The Role of Emotional Clarity in Impressions of the Self and Others

A Senior Honors Thesis

Presented in Partial Fulfillment of the Requirements for Graduation with Distinction in Psychology in the Undergraduate Colleges of The Ohio State University

By

Samantha Mowrer

The Ohio State University

March, 2007

Advisor: Dr. Robert Arkin, Department of Psychology
Abstract

Emotional Clarity refers to the ability to understand, label, and identify one’s specific emotions and may be crucial not only in the regulation and expression of emotions, but also in emotion-related judgments (Salovey, Mayer, Goldman, Turvey, & Palfai, 1995). Low Emotional Clarity is associated with depression, rumination, and negative affect. Individuals low in Emotional Clarity may also avoid their emotions and distrust using them to inform their judgments (Gohm, 2003). Two studies were designed to explore whether individuals low in Emotional Clarity also appear to avoid emotions outside of directly experiencing them or whether they are instead more attuned to certain aspects of emotion. It was hypothesized that individuals low in Emotional Clarity would be more attuned to the emotion-relevant aspects of others and less attuned to emotion-relevant aspects of the self due to uncertainty in this domain. Furthermore, low Clarity was also expected to be associated with a greater accessibility of negatively valenced emotional information. Results showed that low Emotional Clarity was not associated with differential accessibility of emotion-relevant information regarding the self versus others. Instead individuals low in Emotional Clarity showed high accessibility of a subset of negative emotions and also more often considered negative emotions descriptive of people in general (the self and others). These results begin to provide a more specific framework for the role of Emotional Clarity in judgments and suggest that raising one’s Emotional Clarity may buffer against negative emotions.
The Role of Emotional Clarity in Impressions of the Self and Others

Emotional Intelligence (EI), which refers to a set of skills regarding the identification, processing, and regulation of emotions and the use of emotional information, has received much attention in emotion, clinical, and intelligence literature. In their model of EI, Mayer, Salovey, and Caruso (2004a) define Emotional Intelligence as:

…the capacity to reason about emotions, and of emotions to enhance thinking. It includes the abilities to accurately perceive emotions, to access and generate emotions so as to assist thought, to understand emotions […] and to reflectively regulate emotions so as to promote emotional and intellectual growth. (p. 197)

A high level of EI is thus considered adaptive, as such abilities can motivate individuals’ planning and social behavior and facilitate the achievement of goals (Salovey, Mayer, Goldman, Turvey, & Palfai, 1995). Indeed, EI is positively associated with the use of adaptive coping styles in response to stressors, which includes positive reinterpretation of negative situations, active and planful coping, and seeking instrumental and emotional social support, as well as more frequent reports of positive affect, happiness, life satisfaction, self-esteem, and the report of fewer physical symptoms (Gohm & Clore, 2002a, 2002b; Salovey et al., 1995; Salovey et al., 2002). Furthermore, EI is negatively related to general and social anxiety (Salovey et al., 2002).

In the design of the Trait Meta-Mood Scale (TMMS), a measure of perceived Emotional Intelligence, Salovey et al. (1995) assert that EI consists of three components: Emotional Attention, Emotional Clarity, and Emotional Repair. Emotional Attention refers to one’s tendency to monitor and observe emotions as well as the extent to which one values paying attention to them. Emotional Clarity is defined as the ability to understand, label, and identify emotions. And beliefs that one can recover from a negative mood or prolong a positive mood
comprise Emotional Repair. Because these three components all contribute to overall EI, they should be related. It stands to reason that one must pay attention to emotions in order to understand them, and one must be able to identify emotions in order to regulate or repair them. However, the empirical evidence is a little less clear about the extent to which certain subscales of the TMMS are related. Gohm and Clore (2000) found that Emotional Attention and Emotional Clarity were positively related, whereas Salovey et al. (1995) and Salovey, Stroud, Woolery, and Epel (2002) reported no relationship between the two. Others have found a positive relationship between Emotional Attention and Emotional Repair as well as Emotional Clarity and Emotional Repair (Emmons & Colby, 1994; Gohm and Clore, 2000; Lischetzke & Eid, 2003; Salovey et al., 1995; Salovey et al., 2002). Components of EI can also interact. Goldman, Kraemer, and Salovey (1996) found that high Emotional Attention was associated with greater report of physical symptoms. However, those who were also high in Emotional Repair reported fewer instances of illness.

Examination of the individual scales of the TMMS also shows a number of interesting relationships. Emotional Attention is associated with a belief in the usefulness of expressing emotions (Emmons & Colby, 1994), private and public self-consciousness (Salovey et al., 1995), intensity of emotion (Emmons & Colby, 1994; Gohm & Clore, 2000), and may also play a role in depression such that depressed individuals may allocate too much attention to their emotions (Salovey et al., 1995). Similarly, Monitoring of one’s emotion, as measured by the Mood Awareness Scale (Swinkels & Guiliano, 1995), is related to private self-consciousness, empathy, neuroticism, non-verbal expressiveness, intensity, rumination, and the tendency to experience negative affect.

Emotional Clarity, which is of particular interest in this study, is associated with greater
experience of positive affect (Emmons & Colby, 1994), positive well-being and affective well-being (Gohm & Clore, 2002b; Lischetzke & Eid, 2003; Salovey et al., 1995), faster rebound from an induced negative mood (Salovey et al., 1995), adaptive coping styles as well as self-affirming attributions (i.e. stable, global, and internal) for the occurrence of positive events (Gohm & Clore, 2002a, 2002b). On the other hand, Emotional Clarity is negatively related to ambivalence over emotional expression, depression, neuroticism and mood lability, social anxiety, rumination, negative affect, vulnerability to distress, and levels of Weinberger Adjustment Inventory distress (Weinberger & Schwartz, 1990) which consists of anxiety, depression, low self-esteem, and low well-being (Lischetzke & Eid, 2002; Salovey et al., 1995; Salovey et al., 2002). Physiologically, Emotional Clarity also shows a negative relationship to cortisol levels both at baseline measures and during stress as well as Systolic Blood Pressure reactivity (Salovey et al., 2002). In a study of firefighters, Gohm, Sniezek, Baumann, and Dalal (2000, as cited in Gohm & Clore, 2002a) found that those who were high in Emotional Clarity were better able to think clearly in an intense training situation and were thus better able to manage and cope with the stressful and dangerous task. Those high in Emotional Clarity were also less distressed and more accurate at estimating their heart rate, which suggests that individuals high in Emotional Clarity may also be skilled at understanding bodily feedback when experiencing emotions.

With regard to other measures that tap into the construct of Emotional Clarity, Curhan & Mueller (2001) found that understanding emotions was associated with higher outcome satisfaction in an interpersonal negotiation as well as greater liking of one’s partner in the interaction. Difficulty in Identifying Emotion and Difficulty in Describing Emotion, which are measured by the Toronto Alexithymia Scale (Bagby, Parker, & Taylor, 1994) were positively
associated with neuroticism and negatively related to psychological mindedness, need for cognition, openness, and extraversion such that individuals who find it difficult to identify and describe their emotions tend to be low in need for cognition, extraversion, openness, etc.

Labeling Emotion from the Mood Awareness Scale (Swinkels & Guiliano, 1995) positively predicted extraversion, non-verbal expressiveness, private self-consciousness, and positive affect measured by the Positive and Negative Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988). Labeling Emotion also showed a negative relationship with social anxiety and neuroticism.

Finally, Emotional Repair is positively related to optimism, levels of self-esteem, interpersonal satisfaction, beliefs that one can regulate negative moods, the perception of stressors as less threatening, and the use of active coping. It shows a negative relation to depression, reports of physical symptoms, social anxiety, and rumination (Salovey et al., 1995; Salovey et al., 2002).

When taken together, the facets of Emotional Intelligence appear to play a role in a wide range of life’s activities such as emotional experience, appraisals and attributions, physical and mental health, and even interpersonal relationships. Individually, however, Emotional Clarity seems to be implicated in the greatest number of these, being the conceptual bridge linking all aspects of Emotional Intelligence. Furthermore, when framed as uncertainty in the emotional domain, Emotional Clarity becomes particularly interesting. Gohm (2003) asserts that the confusion and uncertainty motivate individuals low in Emotional Clarity to avoid their emotions. Low Emotional Clarity coupled with high Emotional Intensity, or what Gohm (2003) calls “Overwhelmed,” may further intensify this effect. Following a mood induction in which participants read a positive news story and then wrote about a happy experience, or read a
negative news story and wrote about a sad experience, those who were low in Emotional Clarity actually reversed the induced mood by the end of the experiment. Those who were received negative mood inductions reported feeling positive at the end of the study, while those who were induced to feel positive actually reported feeling negative by the end of the study. Individuals low in Emotional Clarity also made counterintuitive risk estimates. In general, when induced with a positive mood, people tend to make lower estimates of the likelihood of threatening events and risk. When induced with a negative mood, people make much higher estimates of these. In Gohm’s (2003) study “Overwhelmed” individuals did the opposite—they made lower risk estimates following the negative mood induction and higher risk estimates following the positive mood induction. However, when the mood reversal effect is taken into consideration, the risk estimates of these individuals are actually congruent with their mood. In follow-up studies Overwhelmed individuals also believed that they were more influenced by their moods and later only reversed their induced moods when told that the tasks they were completing were for separate experiments versus the same experiment. Gohm (2003) concluded that individuals with low Emotional Clarity, especially those who experience emotions intensely, distrust their emotions and try to avoid them. When given a situation that provides a way to do so (e.g. the separate experiments condition), they will attenuate or completely reverse their moods. For these individuals emotions are a bias, and the pitfalls of their inability to effectively understand emotional information may be avoided when emotions are instead ignored (Gohm & Clore, 2002a; Gohm, 2003).

What is interesting with regard to this series of studies is that individuals low in Emotional Clarity are actually very quick to regulate their emotions. However, avoidance, which could be construed as a defensive reaction, may not be the best form of regulation. But is low
Emotional Clarity always characterized by the avoidance of emotions? Gohm’s (2003) separate experiments condition is rather subtle and only deals with the experience of emotion and its influence on subsequent judgments. How might Emotional Clarity more generally play a role attuning individuals to certain aspects of emotion outside of direct emotional experience? Might individuals low in Emotional Clarity use emotions differently in such a context? Connecting Emotional Clarity to self-schemas and self-doubt and framing this construct in a new way would allow for more specific predictions to be made.

It is already well established that emotions can influence cognition and behavior. The Affect as Information Hypothesis (Clore, Schwarz, & Conway, 1994; Schwarz & Clore, 1983, 1988) explains how momentary affective states may be used as a source of information in judgments, processing, and memories as well as serving a number of other purposes such as directing attention, communicating information to the self and others, and facilitating social interactions (Buck, 1984; Ekman, 1973; Izard, 1993; Mandler, 1984; Scherer, 1993; Scherer, Banse, & Wallbot, 2001). Emotion in general as well as specific emotions can influence judgments about past and current events, estimates of risk, liking, life satisfaction, attitudes towards ingroups and outgroups, and the use of stereotypes and heuristics (Bodenhausen, 1993; Bodenhausen, Sheppard, & Kramer, 1994; Forgas & Bower, 1987; Gasper & Clore, 2000; Johnson, & Tversky, 1983; Lerner & Keltner, 2000, 2001; Skitka, Bauman, & Mullen, 2004; Schwarz & Clore, 1983; Tangney, Niedenthal, Covert, & Barlow, 1998).

In addition to emotions, self-schemas may also serve to direct attention to certain aspects of the environment and provide information in a number of judgments and situations. The self-concept, which contains organized, domain-specific information about the self, is made up of self-schemas. The self-concept serves to continually organize and interpret environmental
information, provides expertise in various social domains, and uses the self as a frame of reference, which creates interdependence between knowledge about the self and others (Markus, 1977; Markus, Smith, & Moreland, 1985). Self-schemas exist in particular domains such as introversion/extraversion, masculinity/femininity, and dependence/independence. They organize information and direct attention so that individuals for whom a given domain is important to the self, or schematics, can readily process information in the given domain, retrieve behavioral evidence of conformity to a domain-specific trait, predict future behavior in the domain, and resist counter-schematic information. In general schematics can, “make judgments about themselves in this domain quickly, confidently, and consistently” (Markus et al., 1985, p. 1495).

Markus et al. (1985) consider schematics to be “experts” in self-relevant domains. For example, masculine schematics were more flexible in a unitizing task such that they could organize schema-relevant information into larger or smaller chunks than aschematics depending on the instructions given. Markus (1977) has also found that schematics in dependence and independence more often considered schema-relevant words descriptive of themselves and showed faster response times when making these judgments, establishing that when individuals are schematic, they are attuned to information important to the self-concept within a given domain. When making judgments about others, Fong and Markus (1982) found that schematics in introversion or extraversion were more likely to seek out schema-relevant information about others, presumably as a form of social comparison, and they were also more confident in rating others’ introversion and extraversion.

Govorun, Sauser, Fazio, and Arkin (in revision) applied the concept of schematicity to self-doubt to examine the ways in which high self-doubt, defined as uncertainty regarding one’s intellectual competence, intellectual abilities, and potential for success (Arkin & Oleson, 1998;
Oleson, Poehlmann, Yost, Lynch, & Arkin, 2000), may attune individuals to schema-relevant information. However, unlike Markus’ (1977) original definition of schematicity, Govorun et al. (2004) suggest that individuals can be schematic in a domain in which they possess uncertainty. Thus, competence may be chronically accessible to self-doubters, although they are uncertain regarding this aspect of the self. Govorun et al. (2004) indeed found that competence was highly salient to self-doubters, and they relied heavily upon competence-related information when forming impressions of others. Individuals high in self-doubt were more likely to list competence-related terms first when asked to generate a list of traits descriptive of others but not the self. Output Primacy (Fazio, Williams, & Powell, 2000), the spontaneous mention of a concept in the first position of a list, confirms the chronic accessibility of competence-related information for self-doubters. These results were further demonstrated in a reaction time task in which participants saw competence-related or control words paired with the self or an other and indicated whether or not the word presented was descriptive of the target it was paired with. Individuals high in self-doubt showed faster reaction times to competence-related words paired with the other, but slower reaction times to competence-related words paired with the self. There were no differences in reaction times to competence-related words paired with the self or others for individuals low in self-doubt, nor did high and low self-doubters differ in their reaction times to control words. Finally, during a task in which participants read about fictional college students from Harvard (upward social comparison) or a community college (downward social comparison), self-doubters easily and more readily extracted competence-relevant information from these descriptions. They also reported feeling worse about themselves in the upward comparison condition. From this series of studies, Govorun et al. (2004) concluded that individuals can be both uncertain and schematic in a domain.
Given that self-doubt is, like low Emotional Clarity, is related to concepts such as low self-esteem, distress, mood lability, and rumination (Mirels, Greblo, & Dean, 2002; Oleson et al., 2000; Sheppartd & Arkin, 1991), these two constructs may parallel each other such that they attune individuals to the aspects of others in which they are uncertain of themselves. Though they exist in different domains, low Emotional clarity and high self-doubt may follow a similar process. Furthermore, because low Emotional Clarity has been shown to be associated with various negative constructs and outcomes such as depression, low self-esteem, negative well-being, negative affect, poor coping, social anxiety, and vulnerability to distress, differences in the accessibility and attributions of positively and negatively valenced emotions could also be important.

Overview

The following studies sought to examine whether low Emotional Clarity was associated with the avoidance of emotion even when an emotion was not induced or whether this construct would operate in a similar manner to self-doubt in attuning individuals to certain aspects of emotion, namely attention to others over the self. Specifically, it was expected that level of Emotional Clarity would be positively related to reaction time in milliseconds to emotion-related words paired with others and inversely relate to reaction time to emotion-related words paired with the self, such that individuals low in Emotional Clarity will show faster reaction times to emotional words paired with others but slower reaction times to emotional words paired with the self (relative to high Emotional Clarity). There should be no differences in response times between participants high and low in Emotional Clarity to control words with any target.

Additionally, negative emotions may be more accessible than positive emotions to all individuals due to the negative biases that humans generally possess, such that negative
information is more often attended to and is weighed more heavily in judgments (Ito, Larsen, Smith, & Cacioppo, 1998; Ohman, Flykt, & Esteves, 2001; Pratto & John, 1991). However, negative emotional information may be the most accessible to individuals low in Emotional Clarity. Since Emotional Clarity is related experience of positive affect, positive well-being and affective well-being, and faster rebound from an induced negative mood, individuals low in Emotional Clarity may show a stronger negativity bias. Thus, compared with high Emotional Clarity, low Emotional Clarity is expected to be associated with faster reaction times to negative emotional words for all targets.

Further, upon examination of participants’ attributions of emotion-related words (i.e. yes or no answers), level of Emotional Clarity should be positively related to the number of yes answers to the self paired with positive emotions and inversely related to the number of yes responses when the self is paired with negative emotions, such that individuals low in Emotional Clarity more often consider negative emotions descriptive of the self and less often consider positive emotions descriptive of the self compared to those high in Emotional Clarity. With regard to yes answers when negative emotions are paired with others, level of Emotional Clarity may show a positive relationship or no differences, while it may be inversely related or show no differences to the number of yes answers when others are paired with positive emotions. Significant relationships in the predicted directions would indicate that low Clarity individuals more often consider positive emotions descriptive of others and less often consider negative emotions descriptive of others than those high in Emotional Clarity. Non-significant relationships would indicate that individuals both high and low in Emotional Clarity equivalently consider others as positive or negative.

Finally, when asked to generate descriptions of the self and others, Low Emotional
Clarity is expected to be associated with a greater number of emotion-relevant words listed for others and fewer emotion-relevant words to describe the self in comparison to high Clarity. Furthermore, low Emotional Clarity may also be associated with a greater number of negative emotion-related descriptions of the self and equivalent or greater use of positive emotion-related descriptions with regard to others.

If Emotional Clarity works in this way, it would suggest that individuals low in Emotional Clarity do not completely avoid emotions. Although they may try to avoid directly experiencing certain emotions, as in Gohm’s (2003) study they avoided both positive and negative induced mood states by reversing their mood, such results would suggest that both high and low Clarity individuals can make judgments about emotions. In addition, negative biases may be more pronounced in individuals low in Emotional Clarity, as they may view themselves negatively but see others as positive in comparison. Two studies tested these hypotheses, adapting various tasks from the paradigm used by Govorun et al. (2004) to be applicable to Emotional Clarity.

Study 1

Method

Participants

One hundred sixty-seven undergraduates from introductory psychology courses participated in exchange for partial fulfillment of course credit. However, data from eleven students was excluded due to fire alarms going off during the experiment, leaving a total of one hundred fifty-six participants.

Materials

Trait Meta-Mood Scale. Participants completed all three subscales of the Trait Meta-
Mood Scale (TMMS, Salovey et al., 1995). Items assessing Emotional Attention included statements such as, “I pay a lot of attention to how I feel” and, “I don’t think it’s worth paying attention to your emotions or moods” (reverse scored). Items such as “I usually know my feelings about a matter” and, “I am rarely confused about how I feel” made up the Emotional Clarity subscale, while statements including “I try to think good thoughts no matter how badly I feel” and, “Although I am sometimes happy, I have a mostly pessimistic outlook” (reverse scored) measured Emotional Repair.

Mood Awareness Scale. Five items from the Labeling Emotions subscale of the Mood Awareness Scale (MAS, Swinkels & Giuliano, 1995) were also included. These included items such as, “Right now I know what kind of mood I’m in” and, “I have trouble explaining my feelings” (reverse scored).

Toronto Alexithymia Scale. Participants also completed the Difficulty Identifying Emotions and Difficulty Describing Emotions subscales of the Toronto Alexithymia Scale (TAS, Bagby, Parker, & Taylor, 1994). Examples of items from these scales include, “When I am upset, I don’t know if I am sad, frightened, or angry,” (Identifying), and “It is difficult for me to find the right words for my feelings” (Describing). Items on these scales were reverse scored so that they would correspond with the other scales, that is high scores indicate high emotional functioning. These scales will subsequently be referred to as Identifying Emotions and Describing Emotions to reflect the reverse scoring.

Procedure

Participants were told that they were completing an experiment on impression formation, which began with a computer-based reaction time task adapted from Govorun et al. (2004). Participants were presented with three different targets: the self and two others. For an intimate
other, participants were asked to think of a friend or roommate they had met since arriving at college, and for a non-intimate other, they were asked to imagine The Ohio State University football coach, Jim Tressel. Over 4 blocks of trials, the first described as practice, each target was randomly paired with emotion-related words, which included both positive (e.g. happy, calm, excited) and negative emotions. The negative emotions were further broken down to encompass negative-agitated (e.g. angry, furious) and negative-depressed (e.g. sad, gloomy) emotions. Control words included independent, creative, active, egoist, disorganized, rude (see Table 1 for a complete listing of the words used in this task). Over the four blocks of trials each word was paired with each target once. Participants indicated whether or not each word was descriptive of the target it was paired with by pressing buttons designated “yes” or “no.” For example, participants saw stimuli such as “Me: Angry” or “Jim Tressel: Calm” during this portion of the task. Response times were recorded for these judgments.

Following the reaction time task, participants completed a battery of questionnaires: the Trait Meta-Mood Scale, the Labeling Emotions subscale of the Mood Awareness Scale, the Difficulty Identifying Emotions and Difficulty Describing Emotions subscales of the Toronto Alexithymia Scale, and a number of demographic questions. Upon completion of the study, participants were probed for suspicion and thoroughly debriefed.

Results

Relationships Among Scales

In the interest of replicating past results, interrelations among the scales of the TMMS were explored using bivariate correlations. All three subscales, Emotional Attention, Clarity, and Repair were significantly correlated at the 0.01 level. Emotional Attention was associated with Emotional Clarity, \(r = .321, p < .01 \), and Emotional Repair, \(r = .224, p < .01 \), and Emotional
Clarity was associated with Emotional Repair, $r = .261, p < .01$. Furthermore, because other measures to assess Emotional Clarity were included, relationships between these scales were also determined. The Emotional Clarity subscale of the TMMS, Identifying Emotions and Describing Emotions from the TAS, and the Labeling Emotions subscale of the MAS were all highly correlated, with r-values ranging from 0.626 to 0.737 and all correlations significant at the 0.01 level. Emotional Clarity was positively related to Identifying Emotions, $r = .684, p < .01$ and Describing Emotions, $r = .660, p < .01$, from the TAS, as well as the Labeling Emotions Subscale of the MAS, $r = .650, p < .01$. Identifying Emotions was also positively correlated with Describing Emotions, $r = .635, p < .01$, and Labeling Emotions, $r = .624, p < .01$. Finally, Describing Emotions and Labeling Emotions were also related, $r = .737, p < .01$. See Table 2 for means and standard deviations of the subscales and Table 3 for a complete display of relationships among the scales.

Reaction Times

Response latencies less than 300 ms and greater than 3000 ms were recoded as 300 or 3000 ms, respectively, in order to correct for outliers.

Initially, multiple linear regression analyses were intended to predict reaction times from levels of Emotional Clarity. However, because the scales measuring Clarity were so highly related, it was more practical to combine Emotional Clarity from the TMMS, Identifying and Describing Emotions from the TAS, and Labeling Emotions from the MAS into a single index of overall Clarity. Total scores from each of these scales were normalized and summed to create a measure of overall Clarity. All further results are based on this combined measure, which will be referred to simply as Clarity. Thus, Clarity was used as a predictor of reaction times in single linear regression analyses.
As expected there were no significant differences between high and low Clarity participants in their reaction times to control words for any target, $\beta = .087, t = 1.078, p = .283$. However, there were also no significant differences in reaction times to emotion-related words in general for the self, $\beta = .09, t = 1.12, p = .287$, and for others, $\beta = .086, t = 1.547, p = .287$. Low Clarity did not appear to be associated with heightened accessibility of others’ emotions and diminished accessibility of one’s own emotions. Instead participants low in Clarity appeared to display a higher accessibility of negatively valenced emotion-related information across all targets, $\beta = .143, t = 1.795, p = .075$. However, as the negatively valenced emotion-related words were further broken down into categories of negative-agitated and negative-depressed based on their definitions, participants low in Clarity were especially quick to react to negative-agitated emotional words collapsed across all targets, $\beta = .186, t = 2.344, p = .02$.

Next, attributions of positive and negative emotion-relevant words (i.e. yes and no answers to the items) were examined. In general, individuals low in Clarity tended to make greater attributions of negative emotions (i.e. selected “yes” more often for negative emotions), $\beta = -.290, t = -3.767, p < .01$, and fewer attributions of positive emotions (i.e. selected “yes” less often for positive emotions), $\beta = .278, t = 3.592, p < .01$, to all targets relative to those high in Clarity. When negative emotions were further broken down into negative-agitated and negative depressed, these patterns remained. Regressions were also calculated for each target, the self, the friend, and Jim Tressel, for positive emotions, negative emotions in general, negative-agitated emotions, and negative-depressed emotions. A general pattern emerged with low Clarity associated with a greater number of yes answers to negative emotion-related words and fewer yes answers to positive emotion-related words for each target. This was evident for the self, as all results were significant at the $p < .01$ level with β’s = -.331,-.313,-.246, and 279 and t’s =
When the friend was considered separately, the only relationship that did not reach or at least approach significance was the number of yes answers to negative-depressed words describing the friend, $\beta = -0.095$, $t = -1.188$, $p = 0.237$. This is consistent with the prediction that low Clarity individuals, often describing themselves as negative, may view their friends positively in comparison. Also, there were no differences between high and low Clarity individuals in their attributions of negative-agitated words when paired with Jim Tressel, $\beta = -0.158$, $t = -1.396$, $p = 0.165$.

Discussion

First and foremost, this study revealed significant relationships between all subscales of the TMMS as well as other subscales, which included Describing Emotions and Identifying Emotions from the TAS and Labeling Emotions from the MAS that also tapped into a clarity-like construct. Furthermore, TMMS Emotional Clarity, TAS Describing and Identifying Emotions, and MAS Labeling Emotions were also very highly and significantly correlated. This allowed for a combination of measures to create an overall index of Clarity, thus utilizing these scales in a way not attempted previously.

During the reaction time task individuals high and low in Clarity did not show differences in reaction times to control words. However, they also did not differ in how fast they responded to emotion-related words in general. Instead low Clarity only seemed to be associated with heightened accessibility of negative-agitated emotions, as low Clarity individuals tended to respond more quickly to these words paired with any target in comparison to those high in Clarity. Consequently, the self-doubt parallel hypothesis was rejected, as low Clarity did not appear to attune individuals to the emotions of others over the self but rather only to a subset of negative emotions. It is uncertain whether this occurred because individuals low in Clarity more
often experience this type of negative emotion or because it is simply easier to identify, as being angry or furious is not very subtle; but these are possibilities.

More interestingly, when attributions of positive and negative emotions were considered, low Clarity individuals consistently made greater attributions of negative emotions to themselves, and in most cases to others, than those high in Clarity. However, they made fewer attributions of positive emotions to all targets, relative to participants high in Clarity. It seems that individuals low in Clarity are very biased towards negative emotions. Low Clarity individuals’ thoughts and description of themselves and others seem to be characterized by an overuse of negative emotions and almost an unwillingness to consider people in positive terms. The only case in which low Clarity individuals did not make greater attributions of negative emotional words was for the friend target paired with negative-depressed words. This may occur because of social comparison. If low Clarity individuals view themselves and their emotional experiences negatively, they may view a good friend as being more positive in comparison. Overall, the results of this study suggest that individuals low in Clarity are biased towards a negative attributional style.

Study 2

Method

Participants

Seventy-four undergraduates from introductory psychology courses participated in exchange for partial fulfillment of course credit. As both studies were run during the same time period, individuals who participated in Study 1 were not eligible for Study 2 and vice versa.

Materials

Participants completed the same questionnaires as in Study 1, the Trait Meta-Mood Scale,
the Labeling Emotions subscale of the Mood Awareness Scale, and the Difficulty Identifying and Difficulty Describing Emotions subscales of the Toronto Alexithymia Scale as well as answering questions regarding demographic information. However, these were completed on paper during a pre-screening procedure, which took place during class.

Procedure

Students who completed the pre-screening questionnaire packets were subsequently recruited to participate in the study. The experiment was again described as a study on impression formation, which consisted of three separate tasks. Following Govorun et al. (2004), participants completed a computerized thought-listing task in which they were asked to generate 10 words descriptive of various groups of other individuals: people they like, people they dislike, people they seek out, people they avoid, people they meet most often, and people they like to study with. Next, participants were presented with a filler task lasting five minutes that was described as a test of processing visual information, which simply involved finding differences between two pictures. Finally, participants were asked to provide ten words they considered self-descriptive. All responses were coded by two independent raters, blind to participants’ levels of Clarity, who resolved disagreements through discussion. Coders identified emotion-relevant and non-relevant responses, and emotion-relevant responses were further coded as positive or negative.

Results

Relationships Among Scales

This study also revealed significant positive relationships between all of the Emotional Clarity subscales using bivariate correlations. Emotional Clarity was positively related to Identifying Emotions, $r = .757, p < .01$ and Describing Emotions, $r = .484, p < .01$, from the
TAS, as well as the Labeling Emotions Subscale of the MAS, $r = .618, p < .01$. Identifying Emotions was also positively correlated with Describing Emotions, $r = .541, p < .01$, and Labeling Emotions, $r = .677, p < .01$. Finally, Describing Emotions and Labeling Emotions were also related, $r = .771, p < .01$. Study 2, however, failed to replicate the significant relationships found between the other TMMS Subscales of Emotional Attention and Emotional Repair. Emotional Attention was only significantly related to Labeling Emotions, $r = .238, p < .05$, while Emotional repair was only significantly correlated with Emotional Clarity, $r = .365, p < .01$, and Labeling Emotions, $r = .245, p < .05$. See Table 4 for means and standard deviations and Table 5 for a complete report of correlations.

Thought-Listing Task

This portion of the study revealed no significant differences between high and low Clarity individuals in the number of emotion-related words listed collapsed across groups, for any separate groups of others, or the self in the first position of the list or the total number of emotion-related words listed using single linear regressions. There were also no differences in the number of positive or negative emotion-related words listed by high or low Clarity individuals, with all p’s > .116. No further analyses were conducted.

Discussion

Study 2 replicated the high correlations between subscales of Clarity; however, relationships between all TMMS subscales and the others measures failed to re-emerge. It is safe to conclude that the Emotional Clarity subscale of the TMMS, Identifying and Describing Emotions on the TAS, and the Labeling Emotions subscale of the MAS in general measure the same construct. However, as previous studies have also shown inconsistencies in the relationships between the subscales of the TMMS, this study did the same. In addition to
previous findings, it appears that the subscales are not so highly related that they are measuring the same construct, but not so unrelated that they do not hang together.

No significant results emerged from the thought-listing task in this study. Perhaps if participants were explicitly instructed to describe the emotions of each group, convergent evidence to what was observed in Study 1 would emerge. However, because differences in the usage of emotional and non-emotional words were expected due to the self-doubt hypothesis, participants were only instructed to list general words they considered descriptive of each group. This did not result in many emotion-related descriptions in the entire study, and thus not much to work with. Across all descriptions the mean number of emotion-related words listed was low, $M = 3.60, SD = 3.58$, out of a total of 70 descriptions listed. The maximum number of emotion-related words listed by any participant was 14. Unfortunately, both studies were conducted at the same time, so the results of Study 1, which only showed differences when the valence of emotions were taken into account, could not be incorporated into the design of this study.

General Discussion

Overall, low Clarity was not related to heightened accessibility of emotion-relevant aspects of others and diminished accessibility of emotion relevant-aspects of the self, which would have paralleled the results of Govorun et al. (2004) with regard to self-doubt schematicity. Instead low Clarity appeared to be characterized by greater accessibility of negative-agitated emotions, which were characterized by descriptions such as angry, short-tempered, and furious. Rather than being schematic with regard to emotions, the domain in which low Clarity individuals are uncertain, they may instead show schematicity for negative emotions. Not only was a subset of negative emotions highly accessible to participants low in Clarity, but also low Clarity individuals more often considered negative emotion-related words descriptive of the self.
and others in almost all cases than did high Clarity individuals. They also were less disposed
towards considering positive emotions descriptive of any target. High accessibility and use of
negative (schema-relevant) information certainly fits a definition of schematicity (Markus et al.,
1985).

Perhaps a more valuable parallel would be the comparison of low Clarity and depression
or pessimism. Depressed individuals show negative cognitive biases in their appraisals of people
and their environment (Beck, Rush, & Shaw, 1979), are hypersensitive to negative stimuli
(Bouhuys, Geerts, & Gordijn, 1999; Hale, 1998), and make lower estimations of positive stimuli
(Hale, 1998; Solan, Strauss, & Quirk, 1997). From the results of Study 1, it appears that low
Clarity individuals also show strong negative biases when making judgments of people
(environment was not explored). Determining how Clarity may play a role in depression as well
as why it seems to attune individuals to negative aspects of emotion could be relevant in clinical
psychology. Because they are uncertain about emotions, low Clarity individuals may become
frustrated when dealing with an emotional situation. The inability to use emotional information
effectively and/or the overestimation of negativity could cause undesirable outcomes for low
Clarity individuals both internally and externally within the social world, such as poor coping
strategies and inappropriate social behavior. In turn, as Gohm (2003) suggests, low Clarity
individuals come to distrust their emotions or even avoid experiencing them. This could further
promote the overuse of negative information as a defensive strategy.

The results of Study 1 also show that low Clarity individuals do not always avoid
emotions. In fact, they can quickly make certain emotion-relevant judgments and seem to be very
certain that they are negative. This suggests that low Clarity is not characterized by complete
ignorance in the emotional domain. Ambivalence may also play a role in causing confusion and
uncertainty about emotions. Further studies would be necessary to examine the extent to which ignorance and ambivalence over emotion or both characterize low Clarity. Interestingly, some individuals may perceive themselves as low in Emotional Clarity and in general Emotional Intelligence but at the same time score high on performance measures of EI. Gohm and Clore (2002) reported on unpublished data from Gohm (2000) that indicated individuals who believed they had high EI, as measured by the TMMS, generally performed well on a performance measure of EI, the Mayer-Salovey-Caruso Emotional Intelligence Test or MSCEIT (Mayer, Salovey, & Caruso, 2003). However, among individuals who thought they had low EI (TMMS), there was a lot more variance in their actual ability (MSCEIT). Furthermore, Gohm (2005) reported that individuals with low TMMS EI but moderate to high MSCEIT EI may not make use of it. In this case perceptions overshadow actual abilities despite the benefits they could provide. This may be the case for many low Clarity individuals.

After these studies were conducted, another series of experiments used reaction times as an indirect measure of momentary affective clarity (Lischetzke, Cuccodoro, Gauger, Todeschini, & Eid, 2005). The authors concluded that slower reaction times to emotional stimuli could serve as an index of low affective clarity. However, this study did not consider the valence of the emotional stimuli. Given the results of Study 1, this method of measuring Clarity could be flawed, or state versus trait Clarity could simply differ with regard to their relationship with valence.

Another interesting development subsequent to these studies was the creation of a scale designed to measure people’s tendencies to focus on positive or negative information, the Attention to Positive and Negative Information Revised, or APNIR (Noguchi, Gohm, & Dalsky, 2006). The authors found that attention to positive information was related to positive affectivity,
extraversion, Behavioral Activation System (BAS), and optimism, while attention to negative information was related to negative affectivity, neuroticism, Behavioral Inhibition System (BIS), and inversely related to optimism. This would be an interesting subjective measure not only to lend converging evidence to the attributions made in the reaction time study, but also extend findings beyond a negative bias in judgments about people’s emotions to also encompass judgments about the environment.

Limitations and Future Directions

As with any study, these two certainly had flaws. The predictions regarding a parallel to self-doubt schematicity did not yield any supporting evidence, and the findings of Study 2 were practically nil because of this. Had Study 2 instead examined differences in how high and low Clarity individuals use positive and negative information, more interesting results may have emerged.

Within Study 1 more analyses could have been performed such as examining total EI as measured by the TMMS and not only Emotional Clarity, examining Emotional Attention and Emotional Repair individually, using multiple predictors, analyzing interactions or moderating variables such as emotional intensity, or including additional variables including emotional ambivalence or the APNIR (Noguchi et al., 2006). In their study of momentary affective clarity Lischetzke et al. (2005) controlled for participants’ baseline speed, but that was not included in this study.

Future studies should certainly address these shortcomings and could also explore Emotional Intelligence and Emotional Clarity in different areas. For example, how does Emotional Intelligence affect interpersonal relationships? Previous studies have found that Emotional Intelligence is associated with seeking certain kinds of social support and inversely
related to social anxiety (Gohm & Clore, 2002; Salovey et al., 2002). These findings coupled with the negativity bias that seems to be apparent in low Clarity individuals could indicate that low Clarity impairs social functioning. Future work could assess whether EI plays a role in social skills, seeking or avoiding social situations, levels of loneliness, perceived social support, actual social support, etc.

Another area in which most aspects of emotions can be examined is physiology. Salovey et al. (1995) reported that low Clarity individuals show greater difficulty recovering from negative moods. Perhaps when experiencing an emotion they are uncertain of, low Clarity individuals show higher levels of arousal than those high in Clarity, which may prompt them to avoid these feelings (especially since they cannot fully understand and identify them).

Furthermore, this arousal could persist longer for low Clarity individuals, and thus it is more difficult to recover from a negative mood. Of course, such physiological findings could also tie into health, as prolonged arousal clearly impacts the body in harmful ways (cf Mayne, 2001 for a review). Additionally, the inability of an individual to understand his or her own emotions and thus effectively describe feelings to others could also show deleterious effects, as disclosure of traumatic emotional events is associated with better health outcomes (Pennebaker, 1995; Pennebaker & Beall, 1986) and can facilitate coping, which is also implicated in health (Peterson & Seligman, 1987; Weinberger & Schwartz, 1990).

Practically speaking, the findings regarding Emotional Intelligence, especially Emotional Clarity could be applied in a clinical setting. Perhaps raising EI and Clarity could combat against depression. Becoming aware of one’s feelings could help individuals cope better with negative emotions in a variety of ways, which would not only improve depressive symptoms but also increase perceived competence in utilizing such skills and promote their use in the future.
Emotions are involved in myriad aspects of human life: judgments, attitudes, interpersonal relationships, health, attributions, etc. Thus, it is not only interesting but also valuable to study various facets of emotion, the roles they play, and functions they serve. Emotions can be communicative and informational, but they can also be a source of confusion and turmoil. Investigating emotion using an assortment of methods, from a variety of perspectives to study the vast array of what constitutes human emotion provides a picture of the whole. Emotional Intelligence is just one area in this enormous field fundamental to humanity.
References

Gasper & Clore (2000). Do you have to pay attention to your feelings to be influenced by them? *Personality and Social Psychology Bulletin, 26*, 698-711.

Table 1

Words Used in Study 1

<table>
<thead>
<tr>
<th>Positive Emotion-Related</th>
<th>Negative/Agitated</th>
<th>Negative/Depressed</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Happy</td>
<td>Angry</td>
<td>Sad</td>
<td>Independent</td>
</tr>
<tr>
<td>Cheerful</td>
<td>Short-Tempered</td>
<td>Depressed</td>
<td>Creative</td>
</tr>
<tr>
<td>Excited</td>
<td>Irritable</td>
<td>Gloomy</td>
<td>Active</td>
</tr>
<tr>
<td>Calm</td>
<td>Furious</td>
<td>Fearful</td>
<td>Egoist</td>
</tr>
<tr>
<td>Content</td>
<td>Anxious</td>
<td>Apprehensive</td>
<td>Disorganized</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rude</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Energetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brave</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Likeable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phony</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inconsistent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reckless</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Athletic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Understanding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fun</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Friendly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inconsistent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clever</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Immoral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unforgiving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Foolish</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sharp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Determined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Confident</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Curious</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Artistic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trendy</td>
</tr>
</tbody>
</table>
Table 2

Means and Standard Deviations for Six Subscales of Emotional Intelligence in Study 1

<table>
<thead>
<tr>
<th>Measure</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMMS Attention</td>
<td>75.88</td>
<td>8.54</td>
</tr>
<tr>
<td>TMMS Repair</td>
<td>39.49</td>
<td>4.23</td>
</tr>
<tr>
<td>TMMS Clarity</td>
<td>38.23</td>
<td>6.87</td>
</tr>
<tr>
<td>TAS Identifying</td>
<td>14.31</td>
<td>3.30</td>
</tr>
<tr>
<td>TAS Describing</td>
<td>16.68</td>
<td>4.03</td>
</tr>
<tr>
<td>MAS Labeling</td>
<td>21.44</td>
<td>4.53</td>
</tr>
</tbody>
</table>
Table 3

Intercorrelations Among Emotional Intelligence Subscales in Study 1

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TMMS Attention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. TMMS Repair</td>
<td>.224**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. TMMS Clarity</td>
<td>.321**</td>
<td>.261**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. TAS Identifying</td>
<td>.285**</td>
<td>.165*</td>
<td>.684**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. TAS Describing</td>
<td>.241**</td>
<td>.152^</td>
<td>.660**</td>
<td>.635**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. MAS Labeling</td>
<td>.396**</td>
<td>.227**</td>
<td>.650**</td>
<td>.624**</td>
<td>.737**</td>
<td></td>
</tr>
</tbody>
</table>

Note. ** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
^ p = .059
Table 4

Means and Standard Deviations for Six Subscales of Emotional Intelligence in Study 2

<table>
<thead>
<tr>
<th>Measure</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMMS Attention</td>
<td>76.45</td>
<td>6.86</td>
</tr>
<tr>
<td>TMMS Repair</td>
<td>40.05</td>
<td>4.40</td>
</tr>
<tr>
<td>TMMS Clarity</td>
<td>38.58</td>
<td>6.67</td>
</tr>
<tr>
<td>TAS Identifying</td>
<td>14.50</td>
<td>3.43</td>
</tr>
<tr>
<td>TAS Describing</td>
<td>16.34</td>
<td>4.07</td>
</tr>
<tr>
<td>MAS Labeling</td>
<td>21.50</td>
<td>3.41</td>
</tr>
</tbody>
</table>
Table 5

Intercorrelations Among Emotional Intelligence Subscales in Study 2

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TMMS Attention</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. TMMS Repair</td>
<td>.146</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. TMMS Clarity</td>
<td>.160</td>
<td>.365**</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. TAS Identifying</td>
<td>.055</td>
<td>.226</td>
<td>.757**</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. TAS Describing</td>
<td>.223</td>
<td>.178</td>
<td>.484**</td>
<td>.541**</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>6. MAS Labeling</td>
<td>.238*</td>
<td>.245*</td>
<td>.618**</td>
<td>.677**</td>
<td>.771**</td>
<td>--</td>
</tr>
</tbody>
</table>

Note. ** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
Figure 1

Response Latencies to Negative/Agitated Emotion-Related Words (across all targets)

Clarity (Z-Score)

RT (ms)
Figure 2

Attributions of Positive and Negative Emotion-Related Words (across all targets)

- **Positive**
- **Negative**

Clarity (Z-Score)

Low Clarity High Clarity

Number of Yes Answers

0 2 4 6 8 10 12 14
Figure Captions

Figure 1. Response latencies to negative-agitated emotion-related words as a function of level of Clarity. Lower numbers indicate faster reaction times.

Figure 2. Number of “yes” responses or attributions of both negative and positive emotion-related words.