Auditory and Visual Information Facilitating Speech Integration

A Senior Honors Thesis

Presented in Partial Fulfillment of the Requirements for graduation with distinction in Speech and Hearing Science in the undergraduate colleges of The Ohio State University

by

Brandie Andrews

The Ohio State University
June 2007

Project Advisor: Dr. Janet M. Weisenberger, Department of Speech and Hearing Science
Abstract

Speech perception is often thought to be a unimodal process (using one sense) when, in fact, it is a multimodal process that uses both auditory and visual inputs. In certain situations where the auditory signal has become compromised, the addition of visual cues can greatly improve a listener’s ability to perceive speech (e.g., in a noisy environment or because of a hearing loss). Interestingly, there is evidence that visual cues are used even when the auditory signal is completely intelligible, as demonstrated in the McGurk Effect, in which simultaneous presentation of an auditory syllable “ba” with a visual syllable “ga” results in the perception of the sound “da,” a fusion of the two inputs.

Audiovisual speech perception ability varies widely across listeners; individuals integrate different amounts of auditory and visual information to understand speech. It is suggested that characteristics of the listener, characteristics of the auditory and visual inputs, and characteristics of the talker may all play a role in the variability of audiovisual integration. The present study explored the possibility that differences in talker characteristics (unique acoustic and visual characteristics of articulation) might be responsible for some of the variability in a listener’s ability to perceive audiovisual speech.

Ten listeners were presented with degraded auditory, visual, and audiovisual speech syllable stimuli produced by fourteen talkers. Results indicated substantial differences in intelligibility across talkers under the auditory-only condition, but little variability in visual-only intelligibility. In addition, talkers produced widely varying amounts of audiovisual integration, but interestingly, the talkers producing the most audiovisual integration were not those with the highest auditory-only intelligibility.
Acknowledgments

I would like to thank my advisor, Dr. Janet M. Weisenberger, for providing me the opportunity to work alongside her on this thesis, as well as the guidance she has given me throughout the entire process. Through her insight and support, I have grown personally, professionally, and academically. I would like to thank Natalie Feleppelle for the all the time, assistance, and guidance she has given me throughout this year. Furthermore, I would like to thank my family and friends for their constant encouragement and support.

This project was supported by an ASC Undergraduate Scholarship and an SBS Undergraduate Research Scholarship.
Table of Contents

Abstract .. 2
Acknowledgments .. 3
Table of Contents .. 4
Chapter 1: Introduction and Literature Review .. 5
Chapter 2: Method ... 14
Chapter 3: Results and Discussion .. 19
Chapter 4: Summary and Conclusion ... 26
Chapter 5: References .. 27
List of Tables and Figure ... 29
Table 1 ... 30
Figures 1 – 13 .. 31
Chapter 1: Introduction and Literature Review

Speech perception is often thought of as a unimodal process when, in fact, it is a multimodal process that uses both auditory and visual inputs. In situations where the auditory signal is impoverished in some way, such as a noisy environment or with hearing impaired individuals, speech perception can be difficult. In these situations, the visual information present can significantly improve speech integration. However, there is evidence that visual input is used even when the auditory signal is completely intelligible. McGurk and MacDonald (1976) demonstrated the integration of these cues in what is known today as the McGurk Effect. They dubbed auditory syllables onto a videotape of a speaker vocalizing a different syllable. For example, an auditory syllable such as the bilabial [ba] would be dubbed onto a speaker visually saying the velar consonant [ga]. The listener would integrate this information and report perceiving a [da], a fusion of the place of articulation of the two sounds. These results show that even with a completely intelligible auditory signal, the listener could not ignore the visual information and used both of the available modalities to identify the syllable. Thus, the current consensus is that audiovisual integration occurs constantly, even when auditory input is perfect. In explaining the nature of audiovisual integration of speech, it is important to evaluate the cues contained in the auditory and visual speech tokens.

Auditory Cues for Speech Perception
The auditory signal can provide a variety of information to a listener, such as the place, manner, and voicing of the speech sound. The place of articulation describes where in the mouth the articulation was produced. The various places of articulation are bilabials (with the lips), labiodentals (with the lower lips and upper front teeth), interdentals (with the tongue between the teeth), alveolars (with the tip of the tongue and the alveolar ridge), palatal-alveolars (with the blade of the tongue and the alveolar ridge), palatals (with the tongue and the hard palate) and velars (with the tongue and the soft palate). The manner of articulation describes how the articulators make contact with each other. There are stops, fricatives, affricates, liquids and glides. Voicing refers to the state of the vocal folds while a sound is being produced. If the vocal folds are vibrating, then the sound is voiced and if the vocal folds are not vibrating, they are said to be voiceless. Vowels can be described in terms of tongue height, tongue advancement (backness) and lip rounding. For example, /I/ is a high vowel, made in the front of the mouth with lips spread (little lip rounding). /o/ is a high-middle vowel made toward the back of the mouth, with a good degree of lip rounding.

All of this auditory information can be found in both the spectral and temporal aspects of a speech waveform. With all of this available information, the speech signal is said to be highly redundant, i.e., the signal contains far more information than is absolutely necessary for identification of the speech sound. Even if some of this information were missing, the remaining temporal and spectral information would be useful in identifying speech sounds. In fact, studies have shown that a substantial amount of information can be removed from the speech signal without significantly reducing intelligibility. A study conducted by Shannon et al. (1998) shows that when the spectral waveform was reduced down to just two broad noise bands, which were then modulated by the original envelope characteristics, speech recognition performance was still
relatively high. With four bands of noise, the performance increased drastically and listeners were able to identify almost all of the manner and voicing information present. This study provides evidence of the redundancy of the speech signal, indicating that speech recognition can be achieved when this information is drastically reduced.

Visual Cues for Speech Perception

Visual cues can be a source of important information when identifying speech sounds. But with visual information, an observer can detect only the place of articulation, and even that information can be ambiguous (Jackson, 1988). Cues to manner and voicing are even less evident. When some phonemes are produced, it is easy to see a visual difference between them. For example, a clear visual difference can be seen between /f/, a labiodental, and /b/, a bilabial. However some phonemes are so similar that a visual difference cannot be seen. These visual phonemes are known as visemes (Jackson, 1988). Visemes contain more than one speech sound within each set and all of the sounds in the set are produced with similar facial movements. For example, /p, b, m/ constitute a viseme group. They are all bilabial consonants that are different auditorily but the difference cannot be seen visually. These sounds have an identical place of articulation but differ in terms of manner and voicing. Viseme groups are determined by several other factors other than visual attributes of speech sounds. Differences among talkers and the environment in which the sound is produced are important elements that contribute to visual speech perception. Talker variations appear to account for significant differences in viseme groups. Jackson found that talkers who are easy to speechread create more viseme categories than talkers who are more difficult to understand. Additionally, easy to speechread talkers
produce more viseme groups which are said to be universal, while hard to speechread talkers produce a fewer number of viseme groups (Jackson, 1988).

Given these cues in the auditory and visual signals, how does the integration process take place? Theories of audiovisual integration attempt to describe this process.

Auditory-Visual Integration Theories

Many different models have been introduced to describe optimal speech integration between the two modalities. In the Pre-Labeling Model of Integration (PRE), developed by Braida (as cited by Grant, 2002), a prediction of auditory-visual recognition is made from auditory-only and visual-only confusion matrices. The model proposes that all information extracted from both the auditory and visual modalities is preserved in the multimodal case, with no interference or biasing from the other modality. Thus, the predicted multimodal recognition for any speech sound should be equal to or greater than recognition in one of the modalities alone. The predictions of this model are an excellent source of information for the development of rehabilitative programs which strive to improve auditory-visual speech recognition. When a subject performs close to the predicted auditory-visual recognition score, then it is assumed that they are integrating speech information optimally and further rehabilitative efforts should be focused on improving unimodal auditory or visual recognition scores. In contrast, subjects who perform far below the predicted auditory-visual score are not integrating speech information optimally and should receive integration training to facilitate auditory and visual integration. Studies employing the PRE model have also shown that hearing-impaired subjects perform far
Below the predicted score and thus should receive rehabilitative efforts that focus on the integration of auditory and visual cues (Grant, 2002).

Another model of integration is the Fuzzy Logical Model of Perception (FLMP). This model, constructed by Massaro (as cited in Grant, 2002), tries to reduces the difference between the predicted auditory-visual scores and the auditory-alone and the visual-alone score. The FLMP uses matrices but, unlike the PRE model, considers all conditions, auditory, visual and auditory-visual. However, Grant (2002) argued that the FLMP underestimates the ability of humans to integrate speech information.

One major difference between these two theories lies in when the actual integration occurs. In the PRE, the integration of information from the two unimodal sources occurs prior to actual phoneme identification. The FLMP, in contrast, posits that integration of the signals occurs very late in the process, after preliminary identification of the visual and auditory inputs.

In addition to theoretical accounts of the overall process, it is also important to consider the nature of the information that is being integrated, and specifically to evaluate the role of redundant information in facilitating or impeding integration.

Role of Redundancy in Audiovisual Speech Perception

When an auditory signal is distorted by noise or a reduced acoustic signal, the available visual cues can significantly increase intelligibility and aid in audiovisual integration. Additional information suggests that auditory speech signals are highly redundant. In a study conducted by Shannon et al. (1998), speech recognition of vowel, consonants and words in simple sentences
was measured when the spectral distributions of the envelope cues were distorted. The results of this study showed that when the spectral cues were distorted, consonant recognition was not affected as much by the distortions as vowel recognition was, which made sentence recognition extremely difficult. Overall, the study by Shannon et al. indicated that consonant phonemes can still be perceived with high accuracy even with spectral distortions.

This information is useful in understanding the high speech recognition of cochlear implant patients. Evidence suggests that even when only four electrodes are used to stimulate neurons, cochlear implant patients are able to discriminate speech. Shannon et al.’s results also suggest that when envelope cues are distorted, tonotopic distribution is imperative for speech recognition (Shannon, et al., 1998).

In an earlier study conducted by Shannon et al. (1995), spectral information was reduced and the ability to recognize speech was measured. Temporal envelopes of speech were manipulated so that the temporal cues were preserved but the spectral information was severely degraded. Results showed that even with only three bands of modulated noise, high speech recognition scores were still obtained. Furthermore, the identification of consonants, vowels and sentences improved as the number of bands was increased (Shannon et al., 1995). This study provides evidence that there is more information in non-degraded auditory speech signals than is absolutely necessary to recognize phonemes.

Impoverished auditory signals can become highly intelligible with the presentation of visual information. Ken Grant and Philip Seitz (1998) compared a variety of auditory-visual integration measures in attempts to determine the significance of differing integration abilities among individuals. “Congruent” and “discrepant” auditory-visual nonsense syllables were used
to measure integration in this study. Congruent speech is defined as a stimulus in which an acoustic speech sound source matches with the presented visual speech signal. In contrast, discrepant speech is created when one auditory speech sound is dubbed onto a visual input of a different sound, as demonstrated by McGurk and MacDonald in the McGurk Effect (1976). The results of Grant and Seitz’s research showed that even with a highly impoverished auditory signal (i.e., fundamental frequency), speech was intelligible when paired with a visual signal.

One of the most impoverished, least redundant speech signals is sine-wave speech. Remez (1981) and his fellow researchers created a three-tone sinusoid pattern replica of a naturally produced utterance; no traditional acoustic cues were present in the stimuli. Remez, *et al.* stated that the stimulus utterance should be perceived by listeners as three separate tones.

Three conditions were tested for this study; the first group was told nothing about the nature of sounds they would be hearing, the second group was told they would hear a sentence produced by a computer and the third group was told exactly what they would hear. The groups were asked to distinguish what they had heard and the quality of the sound. Almost all of the words presented were able to be recognized and although they were judged to have an unnatural voice quality, they were said to be clear and intelligible. The results of this study indicated that time-varying sinusoids were sufficient information for even the naive listeners to detect linguistic content without traditional acoustic cues.

In contrast to ambiguous speech information is “clear speech.” Gagné *et al.* (2002), described clear speech as a speaking style which improves a talker’s intelligibility in degraded or noisy listening environments. Clear speech differs from conversational speech in that it has a slower speaking rate, an expanded vowel space, greater temporal modulation, increased range of voice fundamental frequency and more stimulus energy in high frequencies (Chen, 1980;
Picheny et al., 1985; Uchanski et al., 1992; Payton et al., 1994). In previous studies, it has been shown that clear speech yields higher auditory-speech intelligibility scores than conversational speech for hearing-impaired individuals in a quiet background, as well as for normal-hearing and hearing-impaired individuals in a noisy background (Gagné et al., 2002). Gagné and his colleagues investigated the effects of clear speech on auditory alone, visual alone and audiovisual speech intelligibility while taking into account the effects of intraspeaker variability. Six different talkers each produced four different iterations of consonants and vowels with both clear speech and conversational speech instructions. Significant clear speech effects were found in all three conditions. However, not all talkers produced clear speech benefits under all presentation conditions. The amount of benefit varied from condition to condition across talkers, and across iterations within each talker. These data suggest that characteristics of individual talkers may be an important determinant of audiovisual integration.

What still remains unknown is whether an ambiguous speech signal, such as an impoverished auditory signal, or a redundant signal, such as clear speech, is ideal for integration. The answer to this may depend on the individual talker characteristics presented. All talkers have their own, individual speaking strategies and speaking rates. But what makes a “good” (i.e., highly intelligible) talker? And are the characteristics of a good auditory talker the same as those for a good visual talker? Finally, do good visual and auditory talkers produce the greatest benefit in audio-visual speech tasks? One important issue is to determine whether ambiguity or redundancy in one or both of the cues is preferable.

The present study focused on various talker characteristics to determine which characteristics produce optimal auditory + visual integration. Fourteen talkers were video recorded producing a set of single-syllable speech tokens. In order to avoid ceiling effects and
allow for the visual signal to produce an improvement in intelligibility in the multimodal situation, the speech tokens were digitally degraded, resulting in an auditory signal containing a preserved speech envelope with removed spectral content. These degraded auditory signals were then dubbed onto visual samples of a talker producing a single syllable speech token. Ten listeners were presented with these stimuli under three conditions; 1) degraded auditory-only, 2) visual- only, and 3) degraded auditory + visual. Listeners were asked to identify the speech syllable presented. Examinations of correlations of performance with different talkers across the three presentation conditions were performed to address the question of whether characteristics that make someone a “good” talker in auditory only situations also make that person a good talker in visual only and audiovisual situations. Thus, the question of whether clarity or ambiguity in the auditory and visual inputs best promotes audiovisual integration was addressed. In addition, the acoustic and visual characteristics of articulation were examined for speech tokens as produced by “good” and “bad” talkers, to gain a better understanding of the factors that characterize good multimodal speech tokens.
Chapter 2: Method

Participants

Participants in this study included ten listeners and fourteen talkers. Six females and four males, ages 19-42, participated in this research study as listeners. All ten passed a hearing screening and all reported having normal or corrected vision. None of the listeners had taken any courses relating to phonetics or language. Listeners received $80.00 for their involvement in the study. Seven female and seven male talkers, ages 19-25 participated as talkers. All fourteen reported being native English speakers. Talkers were not compensated for their participation.

Interfaces for Stimulus Presentation

Visual Presentation

Presentation of degraded auditory and visual stimuli was similar for all participants. Each participant was tested under three conditions; 1) degraded auditory only, 2) visual only, and 3) degraded auditory + visual. A 50 cm video monitor was positioned approximately 60 cm outside the window of a sound attenuating booth. The monitor was positioned at eye level, about 4 feet away from the participant’s head. Stimuli were presented using recorded DVDs on the video monitor for each condition. For visual only presentations, the monitor’s sound was turned off.

Degraded Auditory Presentation
The degraded auditory stimuli were presented from the headphone output to the video monitor through Telephonics, 300-ohm TDH headphones. Under degraded auditory only presentations, the video monitor was turned off to remove visual cues. When degraded auditory and visual stimuli were presented together, the video monitor was left on.

Stimuli

Stimulus Selection

A limited set of CVC syllables were presented as stimuli for this study. These syllables were chosen to satisfy the following conditions:

1) Pairs of the stimuli were minimal pairs, differing only in the initial consonant.

2) All stimuli were accompanied by the vowel /æ/, because it does not involve lip rounding or lip extension.

3) Multiple stimuli were used in each category of articulation, including; place (bilabial, alveolar), manner (stop, fricative, nasal), and voicing (voiced, voiceless).

4) All stimuli were presented without a carrier phrase.

5) Stimuli were known to elicit McGurk-like responses when appropriately chosen pairs of syllables were presented.

Stimuli

For each condition, the same set of eight stimuli was administered:
1) mat
2) bat
3) gat
4) pat
5) cat
6) zat
7) sat
8) tat

The four following dual-syllable (dubbed) stimuli were also used in the degraded auditory + visual conditions. The first column indicates the auditory stimulus, the second column indicates the visual stimulus:

1) bat-gat
2) gat-bat
3) pat-cat
4) cat-pat

Stimulus Recording and Editing

Each talker was video recorded with a digital video camera. Their voices were recorded through a microphone directly into a computer, using the software program Video Explosion
Deluxe, which allowed files to be stored in .wav format. All fourteen talkers repeated the selected set of eight monosyllabic words five times, resulting in five visual and auditory tokens for each of the eight words. The auditory speech samples were then converted into degraded auditory speech samples using MATLAB. The program takes the speech waveform and a broadband noise and swaps their temporal envelopes. The waveform containing the noise fine structure and the temporal envelope cues of the original speech waveform was preserved, while the other waveform was discarded. Each speech signal was then filtered into four broad spectral bands, providing equal spacing in basilar membrane distance. The upper cutoff frequencies for the four spectral bands were: 504 Hz, 1,794 Hz, 5,716 Hz, and 17,640 Hz. The resulting auditory stimulus was similar to those used by Shannon et al. (1998), as mentioned in the Introduction. Video Explosion Deluxe was also used to dub degraded auditory stimuli onto visual stimuli.

Using the computer software program Sonic MY DVD, stimulus lists were created and burned onto recordable DVDs. Three DVDs were created for each talker, each with a different randomized stimulus order to minimize participant memorization.

Procedure

Testing for this study was conducted in The Ohio State University’s Speech and Hearing Department in Pressey Hall. Each participant was tested individually in a sound attenuating booth, with the door closed. Participants sat comfortably, facing a 50 cm video monitor outside the booth approximately four feet away from the participant’s face.

Each participant watched 42 DVDs (3 DVDs for each of 14 talkers) with 60 randomly ordered stimulus syllables in the following presentation conditions: 1) degraded auditory-only,
2) visual-only, and 3) degraded auditory + visual. The presentation condition was also randomized. For the degraded auditory + visual presentations, the DVDs contained 30 “same” trials and 30 “different” trials. “Same” trials present the same syllable auditorily and visually. “Different” trials present the dual-syllable (dubbed) stimuli where the auditory and visual syllables do not match. The 30 “different” trials were used in the degraded auditory + visual condition to elicit McGurk-like responses.

Participants listened to and/or watched each DVD on the video monitor and/or with TDH headphones. Participants were instructed that the stimulus presented would end in “at” and could begin with any speech sound, including possibilities not found in the English language. The participants were instructed to verbally respond to what they perceived on the video monitor and/or through the headphones, while an examiner listened through an intercom system and recorded their responses. Risk of participant memorization of stimuli was minimized by using a substantial set of different DVDs, each employing a random stimulus order. Testing took approximately seven-eight hours for each participant. Testing was broken up into one-two hour sessions with frequent breaks throughout.
Chapter 3: Results and Discussion

Single-Syllable Stimuli

The first step in analysis was to evaluate performance for single-syllable presentations, in which the two modalities (degraded auditory-only and visual-only) received the same stimulus syllable. This was done by measuring percent correct identification. Responses were considered correct when the subject responded with the syllable that had actually been produced by the talker. Figure 1 shows the overall percent correct by modality for each of the three presentation conditions, averaged across all talkers and all listeners. Figures 2, 3, and 4 show performance averages across subjects for each of the fourteen talkers in visual-only, auditory-only, and degraded auditory + visual, respectively. Integration was assessed by determining the degree to which the auditory + visual performance was better than the auditory-only, as shown in Figure 5.

Figure 1 shows the overall percent correct responses by modality. The data indicate that subjects performed better in the auditory-only condition than in the visual-only condition. Further, subjects showed better performance in the auditory + visual condition than in either of the other conditions. These results indicate that listeners were able to integrate the auditory and visual signals to improve intelligibility in the degraded auditory + visual condition. Also, in Figure 1 it can be seen that the overall percent correct for the visual-only condition is 39%. This level is predictable, because the probability of a listener correctly identifying a bilabial (/bæt/, /pæt/, or /mæt/) is 33%, the probability of correctly identifying an alveolar (/sæt/, /zæt/, or /tæt/)
is 33%, and the probability of correctly identifying a velar (/gæt/ or /cæt/) is 50%, all averaging out to 39%. This indicates that subjects were at least able to discriminate the place of articulation presented, as is consistent with results from Jackson (1988) suggesting that visual speech provides primarily place of articulation information.

Figure 2 shows percent correct in the auditory-only condition, by talker. Substantial differences were seen across talkers in intelligibility under auditory-only conditions, with a range of 38% to 71%. In contrast, Figure 3 shows the percent correct in the visual-only condition, by talker. It can be seen that the variation in visual intelligibility across talkers in this condition was not large, with all subjects performing between 36% and 43% correct. This finding is consistent with previous studies conducted in this laboratory for the same stimulus set. Finally, Figure 4 shows the percent correct in the auditory + visual condition across talkers. Again, performance varied widely, with a range of 48% to 82% correct.

Figure 5 provides a direct comparison of auditory-only and auditory + visual performance for individual talkers. Several aspects of this figure are worth noting. First, the substantial variability in the degree of audiovisual integration can be seen, with a range of 5% to 34%. It can also be observed that the talker who had the greatest auditory intelligibility (Talker 12) was not the talker who produced the highest amount of integration (Talker 4), nor the talker who produced the lowest amount of integration (Talker 2). Together with the finding in Figure 3 that there was virtually no variability among talkers in the visual condition, this suggests that audiovisual integration is not necessarily related to a talker’s performance in auditory-only or visual-only conditions. Finally, when also taking into account the percent correct in the visual-only condition, it can be observed that the degree of audiovisual integration is not the sum of the auditory and visual performance. For example, Talker 8 scored 43% correct in the visual-only
condition and 45% correct in the auditory-only condition. If these numbers are summed, the result is 88%. Performance in the auditory + visual condition in fact is only 65%. This observation suggests that there is an overlap of information (the information in the auditory input is to some degree redundant with the visual input), or that the listeners are not perfect integrators.

Figure 6 shows the degree of benefit between the auditory-only and audiovisual conditions by talker. It can be seen from the graph that the degree of benefit varies widely across talkers, with a range of 4% to 34%. These variations do not necessarily correspond to the talker’s auditory-only performance. For example, Talkers 4 and 7 have essentially the performance level of 39% for auditory-only. However, when looking at the degree of benefit for those talkers, Talker 4 had a 34% degree of benefit and Talker 7 only had a 13% degree of benefit. Talker 14, who also performed around 39% for auditory-only, had a degree of benefit of 27%, somewhere in between that of Talkers 4 and 7. Again, this information shows that performance in the auditory-only condition does not dictate the amount of audiovisual integration.

Dual-Syllable Stimuli

The second step was to assess performance for dual-syllable stimuli, in which each modality was presented with a different syllable. There is no single correct response for these stimuli. Responses were categorized as “auditory” when the subject responded with the auditory stimulus, “visual” when the subjects responded with the visual stimulus, or “other” when the subject gave a response which was neither the auditory stimulus nor the visual stimulus. Integration was then determined by evaluating the responses in the “other” category.
Figure 7 plots this analysis, and shows that the highest number of responses was “other,” then “visual,” followed by “auditory.” It is not surprising that since the auditory input was degraded, subjects relied more on the visual information. The substantial percentage of “other” responses suggests that neither the auditory nor the visual stimulus possessed sufficient salience to dominate response patterns.

Figure 8 shows the percent of visual responses by talker, with a range of 28% to 50%. Figure 9 shows the percent of auditory responses by talker, with a wider range of 4% to 41%. Finally, Figure 10 shows the percent of other responses by talker, with a range of 27% to 62%. When comparing these three graphs, characteristics of individual talkers emerge. For example, Talker 5 elicited a fairly high percentage of visual responses at 44%, a fairly high percentage of auditory responses at 29%, and therefore had a very low percentage of other responses at 27%. In contrast, Talker 7 elicited a low percentage of visual responses at 30%, a low percentage of auditory responses at 5%, and consequently elicited the highest percentage of other responses at 62%. This analysis suggests that there could be many different factors at work here. But it is evident that a relatively unintelligible auditory talker does not automatically produce a higher percentage of visual responses.

Types of Integration Responses

Finally, the percentage of “other” responses was examined in detail to see what type of integration responses subjects exhibited. Responses were divided into three categories: “fusion,” as when an auditory /bæt/ is paired with a visual /gæt/, producing a response of /dæt/, “combination,” as when an auditory /bæt/ and a visual /gæt/ produce a response of /bgæt/, and “neither,” a different response entirely, such as /hæt/ or /bræt/. Figure 11 shows the overall
percent response, reflecting this McGurk type integration, with a range of 0% to 76% across talkers. Figure 12 shows the percent of fusion responses, with a range of 11% to 30% across talkers. Figure 13 shows the percent of neither responses with a range of 50% to 89%.

As can be seen in Figure 11, there was a very minimal percentage of combination responses, a small percentage of fusion responses, and a large number of neither responses. The minimal amount of “combination” responses is not surprising. Although subjects were told that these types of responses were allowed, they are not phoneme sequences that are permissible in the English language, so subjects very rarely presented this type of response. The small number of fusion responses is somewhat surprising. In previous studies in this laboratory with this stimulus set, this number was much higher than the 18% observed in the present study.

One possible consideration in this context is that all subjects reported perceiving the syllable /hæt/ in substantial percentages. /hæt/ cannot be considered a fusion because it is a glottal, meaning it is articulated by the vocal folds. The reason for so many /hæt/ responses is unknown. One possible explanation is that there was a large amount of additional background noise due to the fact that the auditory output was fed through an amplifier prior to delivery to the headphones. This could have been perceived as airflow before the syllable was produced. Another explanation could be the noise present from swapping the speech fine structure with that of broad band noise. It may also be that the acoustic characteristics of the auditory stimulus may have contained something that created the perception of /hæt/. Finally, something in the auditory + visual combination may have made listeners perceive a glottal. Additional investigation is needed to differentiate these possible explanations.

Statistical Analysis
A two factor analysis of variance (ANOVA) within subjects was run to determine if significant main effects of talker, presentation condition, and talker by condition interactions existed. Significant main effects of talker were found, F(13, 117) = 6.66, p < .001, η² = .42. Follow up pairwise comparisons showed a number of significant differences between pairs of talkers. Primarily, Talker 12 was significantly more intelligible than most of the other talkers. Significant main effects of presentation condition were found, F(2, 18) = 39.4, p < .001, η² = .81. Follow up pairwise comparisons indicate that all conditions differed significantly from each other. Significant talker by condition interactions were also found, F(26, 234) = 5.46, p < .001, η² = .38.

Overall Pearson r across talkers showed no relationship between auditory-only and visual-only performance (r = .16, ns), and no relationship between visual-only and auditory + visual (r = .21, ns). Only a moderate relationship was found for auditory-only and auditory + visual (r = .63, ns), p < .05. This moderate relationship would be expected given any amount of integration at all by the subjects. An additional Pearson r between the degree of benefit and the auditory-only performance showed a moderate relationship (r = -.51, ns). The fact that this is not significant indicates that auditory-only performance does not predict integration performance.

To determine whether talker intelligibility in the auditory-only and visual-only conditions were related to intelligibility in the auditory + visual condition across all listeners, the Pearson r correlation coefficient was calculated for individual talkers. Table 1 indicates that three talkers showed significant correlations between presentation conditions. Talker 5 showed a significant relationship between the auditory-only and auditory + visual conditions [r = .91, p < .001] and between the visual-only and auditory + visual conditions [r = .62, p < .054]. Similarly, Talker 11 also showed a significant relationship between the auditory-only and
auditory + visual conditions \(r = .84, p<.002 \) and between the visual-only and auditory + visual conditions \(r = .76, p<.011 \). Finally, Talker 12 showed a significant relationship only between the auditory-only and auditory + visual conditions \(r = .64, p<.048 \). Figure 2 shows that Talkers 12 and 5 were the first and second best auditory-only talkers, respectively. However, Talker 11 was not among one of the best auditory talkers, nor one of the worst. This relatively random pattern of correlations observed for individual talkers supports the conclusion that there is no systematic relationship among auditory-only, visual-only, and auditory + visual performance. It seems clear that the characteristics of a “good” talker for audiovisual integration are more complex than an overall assessment of auditory or visual intelligibility can predict.
Chapter 4: Summary and Conclusion

Overall, results from this study indicate that talker characteristics can be an important component in audiovisual speech integration. There was significant variability in the auditory-only and auditory + visual conditions across talkers. This information suggests that there may be talker characteristics underlying these differences. Additionally, it was found that the amount of audiovisual integration produced by a talker is not necessarily related to a talker’s performance in auditory-only or visual-only conditions. The increase in performance in the auditory + visual condition over the auditory-only and visual-only conditions indicate that listeners were able to integrate the auditory and visual signals to improve intelligibility in the auditory + visual condition.

The present results are just a preliminary look into this issue. Further investigations are required to clarify just how talker differences improve performance. In depth auditory analyses should be conducted to see if the answer lies within the auditory signal. Additionally, the visual characteristics of talkers, such as lip opening, lip rounding, and jaw movement, should be evaluated to determine if the answer lies in the visual cues of a talker.

Results of this study have implications for a better understanding of how multimodal speech is perceived and integrated. With this information, we will be able to further the development of aural rehabilitation programs for individuals with hearing impairments.
Chapter 5: References

List of Tables and Figures

Table 1: Pearson r Values for Individual Talkers

Figure 1: Overall Percent Correct, by Modality

Figure 2: Percent Correct Auditory Only, by Talker

Figure 3: Percent Correct Visual Only, by Talker

Figure 4: Percent Auditory +Visual, by Talker

Figure 5: Percent Correct Auditory Only and Auditory + Visual, by Talker

Figure 6: Degree of Benefit, Auditory-only vs. Auditory + Visual, by Talker

Figure 7: Overall Percent Response Dual-Syllable Stimuli

Figure 8: Percent Visual Responses, by Talker

Figure 9: Percent Auditory Responses, by Talker

Figure 10: Percent Other Responses, by Talker

Figure 11: Overall McGurk Type Integration

Figure 12: Fusion Responses, by Talker

Figure 13: Percent Neither Responses, by Talker
Pearson r Values for Individual Talkers

Table 1

<table>
<thead>
<tr>
<th>Talker</th>
<th>A/AV</th>
<th>V/AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.50</td>
<td>.17</td>
</tr>
<tr>
<td>2</td>
<td>-.05</td>
<td>.07</td>
</tr>
<tr>
<td>3</td>
<td>.35</td>
<td>.12</td>
</tr>
<tr>
<td>4</td>
<td>.43</td>
<td>.06</td>
</tr>
<tr>
<td>5</td>
<td>.91*</td>
<td>.62*</td>
</tr>
<tr>
<td>6</td>
<td>.56</td>
<td>.57</td>
</tr>
<tr>
<td>7</td>
<td>.47</td>
<td>-.12</td>
</tr>
<tr>
<td>8</td>
<td>.53</td>
<td>.06</td>
</tr>
<tr>
<td>9</td>
<td>.56</td>
<td>.01</td>
</tr>
<tr>
<td>10</td>
<td>.28</td>
<td>-.07</td>
</tr>
<tr>
<td>11</td>
<td>.84*</td>
<td>.76*</td>
</tr>
<tr>
<td>12</td>
<td>.64*</td>
<td>.01</td>
</tr>
<tr>
<td>13</td>
<td>.61</td>
<td>.28</td>
</tr>
<tr>
<td>14</td>
<td>.47</td>
<td>.26</td>
</tr>
</tbody>
</table>

* p<.05
Figure 1
Overall Percent Correct by Modality
Figure 2
Percent Correct Auditory Only by Talker
Figure 3
Percent Correct Visual Only by Talker
Figure 4
Percent Correct Audio+Visual by Talker
Figure 8
Percent Visual Responses, by Talker
Figure 10
Percent Other Responses by Talker
Figure 12
Percent Fusion Responses by Talker

Talker

Percent Response

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60 T61 T62 T63 T64 T65 T66 T67 T68 T69 T70 T71 T72 T73 T74 T75 T76 T77 T78 T79 T80 T81 T82 T83 T84 T85 T86 T87 T88 T89 T90 T91 T92 T93 T94 T95 T96 T97 T98 T99 T100