THE EVERETT KNOLL: A LATE HOPEWELLIAN SITE IN NORTHEASTERN OHIO

DAVID S. BROSE

Department of Anthropology, Case Western Reserve University, Cleveland, Ohio 44106

ABSTRACT

Recent archaeological investigations of a prehistoric mound near Everett in northern Summit County have revealed evidence of Hopewellian subsistence and ceremonial activity. Historical accounts describe the removal of exotic artifacts and cremation burials from a limestone crypt within the mound during 1856 road-building activities. Recently excavated artifacts include corner-notched projectile points, galena crystals, and cut bone and teeth. Human remains were also recovered. The ceramics indicate a period of mound construction around A.D. 300. Analysis of unmodified faunal materials suggests a floodplain occupation, with ceremonial activities occurring in late spring.

ARCHAEOLOGICAL BACKGROUND

The nature of archaeological materials from the middle region of the Cuyahoga Valley was poorly known until recently. Whittlesey (1851) had described a number of hill-top “fortifications,” but no systematic investigation of those sites had been undertaken. During the fall of 1970, Mr. John D. Jesensky of Akron brought to my attention the following anonymous (1876) account of early salvage archaeology from that area. The account was taken from the minutes of the Archaeological Convention of Mansfield, Ohio, 1876.

SOME CURIOUS WORKS IN NORTHERN PARTS OF SUMMIT COUNTY: 1875

On the north side of Furnace Run, close to Everett, Ohio, there is a small extension of the main hills, which extends out into the valley of Furnace Run in a low slightly sloping terrace. The road from Everett crosses the furthest tip of this terrace. Since this terrace was useless for any agricultural purposes, and the town folks being thrifty people, it was chosen for the site of a school house in 1856 . . . The workmen started to excavate about six feet down, to level off a site for the school house and in so doing uncovered various artifacts of no small importance. The most important of these are now in the collections of the Archaeological Society of Columbus, Ohio.

There was also discovered, below the ground level, a six-sided limestone enclosure, constructed of large rough stones, each side of the enclosure being approximately 35 feet in length and about six feet high, all covered over with clay soil from the nearby hillside and not by a slow accumulation of decaying vegetation. For whatever purpose it was built, it was filled and covered over, by its builders, with earth. Inside and on the level base of its floor, were ashes, charcoal, and a few pieces of bone, so friable that they could not be preserved. A small piece was recognized as part of a human skull. Plowing further [sic], the workmen also discovered other items listed here:

1) a copper chisel or hatchet about 3½ inches long by 2 inches wide and 1¾ inches thick
2) a copper awl about 3 inches long
3) a copper adze, 5½ inches by 3¾ inches wide at the edge and 1¾ inches wide at the head
4) a stone pipe of plain design
5) a flat stone object—4½ inches long by 1½ inches wide smoothly drilled with a hole in the center
6) 2 stone implements
7) 8-10 thin stones six inches long by 1¾ inches wide shaped like whetstones
8) many pieces of mica, 3 to 6 inches wide by 6 to 10 inches long
9) a piece of lead ore about 2 inches in diameter

The terrace was covered with stumps of trees, three or more feet in diameter. It is guessed that this strange structure was more of a depository of treasures, or a sepulchral depository. The articles found indicated that the builders had collected these items from widely separated and distant places: the copper from Lake Michigan; the lead ore from Illinois; and the mica from distant North Carolina. “Fortifications” like this are quite common in Ohio and are usually regarded as “defense purposes.”

1Manuscript received July 30, 1972.

A reading of this early report suggested that what was being reported was a manifestation of the Ohio Hopewell Culture. While such manifestations are well known from southern Ohio (Prufer, 1964a, b), the only detailed published report of Middle Woodland occupation in northeastern Ohio was of the North Benton Mound (McGrath, 1945).

Initial testing of the region around the Everett Church began in the fall of 1970, under the direction of the author and Dr. Gary Wright, assisted by students from Case Western Reserve University. Several fragments of chipped stone and bone and one grit-tempered cordmarked body sherd were recovered from surface collection on the gentle slopes to the east and south of the church. During the spring of 1971, the author and several students sampled the north and west slopes behind the Everett Church of Christ; sampling was both by intensive surface collection and with a 5-x-5-foot excavation unit. Below the plow zone, no materials were recovered. In the plow-disturbed surface levels, six additional grit-tempered cord-marked body sherds and numerous fragments of charred mammal bone were recovered.

More detailed study of the Everett area came during the summer of 1971, under a grant from the National Science Foundation (GS--28905) for a statistical survey of late prehistoric site locations throughout northeastern Ohio. Within the Everett area 40,000 square feet of land were intensively and systematically surface collected, and an additional 3,500 square feet were excavated. Though the results of these investigations were less productive than had been hoped for, they appear to confirm the original estimation of the Everett Mound as a northern Ohio Middle Woodland manifestation.

EXCAVATIONS

In all, twelve excavations were made. Four of these, one 10 ft x 10 ft and three 5 ft x 5 ft in size, were dug in what appeared to be undisturbed portions of the knoll immediately south of Everett Road (fig. 1). Three excavations, two 10 ft x 10 ft and one 5 ft x 5 ft in size, were opened in the first and second terraces of Furnace Run immediately south of the knoll. The final five excavation units, one 10 ft x 10 ft and four 5 ft x 5 ft in size, together with systematic surface collections, were made farther east along the north bank of Furnace Run and along the west bank of the Cuyahoga River. Only the four numbered excavations designated in figure 1 yielded in situ material related to the prehistoric activities at the Everett Mound; the rest were culturally sterile below the disturbed plow-zone.

Stratigraphy

The units excavated along the terraces of Furnace Run were all stratigraphically similar. Below a plow-truncated meadow soil were found several bedded levels of cobbles and gravels in a silty matrix extending to depths of from seven to nine inches. Below this lay a homogenous sandy silt extending to a depth of at least four feet. All artifacts recovered from these units came from the disturbed upper plow-zone. Their provenance is thus insecure.

On the remnant of the Everett Knoll itself, the stratigraphy was more complex (fig. 2). Below the recent leaf mold was a thin zone where humic staining had created an incipient A₀ horizon on a stratum of dark-brown (10YR 3/2; Munsell, 1954) silty loam. On the central portion of the knoll, the dark-brown silty-loam stratum was underlain by a discontinuous and truncated lens of light-yellowish-brown (10YR 5/4; Munsell, 1954) silty clay. Where present, the silty-clay lens directly overlay a weak B horizon developed in a poorly sorted and unbedded medium-yellowish-brown (grading, with depth, to a very-pale-brown 10YR 5/6-10YR 6/8; Munsell, 1954) sandy gravel. Where the silty-clay lens was lacking, the dark-brown silty loam overlay the upper portions of a fairly well-developed B₁ horizon developed in the medium-yellowish-brown sandy gravel. The silty-clay
lens was most continuous in units excavated in the north-central portions of the knoll. The sandy gravel extended to at least 4.5 feet below ground surface.

A single historic pit was seen originating in the dark-brown silty loam in the northeastern quadrant of the 10 ft x 10 ft excavation unit 1 (fig. 1). This feature consisted of a circular pit at least 2.5 feet in diameter, extending down through the silty-clay lens and into the sandy gravel to a depth of 2.71 feet. Recovered from this feature were four fragments of British Staffordshire earthenware, one of which contained a portion of a Mason's Ironstone bottom-mark indicating manufacture some time after 1820. Two of these earthenware fragments had green transfer prints, a type which reached its peak of popularity in the midwest during the late 1840's (Miller and Stone, 1972). Also recovered from this pit were fragments of four kaolin pipestems and blows, one of which was a "Star T.D." type, which became popular in the mid-nineteenth century (Brose, 1967). In addition, several thin fragments of limestone were recovered within the pit.

From nearby portions of the dark-brown silty loam associated with this feature, additional unmarked kaolin pipebowl fragments were recovered, as well as two undiagnostic fragments of undecorated salt-glaze crockery and a single fragment of an amber-chestnut-colored glass flask with 16 to 20 swirled ribs. This
flask was probably manufactured at the Ravenna Glassworks between 1837 and 1864 (Brose, 1973). Thin slabs of limestone also occurred within this stratum.

The stratigraphic column revealed by this excavation suggests that, following the development of a weak podzolic soil on the surface of the glaciofluvial deposits present at the Everett Knoll, portions of a thin A horizon and upper B₁ horizon were removed in prehistoric times. The northern portion of the lower B₁ zone was then partially covered by a lens of silty clay. Subsequently, during the mid-nineteenth century, portions of this silty-clay lens were removed and a pit was dug into the upper portion of the knoll. At that time, or soon after, leveling operations filled the pit and capped the northern two-thirds of the knoll with dark-brown silty loam. Some details concerning the nature of the earliest grading operation and the time of the deposition of the silty clay are suggested by analysis of material recovered from within the silty-clay lens and from remaining portions of the undisturbed surface of the A₀ horizon developed in the sandy gravels.

Unmodified Bone

Several fragments of bone were recovered from the three excavation units in the Everett Knoll. From within the clay lens in excavation Unit 1 (fig. 1), two
fragments of human calvarium, both unburned, were recovered (identified by Dr. Jonathan Kress, of Duke University). The first fragment is less than two inches in maximum dimension and represents some portion of occipital bone. The second fragment represents the anterior half of a right parietal with the frontal suture intact. The degree of suture closure from this second fragment suggests an age of 18–25 years.

From this same clay lens came some 13 fragmented, charred, and calcined mammalian bones. These were unidentifiable. In addition, some 15 fragmentary uncharred bones were recovered from this unit, among which the following were identified by the author and Mr. Larry Izzard, Cleveland Museum of Natural History, and Ms. Nancy Wilson, University of Michigan.

1) The acromion process from a left scapula of a white-tailed deer (*Odocoileus virginiana*). The epiphysis was absent and the epiphysial suture was open, probably indicating an immature individual.

2) One left distal metacarpal fragment of a white-tailed deer.

3) One left rib of a large rodent, probably muskrat (*Ondatra* sp.).

4) Two fragmentary sections of cervine ribs.

5) One right felid proximal ulna with butchering marks (probably *Lynx* sp.).

6) One fragment of turtle carapace (species unidentified).

7) Three well-preserved fish scales of perch (*Perca flavescens*).

8) One operculum from a northern red-horse mullet (*Moxostoma aureolum*).

Both species of fish could be expected in either the Cuyahoga River or in the lower reaches of Furnace Run (Hubbs and Lagler, 1961), although the yellow perch would probably only have been common this far from the lake during late-spring spawning (Scott, 1954). The presence of the turtle also is a good indicator of summer, or at least of late-spring occupation (Cleland, 1966).

Miscellaneous Artifacts

A broken fragment of a gorget (fig. 3A), made from a piece of argillaceous shale, was recovered from Unit 2 (fig. 1). Thickness ranges from 6.9 to 8.5 mm. Two holes present in the gorget were 36.2 mm apart and about 26 mm from the extant, rounded edge. The one semicomplete drill hole had an internal diameter of 3.75 mm.

Two fragments of gray-black slate, with one face polished and the other face split along bedding planes, came from excavation Unit 3 (fig. 1). Both show drilled holes originating on the polished face. From this same unit a single fragment of crinoid stem and three angular, unworn fragments of galena ore were recovered. The first galena fragment is 15 x 15 x 11.3 mm and weighs 10.1 grams. The second fragment is 15 x 15 x 11.2 mm and weighs 6 grams. The third fragment is 10 x 10.3 x 8.4 mm and weighs 4.5 grams. These crystals are illustrated in figure 3B.

A single cut bird-bone bead (probably turkey femur) 36 mm long, with an outside diameter of 8.5 mm, was also recovered from Unit 2. In addition, a carnivore canine (probably *Lynx*) with a cut and shaved root facet and a partially drilled hole 1.7 mm wide and 1.0 mm deep, was recovered from Unit 1.

Chipped-stone Artifacts

From the excavations at the Everett Knoll site only 29 fragments of chipped stone were found in situ. Most of these were finished, broken artifacts.

Five of these artifacts can clearly be considered to be projectile points. Of these, four (two each from Unit 1 and from Unit 3) approximate a Middle Woodland Synder’s corner-notched variant (Skelly, 1951). The fifth point represents the broken midsection of what could be a Folsom or Cumberland point (Ritchie, 1961) and is thus assignable to a period prior to 5000 B.P. Metric data for these points are given in table 1. Microscopic examination of these projectile points
failed to indicate striations or wear patterns which could not be attributed to the initial and final manufacturing processes. These points are illustrated in figures 3E–3L.

Other chipped-stone fragments were of several different kinds. Three blades, all exhibiting deliberate manufacturing retouch and subsequent utilization, were recovered from Unit 2 (fig. 3J). In addition this unit yielded the broken fragments of a single ovate knife. Two cores exhibiting deliberate scraper retouch and subsequent utilization retouch as scrapers were also recovered from this unit. The additional lithic material from the site consisted of unutilized block cores, small bifacial retouch flakes, and several decortication flakes. Metric data for all these materials are presented in table 1. In general the typology of the lithic artifacts from the site tends to substantiate the site's chronological placement as Late Middle Woodland.

<table>
<thead>
<tr>
<th>Provenience</th>
<th>Max. L (mm)</th>
<th>Max. W (mm)</th>
<th>Max. T (mm)</th>
<th>Min. haft W (mm)</th>
<th>Base W (mm)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV Md 3</td>
<td>51.7</td>
<td>33.6</td>
<td>9.1</td>
<td>17.8</td>
<td></td>
<td>Plum Run</td>
</tr>
<tr>
<td>EV Md 1</td>
<td>47.5</td>
<td>39.2</td>
<td>7.2</td>
<td>5</td>
<td></td>
<td>Upper Mercer or Zaleski</td>
</tr>
<tr>
<td>EV Md 3</td>
<td>32.4</td>
<td>35.4</td>
<td>8.2</td>
<td>14.3</td>
<td>17.3</td>
<td>Upper Mercer or Zaleski</td>
</tr>
<tr>
<td>EV Md 3</td>
<td>35</td>
<td>21.3</td>
<td>6.5</td>
<td>12.7</td>
<td>13.2</td>
<td>Upper Mercer or Zaleski</td>
</tr>
<tr>
<td>EV Md 3</td>
<td>24</td>
<td>17.4</td>
<td>4.9</td>
<td>11.1</td>
<td>12.2</td>
<td>Flint Ridge</td>
</tr>
</tbody>
</table>

Projectile points

<table>
<thead>
<tr>
<th>Provenience</th>
<th>Max. L (mm)</th>
<th>Max. W (mm)</th>
<th>Max. T (mm)</th>
<th>Min. haft W (mm)</th>
<th>Base W (mm)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV Md 3</td>
<td>71.2</td>
<td>23.7</td>
<td>8.5</td>
<td></td>
<td></td>
<td>Plum Run</td>
</tr>
<tr>
<td>EV Md 2</td>
<td>25.1</td>
<td>9.9</td>
<td>4.1</td>
<td></td>
<td></td>
<td>Plum Run</td>
</tr>
<tr>
<td>EV Md 3a</td>
<td>18.3</td>
<td>10.7</td>
<td>4.5</td>
<td></td>
<td></td>
<td>Flint Ridge</td>
</tr>
</tbody>
</table>

Blades

<table>
<thead>
<tr>
<th>Provenience</th>
<th>Max. L (mm)</th>
<th>Max. W (mm)</th>
<th>Max. T (mm)</th>
<th>Min. haft W (mm)</th>
<th>Base W (mm)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV Md 2</td>
<td>24.7</td>
<td>37.2</td>
<td>12.2</td>
<td></td>
<td></td>
<td>Upper Mercer or Zaleski</td>
</tr>
</tbody>
</table>

Ovate knives

<table>
<thead>
<tr>
<th>Provenience</th>
<th>Max. L (mm)</th>
<th>Max. W (mm)</th>
<th>Max. T (mm)</th>
<th>Min. haft W (mm)</th>
<th>Base W (mm)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV Md 1</td>
<td>Prismatic core reused as scraper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flint Ridge</td>
</tr>
<tr>
<td>EV Md 3a</td>
<td>Bayport core—blocky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flint Ridge</td>
</tr>
<tr>
<td>EV Md 2</td>
<td>5 fragments block flakes with extensive scraper retouch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flint Ridge</td>
</tr>
<tr>
<td>EV Md 1</td>
<td>10 fragments bifacial retouch flakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upper Mercer</td>
</tr>
<tr>
<td>EV Md 3a</td>
<td>1 decortication flake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plum Run gray</td>
</tr>
<tr>
<td>EV Md 3a</td>
<td>2 decort flakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flint Ridge</td>
</tr>
</tbody>
</table>

*= broken along measured vector

Ceramics

Only fourteen sherds, representing at least five vessels, were recovered from excavations. Unit 1 produced five body sherds, and three rim sherds, representing at least three vessels. Four of these body sherds were tempered with mixed mica and some limestone. These sherds were thin (5 to 7 mm thick below the shoulder) and well fired, and displayed fine vertical cordmarking. One body sherd was limestone-tempered, 8.7 mm thick just above the shoulder, roughly cordmarked, and poorly smoothed. The cord elements all averaged 0.8 mm wide and were spaced about 1.5 mm apart. The twist appears to have been a ZS.

Two of the rim sherds from this unit (1) (figs. 3K and 3L) can be considered equivalent to what Prufer (Prufer et al., 1965) has described as McGraw Cord-
marked. These display rims that are straight to slightly everted and are cord-marked to the lip. Grit and limestone appear to have been mixed as tempering material. The lip is flat with somewhat rounded edges and displays external notches 8.2 mm wide and 11.3 mm apart, made by a plain paddle edge. The rim is 6.1 mm thick at the lip and 5.9 mm thick 10 cm below the lip.

The final rim sherd from Unit 1 was grit tempered with a fairly sandy paste (fig. 3M). The rim had been smoothed and flattened and had oblique incised lines descending to the right from the rim, which was 7.2 mm thick. The incised lines averaged 1.1 mm wide, 0.7 mm deep, and were between 4.0 and 7.5 mm apart. Their extent below the rim is unknown. This rim is quite similar to those of the untyped incised Hopewellian ceramics described by Prufer (1968) from the Seip and Tremper sites and quite similar to upper-rim sections described as Chillicothe Brushed from the McGraw site (Prufer et al., 1965).

Only five sherds were recovered from Unit 3 at the Everett Mound site. Two grit-tempered body sherds 8.0 to 7.7 mm thick displayed contorted paste and were poorly fired. Heavy cordmarking elements 1.0 mm wide and about 2.7 mm apart composed a ZS twist. All cordmarking appeared vertical or slightly oblique.

One body sherd from Unit 3 represented a well-fired grit-tempered vessel. This sherd (fig. 3N) was 6.2 to 7.1 thick and simple stamped. The bands were from 2.0 to 2.3 mm wide, the grooves from 2.3 to 2.6 mm wide, and the elevation between these 0.25 to 0.38 mm. This appears to be identical to what Prufer (1968) has called Turner Simple Stamped. In addition, two rims representing a single vessel of McGraw Cordmarked, and a single rim sherd from a vessel which appears to be McGraw Plain (fig. 30) were found in Unit 3. This latter rim differs from the McGraw Cordmarked in that cordmarking at the rim has been smoothed over and faint cord-wrapped-stick impressions occur intermittently along the lip.

SETTLEMENT-SUBSISTENCE DATA

Domestic Occupation

Although the original disturbance at Everett Knoll took place in the early nineteenth century, a fairly complete report of those activities as well as additional test excavations in 1971 have enabled some reconstruction of the site to be made. While *in situ* material was recovered only from those excavation units located in the Everett Knoll itself, additional sherds representing vessels of McGraw Cordmarked and Turner Simple Stamped types, fragments of chipped stone artifacts, lithic debitage, and fragmented charred and calcined animal bones were recovered from areas along the north bank of Furnace Run as far east as the Cuyahoga River. These materials argue for some nonceremonial settlement coeval with the mound itself.

To determine the population density and seasonality of such prehistoric occupations, undisturbed portions of domestic-activity areas must be located. Commercial sod removal and deep plowing in this portion of the valley had removed all surface indications of such site areas. Investigation of false-color infrared aerial photographs taken by the author during the summer of 1971 did not reveal any indication of such areas. Nor were the limited earth-resistivity surveys conducted in the autumn of that year more productive. In order to reconstruct the possible prehistoric subsistence base, some environmental background is necessary.

EXPLANATION OF FIGURE 3

Figure 3. Artifacts recovered from the Everett Mound site. A. Broken state gorget; B. Fragments of galena ore; C. Turkey-bone bead; D. Partially drilled canine tooth; E.-I. Projectile points; J. Flint blades; K.-L. McGraw Cordmarked rimsherd; M. Chillicothe Brushed rimsherd; N. Turner Simple Stamped sherd; O. McGraw Plain rimsherd.
ENVIRONMENTAL BACKGROUND

Furnace Run is a shallow stream draining a three-mile-wide valley between the Wabash and the Outer Defiance Moraines. Having downcut through Pleistocene deposits, the stream is now entrenching itself into Paleozoic bedrock. The stream flows along its valley with a gradient of some 1.3 foot per mile (Rau, 1968) and enters the Cuyahoga River 34 miles south of the Cuyahoga's mouth. In the lower part of its valley, Furnace Run cuts across outcrops of the more resistant members of the Mississippian sandstone and Devonian shale formations (Winslow and White, 1966). The stream at this point, immediately south of the Everett Church, is characterized by a series of riffles and gravel bars. The Cuyahoga River, where Furnace Creek enters it, is passing through a section composed of a series of short riffles and steady deeper flows with sandy silt and gravel as the base substratum.

To the west and on the upland above the Cuyahoga valley, Furnace Run has cut through what was, at the time of the earliest European settlement, a mixed forest of white oak, black oak, and several varieties of hickory (Gordon, 1969, p. 37). The Cuyahoga valley vegetation itself was also varied, but consisted primarily of beech, sugar, black and red maple, chestnut, white and red oak, and white ash. Somewhat less abundant were red elm, black and white walnut, black cherry, pignut, butternut, shagbark and mockernut hickory, and Ohio buckeye (Gordon, 1969, p. 50). The area of interface between these valley forest communities comprised a transitional community “occupying a position between dry sites covered by oak-chestnut, and forest regions in which the complex of factors is favorable to the dominance of beech, maple, hickory” (Sampson, 1930, p. 361). Along the alluvial plain of Furnace Run itself, on soils derived from the relatively acidic Mississippian Berea sandstones, thickets of blueberry and huckleberry would be expected as undergrowth, with a dominance of chestnut, and relatively open stretches located along the river and filled with pannic grasses, butterfly pea, and ragweed (Braun, 1928, p. 21).

The climate of this stretch of the Cuyahoga valley is relatively mild. The average annual temperature is 50°F, with an average January temperature of between 25° and 30°F and an average July temperature of between 70° and 75°F. Annual precipitation averages between 35 and 40 inches and is evenly distributed throughout the year. The average number of frost-free days is between 160 and 180 annually (USDA: 1941), well beyond what has been considered the 140 frost-free-days minimum for prehistoric maize agriculture (Yarnell, 1964). In fact the entire western bank of the Cuyahoga River for a distance of about three miles north of Furnace Run would have been conducive to what Struever (1964, 1968) has called “mud-bank horticulture.” However, no cultigens having any association with the prehistoric artifacts were recovered from the area. It might be noted that locally available nuts and berries would have been quite plentiful during the late summer and autumn (Yarnell, 1964) and the nuts could easily have been stored to help support a considerable year-round population aggregate. If the unmodified faunal material recovered from within the silty-clay lens were incorporated at the time of deposition, it would imply that some phase of the ceremonial activity must have taken place in late spring.

CHRONOLOGICAL AND CULTURAL RELATIONSHIPS

It seems clear from the anonymous 1876 report that the clay represents a mound cap rather than any prepared floor, such as commonly occurs in both Ohio and Illinois (Griffin, Flanders, and Titterington, 1970). Soil stripping and clay mound-caps are common in Hopewellian sites in Ohio (Prufer, 1965), and the presence of a prepared floor may have been overlooked by workmen in 1856.

Limestone enclosures within mounds are present at numerous sites in the Mississippi-Ohio River valleys throughout the Middle Woodland period. A limestone “crypt” was also reported for the North Benton Mound just south of
Akron in the Muskingum drainage (McGrath, 1945). Geometric figures of lime-
stone-slabs and limestone-slab crypt construction or marker piles have also been
noted in several Ohio Hopewellian mounds (Griffin, Flanders, and Titterington,
1970), although a hexagonal limestone enclosure, such as indicated in the anonymous
1876 manuscript, has not previously been reported. The early report and the
recent recovery of both charred and uncharred human bones suggest the presence
of both cremated and uncremated burials on the tomb floor. This is by no means
uncommon in Ohio Hopewellian ceremony (Prüfer, 1965). Lack of uniformity in
mortuary disposal methods is certainly more characteristic of Ohio than of any
other region in eastern North America.

The artifacts reported in 1876 to have been associated with the Everett Mound
are among those commonly found in Hopewellian context. The absence of ear
spools, effigy pipes, pan pipes, and/or elaborate “ceremonial” ceramic decoration
might argue for either a late temporal position or a marginal ceremonical participa-
tion within a Hopewellian Interaction Sphere (Caldwell and Hall, 1964). It
seems unwise, however, to place too much confidence in any negative evidence,
given the nature of the early excavations and the limited scope of later
investigations.

Some judgment of relative chronological placement can be made on the basis
of the ceramics recovered by the 1970-71 excavations. The ceramic assemblage,
small though it is, tends to indicate a late Middle Woodland chronological place-
ment for this site (Prüfer, 1965; Fowler, 1957; Griffin et al., 1970). Indeed,
several of the less distinctive rimsherd s verge on the definitions of Peters Cord-
marked (Prüfer and McKenzie, 1967), Wayne Cordmarked (Fitting, 1965), or
ceramics assigned to the Cole Complex (Baby and Potter, 1965), all early Late
Woodland in temporal placement. While both the McGraw Plain and McGraw
Cordmarked types seem common throughout the Middle Woodland period in
southern Ohio (Prüfer et al., 1965), the absence of dentate stamping or zoned
incising as a decorative motif on the Everett Knoll material, as well as the presence
of simple-stamped sherds and cord-impressed lips, suggests a post-A.D. 100 tem-
poral position. Those Everett Knoll pottery rim-profiles which approximate
Peters Cordmarked and Cole Complex ceramics still maintain a relatively high
frequency of limestone tempering, suggesting an occupation some time before
A.D. 500. The identifiable projectile points seem typologically closer in size and
style to Snyders-like points from classic Ohio Hopewell sites than they do to later
types, such as Peters Side-notched. This situation parallels that of several of the
“Pike phase” mounds dated between A.D. 200-400 at the Knight group in Illinois
(Griffin, Flanders, and Titterington, 1970).

From all of the data with unambiguous provenance, it is apparent that a
Hopewellian mortuary ceremony took place on Everett Knoll some time around
A.D. 300. The ceremony probably occurred in the spring, although the popula-
tion may have spent the entire year along Furnace Run near its junction with the
Cuyahoga River.

ACKNOWLEDGMENTS

I wish to thank numerous individuals for their help and assistance: The Na-
tional Science Foundation, whose financial support rendered possible the system-
ic collections and subsequent excavations at the Everett Mound site; Mr. J. D.
Jesensky and Mr. Bert Szabo, of the Akron Metropolitan Park Service, who were
both most generous in imparting site information and in calling my attention to
numberous earlier reports in the area; The Everett Church of Christ, Mr. John
Szlay, the Johnny cake Shop, and the Everett Store who generously gave permis-
sion for survey and excavation on their lands; and lastly, but by no means least,
my students at Case Western Reserve University and the capable and patient
team members of the 1971 survey. The photographs were taken by Mr. K.
Becker and the cartography was provided by Mr. C. Watson, both of Case Western Reserve University.

REFERENCES CITED

Sampson, H. D. 1900. The mixed mesophytic forest community of northeastern Ohio. Ohio J. Sci. 30: 8–33.

Whittlesey, C. A. 1851. Ancient forts and earthworks of the Cuyahoga valley, Ohio. Western Reserve Historical Society, Tract No. 5. 27 p.
