigration levels were a statistically significant predictor for a combined sample of the new populist and older neofascist parties—all advocating restrictions on immigration and expulsion of migrants. Other studies have established that immigration is likely to galvanize public support for a wide spectrum of the extreme right parties, transcending diverse academic sub-categorizations (e.g., Kitschelt 1997). Golder and Lubbers et al. also found that immigration scale was the strongest predictor of electoral support for strongly anti-migrant parties defined as “populist” or the “new right” (Betz 1994, Taggart 1996, Ignazi 1992)—such as the Front National of Jean-Marie Le Pen in France, the Republicans in Germany, the Freedom Party in Austria, or the Fortuyn Bloc in the Netherlands.

The seemingly straightforward relationship between migration scale and xenophobia is also implied in the social scientific literature on ethnic relations and conflict. It may at first glance appear that academic and public debates about the social bases of support for interethnic hostility typically revolve around substantive factors, such as economic interest, group identity, symbolic politics
and interpersonal contact. However, a careful review of empirical studies underlying these debates reveals that most mainstream theories interpret interethnic animosity as a "linear function of a single out-group size" (Oliver and Wong 2003: 567-8; for examples, see Quillian 1995; Citrin et al. 1997; Palmer 1999). As this author has argued elsewhere (2005, forthcoming), reference to migration scale is a critical component of the narrative defining theoretical explanations of inter-group hostility. None of the substantive drivers of xenophobia—from “realistic” and “symbolic” threats to contact between the natives and the migrants—would seemingly matter if migration scale were to approximate zero.

While the importance of numbers appears to be overwhelming, there is surprisingly little rigorous research into the relationship between patterns of population change and xenophobic behavior—including the way the latter is expressed at the ballot box. This study may only begin to addresses some of the gaps in our knowledge base in this regard. Specifically, the referenced studies provide us with little guidance as to the effects on xenophobic voting of

(1) ethnic population change over relatively long periods of time (as opposed to the effects of migration levels at a fixed point in time);

(2) population change by ethnic group;

(3) the interaction between changes in the majority and minority group sizes within a state; and

(4) estimation of xenophobic voting by a specific ethnic group (in this case, ethnic Slavs—Russians, Ukrainians, and Byelorussians); traditionally the total voting data is used that covers the entire population and is likely to misrepresent the scale of any given “ethnic” vote.

For example, the above-referenced studies on anti-immigrant voting in Europe may tell us that xenophobic voting is more likely in areas with a larger percentage of the foreign born, but they do not tell us how anti-immigrant voting may have been affected by the arrival of what number of which ethnic group over what period of time—and whether variation in the percentage of the natives in various locations within migrant-receiving states also mattered. In addition to contributing to research on xenophobic, anti-migrant, and extremist voting, addressing these issues has broader implications for the study of interethnic hostility which these voting patterns are likely to represent.

The Empirical Puzzles: Why Study the Zhirinovsky Bloc Vote?

The case of Russia is particularly challenging. On the one hand, Russia would appear to confirm the immigration—extreme right voting hypothesis. The meteoric rise to political prominence and the endurance in Russia’s parliament of Vladimir Zhirinovsky' grossly misnamed Liberal Democratic Party of Russia (LDPR) followed the lifting of the Iron Curtain and the transformation of Russia into a migrant-receiving state on a global scale. A broad comparison of the 1989 and 2002 census data indicates that during this time period Russia had become
more ethnically diverse and less ethnically Russian (Gorenburg 2003). On the other hand, the LDPR vote and immigration trends in Russia—if examined across its 89 constituent regions from 1993 to 2003—have been hardly consistent. The biggest electoral showing for the LDPR was 23 percent in December 1993, before the lifting of the Iron Curtain and the advent of market reforms could translate into sizeable population balance shifts. By the time the liberalization of Russian government’s control over the movement of people within and across its borders started to affect some of these ethnic shifts, overall support for the LDPR declined to approximately 6 percent.

Across Russia, LDPR voting patterns have not related straightforwardly to migration patterns. For example, significantly stronger-than-national-average support for LDPR was recorded throughout the 1990s and 2000s in Russia’s Far Eastern regions—Primorskii, Sakhalin, Kamchatka and Magadan—with widely varying levels of Asian in-migration. At the same time, the LDPR enjoyed less than the average level of support in some regions of Russia that experienced non-Russian in-migration in the 1990s on a larger scale than the Far Eastern border regions. This was most notable in the 1999 election in Krasnodar (LDPR gained only 4.8 percent) and Stavropol (5.1 percent). Yet, in these regions the influx of Meskhetian Turks, the Chechens, and other ethnic groups of the Caucasus became an explosive political issue in the 1990s. An explanation that this could be due to the rise of zealous xenophobic governors in Krasnodar hardly works, because a similarly xenophobic governor ruled Primorskii krai from 1993 to 2001—but the vote in Primorskii was about twice as high as in Krasnodar in the 1999 Duma race and consistently and substantially higher in all Duma elections.

Finally, support for LDPR in Russia is puzzling when compared to extremist party voting in Western Europe. On the one hand, the Zhirinovsky Bloc (as the LDPR is known officially at the time of writing) enjoyed about the same level of support from 1993 through 2003 as did the EU’s “new right.” On the other hand, immigration levels in Russia had been significantly lower than in the EU during this time, the lifting of the Iron Curtain notwithstanding.

At the same time, it is hard to accept that immigration and ethnic population change have not played a significant role in public support for Zhirinovsky. First, “Russia for the Russians” has been a persistent LDPR campaign theme. The rise of the number of Russian citizens supporting this slogan—from 15 percent in 1998 and 2000 to 21 percent in the VTsIOM/Levada Center surveys (Gudkov 2003: 44)—coincided with the resurgence of Zhirinovsky Bloc’s political fortunes in the 2003 Duma elections after a dip in the late 1990s. Second, the 2003 increase in electoral support happened against the background of major economic upturn in Russia. From 1999 to 2003 the average annual GDP growth was approximately 6 percent, trade surplus reached $56.4 billion, the current account was at a healthy $37.4 billion, foreign reserves climbed to $64.4 billion and inflation was under control at approximately 12 percent annual rate (The Economist, December 20, 2003). Wage arrears, the economic scourge of the 1990s diminished, pensions were raised and paid more regularly, the military and state sector workers saw sizeable salary increases. And the sweeping reform of the social benefits system that sparked mass protests throughout Russia in the early 2005 was yet to be introduced. Ironically,
LDPR gained more electorally from its keynote campaign slogan “Za bednykh, za russkikh!” (“For the poor, for ethnic Russians!”) at the time when the Putin administration could claim tangible progress in fighting poverty. This would suggest that the ethnic nationalist component of the LDPR program (za russkikh) turned out to be consistently—if not increasingly—appealing to the electorate.

Third, large-N comparative studies in Western Europe found that alternative explanations of social support for the extreme right work at best sporadically. And they include such intuitively plausible factors as unemployment, immigration into high unemployment areas (Golder 2003, Lubber, Gijsberts, and Scheepers 2002), occupation as manual worker (Lubbers and Scheepers 2002), education, social mobility and religious beliefs (Lubber, Gijsberts, and Scheepers 2002).

Finally, the LDPR story confounds what Golder (2003: 441-443) described as the "instrumentalist" explanation of voting for the extreme right. This explanation emphasizes the role of organizational party attributes (leadership, grass roots networks) and incentives embedded in electoral institutions (the voting rules). Contrary to Kitschelt's (1995) opportunity structure argument, voting for the Zhironovsky party in 2003 doubled from the mid-/late 1990s levels even though the Russian political scene saw no convergence between the left- and right-wing moderates. This convergence is pivotal to Kitschelt's explanation. In Russia, instead, the early 2000s saw the fragmentation and decline of ideological moderates and the formation of a new distinctly non-ideological, “statist” "party of power" (Unity) behind Vladimir Putin's bid for the presidency. If anything, Putin's strong emphasis on strengthening the Russian state and on Russia's national pride should have narrowed the political opportunity space for LDPR and similar parties. Similarly, the LDPR resurgence in the early 2000s goes against Golder's (2003) findings that electoral district size—as a proxy for incentives to invest organizational resources in electoral races—is a major factor in party support. After all, electoral district size structure remained the same in Russia from the 1990s to the 2000s, yet voting for LDPR doubled in 2003 compared to 1999.

To address the gaps in the knowledge base revealed by the Zhironovsky puzzle, this paper seeks a more sophisticated interpretation of the immigration-ethnic change-xenophobic voting hypothesis. It goes beyond the single measure typically used as a proxy for immigration levels in Western Europe—in all major quantitative studies cited above, it is the standard statistical data on the percentage of the population of immigrant stock (foreign born) by country or province. In Europe, this measure would also be a reliable proxy for ethnic heterogeneity, given that most immigrants represent ethnic groups distinct from incumbent resident majorities across the EU. Yet, this would not necessarily hold elsewhere. Russia is a good case in point. Most officially registered immigrants to the country since the Soviet collapse were actually ethnic Slavs (Russians and Russian-speaking Ukrainians and Byelorussians). Ethnic population shifts across Russia's constituent regions and republics came as a result of a combination of internal movement of people, the arrivals from the former Soviet republics in the Caucasus and Central Asia, and new migration from outside the former Soviet Union (e.g., East and South Asia, and Africa). The Russian government did not grant most of them immigrant status, such as the right to permanent residency (vid na zhitel'stvo).
The present study therefore adopts a long-term view of ethnic population change to capture these diverse demographic and migratory trends. It specifically examines the relationship between shifts in ethnic composition across Russia's regions from 1989 through 2002 and electoral support for the Zhirinovsky party in 2003. The study also "unpacks" the immigration–ethnic change—xenophobic voting hypothesis by drawing on extensive sociological research in the United States and elsewhere on ethnic/racial relations and violence. These studies are used to formulate hypothesis explicitly representing different types of ethnic composition change. These hypotheses are then tested in the context of the Russian Federation.

“The Number Game:” Principal Theoretical Models of Population Effects on Xenophobia

Demographic change creates social contexts in which concerns about group identity, socioeconomic well-being, and uncertainty about one's future are likely to become more acute (Horowitz 1985; Olzak 1992; Teitelbaum and Winter 1998; Koopmans and Statham 2000). These concerns and uncertainty would exacerbate aggressive proclivities across diverse socio-demographic groups, explaining the persistent "flash potential" of immigration as a political and social issue. Galvanizing vulnerability in the face of social change and pent-up ethnic prejudices, shifts in the ethnic balance within states are therefore likely to translate into popular support for anti-immigrant, xenophobic, exclusionist parties and politicians. In this sense, voting for the extreme right parties may be viewed as a subset of hostile interethnic behavior. The present study builds on theoretical frameworks and empirical findings that link ethnic balance shifts with hostile interethnic behavior to formulate testable hypotheses on the relationship between ethnic balance and xenophobic voting. To specify this relationship, I have identified four principal models, drawing on Green, Strolovich and Wong (1998) and on their review of extensive literature on interracial attitudes, housing segregation, and racial violence in the United States.

Model 1: Power Threat

In line with what is widely known as "realistic group conflict theory" (Levine and Campbell 1972; Bobo 1988) one would expect higher rates of interethnic hostility--and, hence, support for xenophobic parties--in areas where the proportion of minorities is higher and/or where it increases faster than in other areas. Major empirical support for this hypothesis comes from studies of anti-Black lynching in the American South (Tolnay and Beck 1995), white support for ex-Klansman David Duke's 1990 senatorial bid in Louisiana (Giles and Buckner 1993), and white attitudes to increasing racial diversity of their neighborhoods (Schuman, Steeh, and Bobo 1998). Interracial or interethnic conflict or violence may intensify as the minority population reaches the 50 percent threshold, or some other perceived "tipping point" in the ethnic balance (Horowitz 1985; Galster 1990). However, as the Los Angeles riots of 1992 demonstrated, incumbent ethnic minorities may feel even more acute threat in the face of the growing numbers of ethnic distinct newcomers—something that fits the pattern of Black-Korean violence that accounted for most of the violence and property damage in 1992 L.A. (Alexseev 2005, forthcoming). With respect to the vote for
the Zhirinovsky Bloc (LDPR) by ethnic Slavs in the 2003 Duma election, the "power threat" model can be specified in terms to two testable hypotheses:

H1a: Percent vote for LDPR was higher in the Russian regions (constituent units of the Federation) where the proportion of ethnic Russians was lower than in other regions at the time of the 2002 Census.

H1b: Percent vote for LDPR was higher in regions where the proportion of ethnic minorities increased faster than in other regions from 1989 to 2002.

Model 2: Power Differential

A considerable body of research suggests that ethnic or racial hostility and its behavioral expressions are likely to be more intense in areas where minorities comprise a smaller segment of the population relative to other areas. Rationality theory would suggest that the cost of hostile behavior to the incumbent majority group would be lower in such areas. Empirically, the power-differential model was supported by studies of interracial attacks in American neighborhoods (Myrdal 1944; Levin and McDevitt 1933). Subsequent research drew attention to the psychological micro-foundations of inter-group hostility. Ethnographic accounts of neighborhood vigilantism and violence in Chicago and New York (Rieder 1985, Suttles 1972) indicate that concerns about incumbent group’s social and cultural identity (a way of life) tended to be the most intense in neighborhoods that were close to 100 percent White. Additionally, the contact theory of interethnic cooperation would suggest that as if the size of minority groups in the population increased, people would establish friendships across ethnic divides and hostility would subside. Applied to the 2003 ethnic Slav vote for LDPR, the power differential model translates into:

H2a: Percent vote for LDPR was higher in the regions where the share of ethnic Slavs was higher than in others in 2002.

H2b: Percent vote for LDPR was higher in regions where minority population rates decreased faster or increased more slowly than in other regions from 1989 to 2002.

Model 3: Random Interaction

A counter-argument to the contact hypothesis, this theoretical perspective posits that ethnic heterogeneity increases the likelihood of interethnic conflict, because it increases the probability of disputes and because most interactions across ethnic divides will not translate in cooperation-enhancing friendships. Blau (1977), for example, found that racially mixed areas in the United States had higher incidence of racially motivated crime. The random-interaction hypothesis with respect to the share of the vote for LDPR by ethnic Slavs in the 2003 election may be formulated as follows:

H3: Percent vote for the LDPR was higher in regions where the share of ethnic Slavs was between about one third and two thirds of the total
regional population (i.e., where ethnic populations were more evenly balanced) in 2002

Model 4: "Defended Nationhood"

I have adapted this model directly from Green et al.'s (1998). The latter applied defended neighborhood ethnographies cited earlier in this paper to research on hate crime in the United States. Analyzing the relationship between 10-year ethnic balance trends and hate crime rates across New York’s 51 boroughs, Green et al (1998) produced empirical findings strongly resonant with Russia’s recent demographic trends: antiminority hate crime rates turned out to be higher in ethnically homogenous areas that also experienced a sudden influx of ethnic "others." Violence rates declined after the minority size increased. The defended neighborhood model—unlike all others—simultaneously accounts for both the incumbent group’s size and the scale of minority population change. Given that perceptions of the scale of ethnic change may diverge significantly from actual ethnic population trends and become especially exaggerated under uncertainty about the capacity of central government to defend the interests of incumbent groups (Alexseev 2003, 2005, forthcoming), I have expanded on the Green et al. (1998) "defended neighborhood" model in two ways.

First, I expect the model to predict xenophobic voting at the level of Russia’s constituent regions—a significantly higher level of data aggregation than neighborhoods (census tracts) in Green et al (1998). Aggregation at the regional level may be even more closely related to xenophobic voting than neighborhood population shifts would. This is because Russia’s regions have come out in survey after survey in the 1990s as the primary territorial unit with which ethnic Russians identify themselves. One persistent feature of Russia’s "national" identity is that it is regional. Most Russians think of themselves as members of a certain regional entity based on administrative divisions (e.g., pskovskie, primortsy, tveriaki) rather than members of an ethnic majority or as citizens of a state called Russia (rußkie or rossiiane) (Billington 2004). This study therefore focuses on whether xenophobic voting in Russia is a response to the LDPR theme of defending Russian national identity. And I expect that the identity threats against which Zhirinovsky wants Russians to defend themselves would be most resonant with the most salient type of group identification by ethnic Russians --the region (province).

Second, in expanding the "defended neighborhood" model to the "defended nationhood" level, I also suggest that xenophobic voting is likely to represent a partial response to perceived threats to territorial integrity—and through that to national security--within each region. As Alexseev (2001; 2003; 2005, forthcoming) found, uncertainty among migrant-hosting populations about the neighboring states’ intent plays a significant role in explaining anti-migrant hostility. It is not necessarily that migrants or migrant-sending states directly threaten to pose territorial claims, but that they might do so in the future that matters. In this regard, one should expect a stronger xenophobic vote in parts of the state more directly affected by recent histories of interstate territorial disputes. The same logic would suggest that the influx of ethnic groups associated with threats to state security or sovereignty would also likely translate
into higher rates of xenophobic voting. As far as the 2003 Duma vote for the LDPR among ethnic Slavs, the "defended nationhood" model posits that:

H4a: Percent vote for the LDPR in any given region was a function of the percent of ethnic Slavs in 1989 multiplied by the percent change of non-Slav populations from 1989 to 2002

H4b: Percent vote for the LDPR was higher in regions located along segments of the state’s external border, parts of which had been subject to territorial disputes with neighboring states within a living generation’s memory (approximately, in the last 50 years)

H4c: Percent vote for the LDPR was higher in regions with the largest increase in the proportion of ethnic Chechens, ethnic groups of the Caucasus, and East Asians in the total population from 1989 to 2002

Controlling for Alternative Explanations

Despite mixed results reported in the voting literature, it would be imprudent to ignore the conventional wisdom suggesting that xenophobic voting is likely to be a product of economic hardship, lack of education (and therefore, proclivity for intolerance), social alienation, and regional population size. The first two factors have been extensively treated in the literature and hardly require any further justification. Social alienation is arguably captured in Russia’s voting rules that allow voters to cast ballots “against all” candidates. Because this option is included, it can have a two-edged relationship with xenophobic vote. On the one hand, it may detract socially alienated, discontented voters from the Zhirinovsky Bloc. On the other hand, it may stand for more broadly based popular discontent with socioeconomic conditions in any given region. The latter context will be conducive to higher overall LDPR vote. But one way or another, one may expect a statistically significant correlation to emerge between the “against all” and the LDPR voting patterns. Moreover, since the “against all” vote is used as a proxy for alienation, it should not, in theory, matter whether it is cast by ethnic Slavs or non-Slavs. Thus, the LDPR vote by ethnic Slavs would be expected to correlate with the “against all” vote by all ethnic groups.

The fourth factor—a region’s population size—is seemingly important because it stands as a reliable proxy for electoral district size in the Russian context. Adopting the logic of Golder (2003) with respect to the importance of district magnitude in Europe, one would expect parties in Russia to concentrate their resources and organizational capacity in more populous regions—especially given the need to clear a 5 percent national vote threshold to become a national parliamentary party. Since Russia’s most populous regions (such as Moscow, St. Petersburg/Leningrad Oblast, Krasnodar) have overwhelming ethnic Slav majorities and since the overall level of these majorities and population size of regions relative to one another has changed insignificantly since 1989, one can safely consider the SLAV89 variable as a reliable proxy for this control variable, too.

The model of the LDPR vote thus includes measures of personal income, unemployment levels, property ownership, education, and percent “against all” vote.
These controls enable one to test empirically whether and how strongly ethnic balance shifts relate to xenophobic voting with major factors—such as economic conditions, education, and population size—held constant.

Statistical Models and the Data

How Many Slavs Voted for LDPR? A Case for Ecological Inference Analysis for the Dependent Variable

Since voting data does not include individual voter characteristics—collecting it would violate the constitutional principle of secret balloting in Russia—there are no exact statistics on how many voters who consider themselves to be ethnic Slavs cast their ballots for the LDPR. However, a method known as “ecological inference” (King 1997) provides probability estimations for precisely this type of missing data. Using the ecological inference software program called EzI (developed by Gary King and available at his web site at Harvard), I modeled the missing data problem for the Slavic vote for the LDPR exactly the same way that King (ibid.: 28-34) modeled the missing data problem for the Black turnout at the polls in the United States.

Using the distribution of the total LDPR vote in 2003, the percent of the ethnic Slav population in the 2002 census, and the total population size for each Russian region, the EzI software estimated the probability of Slavs voting for the LDPR across Russian regions in the 2003 Duma elections. The program estimated that on average—across 88 Russian regions—approximately 13.5 percent of Slavs were likely to vote for the LDPR, with the aggregate bounds of 14.1 percent and 4.8 percent. It was also estimated that only 0.15 percent of non-Slavs in any given Russian region was likely to vote LDPR, with the aggregate bounds of 4.5 percent and 0 percent. While suggesting that the proportion of non-Slavs voting for the LDPR approximated zero, these results were intuitively consistent with the 11.5 percent total LDPR vote across Russia.

From here I estimated the extent of xenophobic voting among Slavs by calculating the percent of the LDPR vote as if the entire population of any given region were Slavic. This was done by dividing percent vote for the LDPR among the entire region’s population by the one hundredth of the percent of ethnic Slavs in that region’s population. This transformation resulted in the upward adjustment of the LDPR vote throughout, and the more so in regions with a smaller than average proportion of ethnic Slavs. Transformed in this fashion, the data was used as the dependent variable in the statistical modeling and analysis. The recoded variable is the best available estimate of the percentage of ethnic Slavs in any given region who voted for the LDPR. This transformation thus resolves the initial problem of comparing levels of LDPR support across regions with varying shares of ethnic Slav population. Table 1 illustrates the effects of this transformation, by showing how the distribution of the Slav vote for the LDPR differs from the distribution of the total LDPR vote by producing a different hierarchy of top ten LDPR-voting regions.

<Table 1 about here>
The transformation is striking: whereas the initial—total vote—data makes the Zhirinovsky Bloc look like the party of the ethnically homogenous and predominantly Slavic Russian Far East, the Slavic vote data suggests instead that the strongest bastions of the LDPR support among Slavs are in the ethnically heterogeneous non-Slavic republics of the Middle Volga region. The latter were the most potent incubators of xenophobic voting by Russia’s Slav.

The Explanatory Variables and the Regression Equation

Since we are primarily interested in explaining regional variation of voting levels, our dependent variable is numerical interval scale (estimated percentage of Slavs who voted for the Zhirinovsky Bloc). The distribution of the dependent variable approximates the Gaussian scatter (bell-shaped or normal curve, with the mean of 15.6 and standard deviation of 4.4). Given the nature of the dependent variable and our objective to estimate the effect of each independent variable on percent vote for the Zhirinovsky Bloc with all other independent variables held constant, we use linear regression (ordinary least squares or OLS).

To test the power-threat, power-differential, random-interaction, and defended-nationhood/security dilemma hypotheses while holding control measures constant, we use the model specified in Equation 1:

$$\text{LDPR03} = \beta_0 + \beta_1 \text{SLAV89} + \beta_2 \text{NONSLAV8902} + (\beta_3 \text{SLAV89} \times \text{NONSLAV8902}) + \beta_4 \text{EDUHI02} + \beta_5 \text{UNEMP02} + \beta_6 \text{INC9903} + \beta_7 \text{APT9200} + \beta_8 \text{VSALL03} + \beta_9 \text{BRDCONT} + \epsilon.$$

The dependent variable LDPR03 is the estimated percentage of votes cast for the Zhirinovsky Bloc by ethnic Slavs within each Russian region. SLAV89 measures the percent of each region’s population that identified themselves as ethnic Russian, Ukrainian, or Belarusian (ethnic Slavs) in the 1989 Census of the Russian Federation. The Russian State Committee for Statistics (Goskomstat) data for the 1989 census was provided to the author by the Center for Political-Geographic Studies in Moscow as part of the broader project on migration and ethnoreligious violence in the Russian Federation. The same dataset was used to estimate the share of non-Slavic population in each region in 1989 by subtracting the value of SLAV89 from 100. Preliminary results of the 2002 Russian population census reports on the Goskomstat web site (www.gks.ru) give the percentage of non-Slavic population in each Russian region at that time. By subtracting the percentage of non-Slav population in 2002 from the percentage of non-Slav population in 1989 I obtained the NONSLAV8902 variable.

1 Linear regression is also an appropriate procedure since no X and Y values in our model are intertwined, the data points are independent, the values of all variables are known precisely, the continuous variables are interval scales with distribution close to Gaussian, and the dependent variable is not left-censored at zero. Curve fit tests using SPSS showed that the linear equation estimated the relationship between all independent variables and the dependent variable better or minimally (within about 0.05 of R Squared value) worse than the logarithmic, inverse, quadratic, cubic, compound, power, S, growth, exponential, and logistic equations.
I also ran four additional tests of the same model while substituting NONSLAV8902 and the product of SLAV89 and NONSLAV8902 with other variables. In the first three tests, I inserted measures that separately estimate the effects on xenophobic voting in Russia of three ethnic groups predominantly associated with ethnic balance change or with threats to national security—the Chechens, the ethnic groups of the Caucasus combined (kavkazskie narody) and East Asian ethnic groups combined. These measures are estimated in exactly the same manner as NONSLAV8902 is. They are labeled CH8902, CAU8902 and AS8902, respectively. In the fourth test, I used the rate of non-Slav population increase (NONSLAV8902rt) as the alternative. This variable was calculated by dividing percent non-Slavic population in 2002 by percent non-Slavic population in 2002 for every region. Since inserting this variable raised multicollinearity among all population variables, it was not included in Tests 1-4.

The 2002 census data was also used to estimate the percentage of population with college education (EDUHI02) and the percentage of working age population claiming unemployment benefits (UNEMP02). Goskmostat provided the data on changes in average personal income by region from 1999 to 2003—approximately the time span of the Duma election cycle. APT9200 is the estimate of property ownership by individuals as percent of apartments privatized in each region from the start of privatization in 1992 to 2000 (Goskomstat 2000). VSALL03 measures the percent of votes cast “against all” in 2003 by region. Finally, BRDCONT is a dummy variable identifying regions located along Russia’s borders over which it had disputes with the neighboring states between the Soviet collapse in 1991 to 2003. These are the regions located along Russia’s border with Japan, China, Kazakhstan, Chechnya, and the Baltic states. Border and territorial disputes between Russia and Japan, Russia and China, and Russia, Latvia, and Estonia are well known. So is the threat to Russia’s territorial integrity in Chechnya. Lesser-known disputes with Kazakhstan (e.g., Ukatnyi Island) are documented in Golunov (2002).

Finally, a correction was made for the discrepancies in the delineation of the Russian Federation’s constituent units from 1989 to 2002. At the time of and following the disintegration of the Soviet Union in 1991, Russia’s regions and republics proclaimed sovereignty and some of them separated from the larger units and raised to the status of the federation subject from that of, say, autonomous district within a larger region. Data for all variables was compiled on

2 The Caucasus groups (drawn on the 1994 Micro-census list) are: Abkhaz, Avar, Agul, Adyg, Azeri, Armenian, Balkar, Georgian (including Adzhar and Ingloi), Dargin, Ingush, Kabarda, Karachai, Kumyk, Kurd, Lak, Lezgin, Nogai, Ossetian, Rutul, Tabassaran, Turk, Tsakhur, Chechen, Cherkess. The East Asian groups are Chinese, Japanese, Korean, and Vietnamese.

3 These regions are Kaliningrad, Leningrad (oblast), Pskov, Stavropol, Astrakhan, Volgograd, Orenburg, Samara, Saratov, Kurgan, Tyumen, Cheliabinsk, the Republics of Altai and Buryatia, Altai krai, Novosibirsk, Omsk, Chita, Amur, Primorski krai, Khabarovski krai, Sakhalin, and the Jewish Autonomous District.
the basis of the 1989 designation of oblasts, krais, and republics. In addition, I excluded three regions (Chechnya, Ingushetia, and Dagestan) from the dataset due to their location in the war zone for the most time since 1994. This made them significantly different on key political, security, and socioeconomic dimensions of ethnic population change. They were excluded as outliers. For the remaining 72 cases (regions), I ran tests of the models with SPSS 13.0.

The Findings

Five tests of the general model of xenophobic voting in Russia revealed that combinations of 8 to 9 predictors derived from the theoretical hypotheses explained between 54.1 and 58.3 percent of variation across 72 constituent regions of Russia in voting for the Zhirinovsky Bloc in 2003 among ethnic Slavs. The results were significant at the level of less than .001 (indicating there is less than .1 percent probability that the relationship between explanatory variables and the LDPR vote was due to chance). The statistical model that included the interaction term between percentage-point change in the East Asian population from 1989 to 2002 and percent Slavic population in 1989 in Russia's regions generated cumulative predicted values of the LDPR 2003 vote that fit most closely the observed (actual) values by region. The descriptive statistics for all variables is in Table 2, and the summary of regression tests is in Table 3.

Interpreting the Predictions of the Principal Models

Model 1: Power Threat

4 The Republic of Adygea was part of Krasnodar krai; Karachaev-Cherkessia—of Stavropol krai; the Altai Republic—of the Altai krai; Khakassia, Taymyr and Evenk republics—of Krasnoyarsk krai; Khanty-Mansi and Yarnal-Nenets—of the Tyumen Oblast; Komi-Permyak District—of the Komi Autonomous Republic; Aga-Buryat Republic—of the Buryat Autonomous Republic; the Jewish Autonomous District—of the Khabarovsk krai; Chukotka—of the Magadan Oblast; and Koryak Autonomous District—of the Kamchatka Oblast.

5 One methodological issue needs to be addressed before proceeding to the findings. In the regression tests, the measures of non-Slav ethnic population change from 1989 to 2002 are highly correlated with the interaction term between percent Slav population in 1989 and the 1989-2002 change in the non-Slav populations. However, this partial multicollinearity—affecting two variables out of nine in four out of five tests—was a lesser problem than excluding either one of the measures from the model. Whereas the exclusion of NONSLAV8902 is tempting, given that it is already part of the interaction term in Equation 1, it would pose grave methodological problems. As Golder (2003: 436) points out, the exclusion of one of the linear components of an interactive term from the equation would (1) make an unrealistic assumption that neither of the interaction term components affect the dependent variable in the absence of the other component and (2) make the variance of the interaction term indeterminate (since it can only be interpreted in conjunction with the variance of its linear components). The same issue justifies the retention of both linear components of the interaction term between unemployment rates and percent foreign nationals by region in 2002, although multicollinearity is considerably less of a problem for these items.
H1a: Sustained: Voting for the LDPR among ethnic Slavs was higher in regions where the proportion of ethnic Slavs was lower in 1989—and these were the same regions in 2002 relative to one another.

H1b: Rejected: The rate of non-Slavic population change (NONSLAV8902rt)—i.e., the number of times percent non-Slavic increased or decreased from 1989 to 2002 in any given region—was not significantly related to the likelihood of the LDPR vote by ethnic Slavs across Russia. Moreover, the difference between the percentage of non-Slavs in the regions in 1989 and in 2002 (NONSLAV8902) was significantly associated with the LDPR Slav vote, but contrary to the predicted direction—i.e., the fewer non-Slavs came to reside in any given region, the more Slavs voted for the LDPR.

These mixed results present us with a thought-provoking paradox, suggesting that the “number game” in the real world must be not so much about the actual migration size, but about other related factors. One plausible interpretation is that what matters is not how many ethnic others come into a given region, but how much threatened the local residents are in the local demographic context that has little to do with immigration trends. Migrants may bring out latent fears and hostility among the Russians embedded into the perceived vulnerability of living in regions with a smaller share of the Slavic population. In the tests, the threat contexts came out as more significant than the demographic change trends.

Model 2: Power Differential

H2a: Rejected on the same evidence that H1a was sustained.

H2b: Rejected, with a caveat: The rate at which the percentage of Slavs changed across Russia’s regions from 1989 to 2002 was not significantly related to the LDPR vote. However, the LDPR enjoyed a higher level of support among Slavs in regions where the share of non-Slavs increased less or declined more than in other regions.

A comparison of results for Models 1 and 2 suggests even stronger, however, that the way the numbers are perceived—even when constructing variables for a dry statistical test—matters decisively. It also shows that neither the power threat nor the power differential hypotheses can be predominantly accepted or rejected after these tests.

Model 3: Random Interaction

H3: Partially supported: The tendency of the regions with a smaller percentage of Slavs to vote for the LDPR in the regression analysis makes this hypothesis harder to reject than to accept. An additional examination of ethnic distributions also showed that out of the top 10 regions on the LDPR vote by the Slavs, in 6 regions the share of the Russian population was between one third and two thirds of the total.

Model 4: Defended Nationhood
H4a: Sustained: The Slavic vote for the LDPR was indeed a statistically significant function of the percent of ethnic Slavs in 1989 multiplied by the percent change of non-Slav populations from 1989 to 2002. The examination of unstandardized coefficients (B) in Table 3 reveals that this interactive variable explained approximately 30% change in the LDPR vote among the Slavs. A 100-point—i.e., about a 30 percent--change in NONSLAV8902 (whose value ranged from about -50 to 310 within one standard deviation from the mean) translated into approximately 13 percent change in the LDPR vote among ethnic Slavs. A relatively high value of the standard error, however, suggests that this variable should be used with caution when making predictions for xenophobic voting in any individual region.

H4b: Sustained: Percent vote for the LDPR was, indeed, consistently higher in regions threatened by territorial disputes with neighboring states than in other regions. This was one of the most robust predictors of the Slavic vote for LDPR.

H4c: Sustained for one of the three groups only: Percent of Slavs voting for the LDPR was not significantly related to changes in the share of ethnic Chechens or ethnic groups of the Caucasus combined, but only to changes in the share of East Asian ethnic groups (Chinese, Mongol, Korean, and Vietnamese) in any given region’s population from 1989 to 2002.

Control Factors

Personal income levels and participation in privatization of property through home ownership was not a significant predictor of the LDPR vote for ethnic Slavs. This finding, in part, illustrates once again the significance of ecological inference analysis that made it possible to estimate the level of Slavic vote for LDPR. That is because in a separate regression test that I do not report here since it is not central to this study, I found that unemployment—based on the same data—did have a robust and statistically significant effect on the total LDPR vote levels in regions with a majority population ethnic Slav. In those same tests and now, however, both the number of college-educated residents and the percentage of votes cast “against all” were statistically significant predictors of the Slavic LDPR vote in all five tests. The LDPR comes through more as a party of lower educated and alienated people than a party of the poor and anti-market reform people. The former and the latter groups perhaps do not overlap as much as one would expect intuitively. This contributes to existing research elsewhere that likewise showed that education had a stronger relationship with xenophobic voting than economic conditions in locations where voters reside. The logic of large electoral payoffs in large electoral districts was not sustained in the tests, since the highest LDPR voting rates among ethnic Slavs and overall came from mid-size rather than the largest regions (see Table 1).

Conclusion: Some Non-Trivial Paradoxes

While sustaining or rejecting theoretically informed hypotheses is a contribution in its own right, this study adds value to existing research on xenophobia and interethnic hostility in a more important way—it reveals at least two major puzzles or paradoxes that are hard to resolve within the existing theoretical frameworks in multiple disciplines.
Rate vs. Size: How Changing Ethnic Proportions Relate to Xenophobia

The tests revealed that it matters with respect to xenophobic voting whether changing ethnic proportions are estimated in terms of size (by how many percentage points a group’s proportion increased or decreased) or in terms of rate (how many times a group’s proportion increased or decreased). The tests defy one popular conventional explanation of heightened public concerns and animosity in the face of initial and small inflows of ethnically distinct migrants. Namely, the argument is that it does not matter if the newcomers may comprise only a fraction of one percent of the local population. Rather, what allegedly matters is that over the past X number of years that proportion increased several times over. This author has frequently heard precisely this kind of argument with respect to the Chinese migration in the Russian Far East: “They are less than 1 percent of our population now, but it’s 500 times more than it was ten years ago.” If this logic holds sway with large segments of the public, it is plausible that the rate of increase would be a more significant and stronger predictor of xenophobic responses to migration, including voting for anti-immigrant parties.

This study finds unequivocally that the opposite holds true with respect to ethnic Slav support for Zhirinovsky’s LDPR. The absolute size of change in the proportion of non-Slavs related nonrandomly to the LDPR vote, but not the rate of change from 1989 to 2002. More so, this finding should give pause to someone who might argue that it is the interpretation of the scale of changes in the public discourses—predominantly in the media—that account for xenophobic voting. Such an explanation would be plausible if neither the rate nor the size of ethnic proportion changes or both the rate and the size related significantly to xenophobic voting. Examining why only one ethnic balance indicator and not the other would affect anti-migrant behavior is a puzzle worth a separate new study.

Asians vs. Caucasians: New Uncertainties vs. Old Prejudices

Intuitively this author expected to find that the rising proportion of ethnic Chechens or members of the ethnic groups of the Caucasus (kavkazskie narody) would relate significantly to xenophobic voting. In addition, I expected that the arrival from the Caucasus region would galvanize more ethnic Russians to vote for LDPR than the arrival of East Asians. I was prepared not to be surprised if that prediction also held true in the Russian Far Eastern regions where my field research in June 2005 revealed a considerable “softening” of anti-Chinese political rhetoric since the coming to power of Sergey Darkin in the summer of 2001. At the same time, a review of Primorskii press and conversations with sociologists and government officials suggested that negative attitudes toward the Caucasus ethnics (e.g., Georgians, Azerbaijanis, Chechens) had been on the rise during the same time frame.

But that was not the pattern of the Slavic vote that I found in the tests. Surprisingly, changes in the proportions of the Chechens or the Caucasus ethnics from 1989 to 2002 had no statistically significant—better than random—relationship with the distribution of the 2003 LDPR vote by ethnic Slavs across Russia’s regions. At the same time, changes in the proportions of East Asians came out as significantly associated with the LDPR Slavic vote. But the paradox did not end there.
First, contrary to my expectations, support for the LDPR by ethnic Slavs was higher where the number of East Asians was lower than in other regions. And second, the LDPR vote by Slavs also related significantly to the product of Slavic population proportion in 1989 and the size of change of the Asian population from 1989 to 2002 (SLAV89 x NONSLAV8902)—meaning, that more Russians, Ukrainians, and Byelorussians were likely to vote for the LDPR in regions where the number of ethnic Russians decreased from the highest levels in 1989 and the influx of East Asians was higher than elsewhere. When considered together, these paradoxes confound both the power threat and power differential explanations and they challenge the random interaction hypothesis.

This finding, is, however, consistent with the “defended nationhood” hypothesis, but in ways not initially anticipated. By comparison with the Caucasus ethnics, East Asians have been a relatively new migrant group in Russia. They come from more remote and less known areas. Most of them have not grown up learning Russian or socialized in the common Soviet practices. Their number in the countries of origin exceeds the entire Russian population many times over. For at least these and other reasons—their arrival is likely to be associated with significant new political and social uncertainties, the “unknowable unknowns”, that will not be associated with migrants from the Caucasus. True, polls and conversations easily reveal that negativism toward the Caucasus ethnics—especially the Chechens—is significantly stronger than negativism toward East Asians, including the Russian Far Eastern provinces. But, in a proverbial sense, the Caucasus migrants better fit the role of the “devils” that the Russians know, while the Asians better fit the role of the “devils” the Russians do not know. And the regression tests show that the Russians stayed true to the proverb, feeling more concerned about the latter than the former. In other words, this study suggests that relatively new migrant groups associated with new uncertainties are more likely to engender xenophobic responses than relatively “old” migrant groups—even those associated with stronger prejudices or hatreds.

Once again, these considerations require much further exploration. That they arise from non-trivial and counterintuitive findings gives one hope, however, that the exploration will be worth the price of the ticket.

References

Table 1. Top 10 Russian Regions: Total LDPR Vote vs Ethnic Slav LDPR Vote Estimated with Ecological Inference, 2003 Duma Election

<table>
<thead>
<tr>
<th>TOP 10 Regions:</th>
<th>LDPR total vote</th>
<th>TOP 10 Regions</th>
<th>Ethnic Slav LDPR vote estimated with EzI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magadan Oblast</td>
<td>19.7</td>
<td>Chuvashia Republic</td>
<td>30.8</td>
</tr>
<tr>
<td>Primorskii Krai</td>
<td>19.5</td>
<td>Bashkortostan Republic</td>
<td>28.8</td>
</tr>
<tr>
<td>Kurgan Oblast</td>
<td>19.2</td>
<td>Mari El Republic</td>
<td>24.2</td>
</tr>
<tr>
<td>Sakhalin Oblast</td>
<td>18.7</td>
<td>Komi Republic</td>
<td>23.6</td>
</tr>
<tr>
<td>Amur Oblast</td>
<td>18.5</td>
<td>North Ossetia Republic</td>
<td>23.1</td>
</tr>
<tr>
<td>Chita Oblast</td>
<td>18.1</td>
<td>Magadan Oblast</td>
<td>21.6</td>
</tr>
<tr>
<td>Khabarovsk Krai</td>
<td>17.6</td>
<td>Nenets Autonomous District</td>
<td>21.3</td>
</tr>
<tr>
<td>Kamchatka Oblast</td>
<td>16.8</td>
<td>Udmurtia Republic</td>
<td>21.2</td>
</tr>
<tr>
<td>Irkutsk Oblast</td>
<td>16.4</td>
<td>Sakhalin Oblast</td>
<td>20.9</td>
</tr>
<tr>
<td>Komi Republic</td>
<td>15.9</td>
<td>Kurgan Oblast</td>
<td>20.6</td>
</tr>
</tbody>
</table>
Table 2. Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>e03ldT</td>
<td>.1564</td>
<td>.04442</td>
<td>72</td>
</tr>
<tr>
<td>SLAV89</td>
<td>84.2783</td>
<td>19.25499</td>
<td>72</td>
</tr>
<tr>
<td>NONSLAV8902</td>
<td>1.8760</td>
<td>2.90134</td>
<td>72</td>
</tr>
<tr>
<td>CH8902</td>
<td>.0174</td>
<td>.08746</td>
<td>72</td>
</tr>
<tr>
<td>CAU8902</td>
<td>.7796</td>
<td>1.59065</td>
<td>72</td>
</tr>
<tr>
<td>AS8902</td>
<td>.0573</td>
<td>.11639</td>
<td>72</td>
</tr>
<tr>
<td>INC9903</td>
<td>3119.7037</td>
<td>1886.09210</td>
<td>72</td>
</tr>
<tr>
<td>EDUHI02</td>
<td>142.8318</td>
<td>28.72568</td>
<td>72</td>
</tr>
<tr>
<td>UNEMP02</td>
<td>.8531</td>
<td>.54668</td>
<td>71</td>
</tr>
<tr>
<td>APT9200</td>
<td>46.7455</td>
<td>9.82400</td>
<td>72</td>
</tr>
<tr>
<td>VSALL03</td>
<td>4.6847</td>
<td>1.17050</td>
<td>72</td>
</tr>
<tr>
<td>BRDCONT</td>
<td>.3056</td>
<td>.46387</td>
<td>72</td>
</tr>
<tr>
<td>NONSLAV8902rt</td>
<td>1.2868</td>
<td>.38078</td>
<td>72</td>
</tr>
<tr>
<td>SL89NSL8902</td>
<td>132.3552</td>
<td>183.20801</td>
<td>72</td>
</tr>
<tr>
<td>SL89CH8902</td>
<td>1.5673</td>
<td>4.46226</td>
<td>72</td>
</tr>
<tr>
<td>SL89CAU8902</td>
<td>56.4738</td>
<td>74.12991</td>
<td>72</td>
</tr>
<tr>
<td>SL89AS8902</td>
<td>5.2617</td>
<td>10.33951</td>
<td>72</td>
</tr>
</tbody>
</table>
Table 3. Regression of Percent Vote for the Zhirinovsky Bloc in the 2003 Duma Election (LDPR03) on Select Predictors

<table>
<thead>
<tr>
<th>Predictors of the LDPR Vote</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
<th>Test 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Slavic population, 1989</td>
<td>-.192 (.030)***</td>
<td>-.146 (.024)***</td>
<td>-.145 (.025)***</td>
<td>-.154 (.022)***</td>
<td>-.152 (.026)***</td>
</tr>
<tr>
<td>Percent Non-Slavic, 1989-2002 change</td>
<td>-.1088 (.508)**</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Percent Slavic 1989 x Percent Non-Slavic, 1989-2002 change</td>
<td>.013 (.008)*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Percent Chechens, 1989-2002 change</td>
<td>--</td>
<td>9.564 (12.074)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Percent Slavic 1989 x Percent Chechens, 1989-2002 change</td>
<td>--</td>
<td>-.182 (.243)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Percent Caucasus ethnic groups, 1989-2002 change</td>
<td>--</td>
<td>--</td>
<td>.154 (.624)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Percent Slavic 1989 x Percent Caucasus ethnic groups, 1989-2002 change</td>
<td>--</td>
<td>--</td>
<td>-.003 (.013)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Percent Slavic 1989 x Percent East Asians, 1989-2002 change</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.416 (.182) **</td>
<td>--</td>
</tr>
<tr>
<td>Percent Non-Slavic, 1989-2002 rate of change (times up/down)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.466(1.294)</td>
</tr>
<tr>
<td>Personal income, 1999-2003 change</td>
<td>.000 (.000)</td>
<td>.000 (.000)</td>
<td>.000 (.000)</td>
<td>.000 (.000)</td>
<td>.000 (.000)</td>
</tr>
<tr>
<td>Percent residents with college education, 2002</td>
<td>-.046 (.016)**</td>
<td>-.045 (.016)**</td>
<td>-.047 (.016)**</td>
<td>-.060 (.016)**</td>
<td>-.048 (.016)**</td>
</tr>
<tr>
<td>Unemployment rate, 2002</td>
<td>1.932 (.857)*</td>
<td>1.317 (.874)</td>
<td>1.327 (.888)</td>
<td>1.088 (826) **</td>
<td>1.386 (.848)</td>
</tr>
<tr>
<td>Percent private home owners, 1992-2000 change</td>
<td>-.011 (.046)</td>
<td>-.049 (.046)</td>
<td>-.049 (.048)</td>
<td>-.055 (.043)</td>
<td>-.106 (-1.078)</td>
</tr>
<tr>
<td>Voting “against all,” 2003</td>
<td>.749 (.399)*</td>
<td>.984 (.419)*</td>
<td>.968 (.420)*</td>
<td>.999 (403)**</td>
<td>.954 (.400)**</td>
</tr>
</tbody>
</table>

Constant 32.967 (3.91)*** 29.709 (3.83)*** 29.873(3.91)*** 32.596 (3.81)*** 29.910 (3.77)***

R = .759 .738 .736 .764 .736
R² = .576 .545 .541 .583 .542
Adj. R² = .513 .478 .473 .522 .482
Std. Error = 3.099 3.209 3.224 3.072 3.196

Unstandardized coefficients (B) are reported, standard errors in parenthesis. Significance p < .05 (*), < .01 (**), < .001 (***).