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ABSTRACT
Necessary and sufficient conditions for the matrix equation XAX = B and for the

n
system of matrix equations XAX = B, 2 CijXD;j = K,, i=l ,2, . . . ,m, to be solvable are

proven in this paper. If solvable, all solutions of the equation or system are determined.
These results are used to obtain particular solutions of the general quadratic matrix
equation XAX+BX + XC = D.

INTRODUCTION
Solutions of the matrix equation XAX+BX+XC=D are important in many

applications, e.g., see Potter (1966) who has solved a special case of the equation,
but the general problem has not been solved. In this paper, additional particular
solutions are obtained by the decomposition of D into a sum of three matrices.
Unfortunately, there is no procedure for determining every permissable decom-
position of D.

DEFINITIONS AND NOTATION
The letters A, 13, . . . ,R and X, Y will denote known and unknown matrices, respectively,

of arbitrary orders up to the assumption that indicated operations are defined. All matrices
are considered to be defined over the field of complex numbers; however, the results are valid
over more general fields (Hurt and Waid, 1970). The Kronecker product of A and B, denoted
A® B, is defined by A® B = (aijB) where A= (ay). If B is a matrix, b will be used to represent
B considered as a column vector with lexicographic order on the subscripts. Any solution of
AXA = A is called a generalized inverse of A, denoted A~. For example, if A= (1,2), then A~
will represent any column vector of the form (l-2a,a)T where a is arbitrary. Any square
matrix A such that A2 = B will be denoted B^. For example 0^ will represent any matrix of
the form P^1 JP where P is an arbitrary invertible matrix and J contains zeros everywhere
except for a one in the upper right position. Matrix J of order two also shows easily that not
every matrix has a square root. The reader is referred to articles by Amir-Moez and Symrl
and by Dade and Taussky, 1965, for known results about existence and determination of square
roots of certain matrices.

PRELIMINARY RESULTS

Two preliminary theorems are proven in this section since they are essential
to the main results.

Theorem 1. The matrix equation

(1) XAX = B

is solvable if and only if (AB)^ exists and

(2)

(3)

in which case every solution is of the form
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(4) X =
where U is arbitrary.

Proof. Clearly (1) is equivalent to the system AX = Y, XY = B. For each
fixed Y, this system is solvable (Morris and Odell, 1968) if and only if AA~Y = Y,
BY~Y = B, and Y2 = AB. Thus (1) is solvable if and only if (AB)^ exists and
(2), (3). Now it is known (Morris and Odell, 1968) that if the system is solvable,
then every solution has the form X = A-Y+BY--A-ABY-+(I -A-A)U(I -
YY~) where U is arbitrary. Then (4) follows immediately.

Theorem 2. The system of matrix equations

(5) XAX = B,
n

(6) 2 diXDij^Ei, i=l,2, . . . ,m,
i = i

is solvable if and only if (AB)^ exists and

(7)

(8)

(9)

where

and for 1=2, . . . ,m,

in which case every solution is of the form

(10) X = A-(AB)^+(I-A-A){B(AB)

where Ui is determined by

(11) U^H.n+J.nU,
and U is arbitary.

Proof. By Theorem 1, (5) is solvable if and only if (7) and (8), in which
case every solution has the form (10) where Ui is arbitrary. Then the system
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(5), (6) is solvable if and only if (6) is solvable for Ui when (10) is substituted for
X in (6). This substitution yields

RiUi = pi, i = 1,2, . . . ,m.

But this system is solvable (Morris and Odell, 1968) if and only if (9), in which
case every solution has the form (11).

A special case of Theorem 2 is presented next, with notation simplified consider-
ably, since it is the basis for the main results of this paper.

Corollary 1. The system of matrix equations

is solvable if and only if (ADX)^ exists and

where

in which case every solution has the form

X = A-(ADX)^+]

where Ui is determined by

and U is arbitrary.

MAIN RESULTS

Consider the matrix equation

(12) XAX + BX+XC = D.
Particular solutions of this equation can be obtained by writing D = Di+D 2 +D 3
where Di, D2, D3 satisfy the conditions of Corollary 1. Unfortunately, the con-
ditions do not give a method for determining every decomposition of D such that
the matrix equation is solvable. Six obvious specializations of the corollary
which may give particular solutions are now listed. Case (vi) is given in Theorem
3 as an example.
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Theorem 3. If AA"0^ = 01A and EE~f = f where

where U is determined by

and U is arbitrary, is a solution of (12).

Theorems 4-7 yield particular solutions of (12) obtained simply by factoring.
However, the theorems are useful in conjunction with Theorems 8-9. Proof of
Theorem 4 is given to show the method.

Theorem 4. If A is square, BA = B, and BC= — D, then X= — B is a solution
of (12). If in addition AA-C = C, then X=-A-C+( I -A~A)U, where U is
arbitrary, is a solution of (12).

Proof. The first conditions permit the factorization XAX + BX + XC —D =
(X + B) (AX + C). Then obviously X = - B is a solution of (12). Further, if
AA~C = C then AX= — C is solvable (Penrose, 1955) and every solution has the
form X= — A~C+(I — A~A)U, where U is arbitrary. Again this X is clearly a
solution of (12).

Theorem 5. If DA = B and D C = - D , then X = - D is a solution of (12).
If in addition AA^C = C, then X= -A-C+(I-A~A)U, where U is arbitrary, is a
solution of (12).

Theorem 6. If A is square, AC = C, and BC= — D, then X= — C is a solution
of (12). If in addition BA"A = B, then X=-BA-+U( I -AA~) , where U is
arbitrary, is a solution of (12).

Theorem 7. If AD = C and B D = - D , then X = - D is a solution of (12).
If in addition BA"A = B, then X= -BA-+U(I —AA~), where U is arbitrary, is
a solution of (12).

It is easily seen from (12) that both B and C must be square matrices and thus
may be invertible. Theorems 8-11 utilize this possibility.

Theorem 8. Suppose det B^O. Then (12) is solvable if and only if

(13) YAB~1Y+BY+YC = BD

is solvable, in which case X = B~1Y is a solution of (12).
Proof. Suppose (12) is solvable. Then there exists D2 such that BX = D2

or X = B~1D2 and X satisfies (12). Then B-1D2AB-1D2+D2 + B-1D2C = D and
D2AB-1D2+BD2+D2C = BD, i.e., (13) is solvable. Now suppose (13) is solvable.
Then B-1YAB-1Y+BB-1Y+B~1YC = D, i.e., X = B"1Y is a solution of (12).

Theorem 9. Suppose det C?^0. Then (12) is solvable if and only if

(14) YC-1AY+BY+YC = DC

is solvable, in which case X = YO~1 is a solution of (12).
The proof, similar to that of Theorem 8, is omitted.
Clearly, methods indicated previously may be used to find particular solu-

tions of (13) or (14) which then give solutions to (12). Theorems 10-11 are given
as examples.

Theorem 10. Suppose det B^O. If C= -AB^D, then X = B~1D is a solu-
tion of (12). If in addition A~A = I, then X= -BA^+B-1U(I-AA-) is a solu-
tion of (12) for each arbitrary matrix U.

Proof. Proof by substitution is very simple; however, a longer proof is given
to show how other solutions may be obtained. By Theorem 6, (12) is solvable
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and X = B-1Yif and only if YAB^Y+BY+YC-BD = O is solvable. Now if C =
-AB^D, then

(Y-D),
thus X = B~1D is a solution of (12). Also if YAB-* = - B , i.e., if A~A= I so that
Y=-B 2 A-+U(I -AA") , then X = B~1Y= - B A ' + B ^ U y - A A ^ ) , where U is
arbitrary, is a solution of (12). Clearly, other factorizations may be useful in
determining other solutions of (12).

Theorem 11. Suppose det C^O. If B=-DC- 1A, then X = DC~] is a solu-
tion of (12). If in addition AA~=I, then X= -A^C+(I-A-A)UC-1 is a solu-
tion of (12) for each arbitrary matrix U.

The proof is similar to that of Theorem 10.
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