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ABSTRACT
The computation of the magniÐcation of a Ðnite source by an arbitrary gravitational lens can be

reduced from a two-dimensional to a one-dimensional integral using a generalization of StokesÏs
thereom. For a large source lensed by a planetary system whose planet lies at the position where one of
the two images would be in the absence of a planet, the integral can be done analytically. If the planet
lies at the position of the major (unperturbed) images, the excess Ñux is the same as it would be for an
isolated planet. If the planet lies at the minor image, there is no excess Ñux.
Subject headings : gravitational lensing È methods : numerical È planets and satellites : general

1. INTRODUCTION

Four groups have detected more than 100 microlensing
events toward the Large Magellanic Cloud and the Galactic
bulge (Alcock et al. et al.1995, 1996a ; Aubourg 1995 ;

et al. For most events, theUdalski 1994a ; Alard 1996).
source can be treated as a point of light. However, when the
source comes sufficiently close to or crosses a caustic (locus
of points of inÐnite magniÐcation in the source plane), the
Ðnite size of the source a†ects the light curve. One may use
these e†ects to infer the size of the Einstein ring relative to
the angular size of the source. Since the latter is generally
known from StefanÏs law and the color and magnitude of
the source, one can then determine the absolute size of the
Einstein ring & Wickramasinghe(Gould 1994 ; Nemiro†

This e†ect has already been observed for one point-1994).
mass lens et al. and for two binary lenses(Pratt 1996)

et al. et al. and may(Udalski 1994b ; Alcock 1996b, 1996c),
ultimately be key to measuring the mass function of the
lenses (Gould 1996).

For a point-mass lens, one may write the formula for the
magniÐcation of a Ðnite source in closed form & Mao(Witt

but for a binary lens, the evaluation is more compli-1994),
cated. In principle, one could compute the magniÐcation at
each point of the source and sum these to Ðnd the total Ñux
of the images. However, because the magniÐcation is diver-
gent near the caustic, one must take special care in per-
forming the integration in these regions. Since the caustics
have a somewhat irregular structure, this form of numerical
integration is often difficult.

The problem can be especially acute in the analysis of
lensing events by planetary systems because the Einstein
ring of a planet is generally of the same order as the size of
the source. In order to simulate such events & RhieBennett

developed an alternate approach : they applied the(1996)
““ ray-shooting ÏÏ technique Refsdal, & Stabell(Kayser, 1986 ;

& Weiss to examine the points in the imageSchneider 1987)
plane (rather than the source plane), calculated the source-
plane position for each, and thereby identiÐed all the image
points originating in the source. For a source of uniform
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surface brightness, this method yields the ratio of the total
area of the images to the area of the source which, since
surface brightness is conserved (Liouville 1837 ; Misner,
Thorne, & Wheeler is equal to the total magniÐ-1973),
cation. The method is easily generalized to nonuniform
sources by weighting each point of the image by the local
Ñux of the corresponding point on the source. et al.Lewis

and have developed an efficient scheme(1993) Witt (1993)
for two-dimensional integration of light curves which, while
designed primarily to deal with the complicated image
structure arising from multiple point lenses, can be applied
to the simpler cases of binary and planetary-system lenses
as well.

While precise modeling of any observed light curve
should take account of limb darkening, a good quantitative
understanding of the various types of light curves that are
possible for a given lens conÐguration can be gained by
considering sources of uniform surface brightness. In this
case, the magniÐcation is given directly by the combined
area of the images divided by the area of the source. By
StokesÏs theorem, these areas can be evaluated by one-
dimensional integrals over their boundaries. One might
then consider the following approach. First, Ðnd the locus
of points that constitute the image of the source boundary.
These form the boundaries of the images. Second, divide the
image boundary into connected subsets, which will each be a
closed loop. Third, determine the area inside each loopQ

iby contour integration. Some loops may be inside others, in
which case their interiors are ““ holes ÏÏ in the images. There-
fore, fourth, for each loop determine the number of other
loops that lie outside it, The total area of the image isn

i
.

then given by The algorithms required to carry;
i
([1)niQ

i
.

out this procedure are not prohibitive, but they are cumber-
some, and perhaps for this reason the approach has never
been tried.

Here we show that by taking account of the image
parities, one can dispense with all global and topological
information about the image structure, and evaluate the
boundary integrals by purely local integration. The bound-
ary approach leads immediately to an analytic result for
Ðnite sources imaged by a Chang-Refsdal lens which has
important implications for understanding planetary-system
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lensing events. We also present a prescription for numerical
integration and discuss a generalization of the method to
limb-darkened sources.

2. METHOD

Consider Ðrst a source that does not cross any caustics.
The source will be imaged into m disjoint images. Let C be
the boundary of the source and let be the boundary ofC

j
@

the jth image. The parity of each image, is deÐnedp
j
\ ^1,

as the sign of its magniÐcation tensor. As one moves
counterclockwise around C, one moves counterclockwise
around for and clockwise for By StokesÏsC

j
@ p

j
\ 1 p

j
\ [1.

theorem, the area of the source is and the(1/2) /
C

r Â dl
area of the jth image is where r is the(1/2)p

j
/
Cj{

r Â dl,
position on the contour and dl is the line element. Note that
the direction of integration around the image contours is
deÐned by counterclockwise motion around the source. The
magniÐcation is then

A\;
j

p
j

P
Cj{

r Â dl
NP

r ] dl , (2.1)

where the two-dimensional cross products are to be regard-
ed as signed scalars.

remains valid even when the source crossesEquation (2.1)
one or several caustics. The proof is given in the Appendix.
Note that the number of image contours changes as oneC

j
@

crosses a caustic in the source plane. This part of the inte-
gration requires some care, as discussed in ° 4.

3. APPLICATION TO PLANETARY SYSTEMS

Consider a planet of mass m orbiting a star of mass M,
with m> M. If the planet were not there, the star would
lens a background source into two images at positions

where is the angular Einstein radius of the^y
B
h
e
, h

elensing star,

y
B

4
(x2] 4)1@2^ x

2
, (3.1)

and is the projected separation between the source andxh
ethe lens. The magniÐcation tensor is given by

M
B

\
A1 ] c

B
0

0
1 [ c

B

B~1
, c

B
\ y

Y
2 , (3.2)

where the (1, 1) element represents the magniÐcation along
the source-lens axis. The magniÐcation of each image is
given by the absolute value of the determinant of this
tensor, Note that the shear for theA

B
\ oM

B
o. c

`
\ 1

major image outside the Einstein ring and that(y
`

[ 1)
for the minor image inside the Einstein ringc~\ c~̀1[ 1

(y~ \ 1).
Since m> M, the planet a†ects only a small region of the

Einstein ring over which the shear changes very little. We
therefore treat the shear as constant in the neigborhood of
the planet. The planet plus shear is then a Chang-Refsdal
lens (Chang & Refsdal Ehlers, &1979, 1984 ; Schneider,
Falco & Loeb1992 ; Gould 1992).

We now suppose that the planet lies exactly at the posi-
tion of one of the two unperturbed images of the center of
the source. We adopt this position as the center of our
coordinates and express all angular distances in units of the
Einstein ring of the planet : We denoteh

p
\ (m/M)1@2h

e
.

positions within the source by (o cos t, o sin t) and posi-

tions within the image by (r cos /, r sin /). We evaluate
equation (2.14) from Gould & Loeb (1992), noting that in
their notation (o cos t, o sin t) \ [v~1@2([1 ] c]m

p
, [1

and (r cos /, We[ c]g
p
) r sin /) \ v~1@2(m

i
[ m

p
, g

i
[ g

p
).

then Ðnd

o cos t\ cos /
r

[r2(1] c) [ 1] ,

o sin t\ sin /
r

[r2(1 [ c) [ 1] .

(3.3)

Squaring and adding these two equations yields a quadratic
equation in r2, the two solutions of which are

r
B
2 \ b ^ (b2[ 4a)1@2

2a
,

a 4 1 ] c2] 2c cos 2/ , b 4 o2] 2 ] 2c cos 2/ .

(3.4)

Suppose that the source is large enough so that it covers
all caustics (see, e.g., Fig. 3 from & Loeb TheGould 1992).
boundary of the source will then always have two images,
one at and one at Using and assumingr

`
r~. equation (2.1),

that the source has constant surface brightness, we Ðnd a
magniÐcation

A\ 1
2no2

P
0

2n
d/(r2̀ [ r~2 )

\ 1
o 1 [ c2 o

] 1 ] sgn (1 [ c)
o2 [ q

o4 ] É É É , (3.5)

where andsgn (1 [ c
B
) \ ^ 1 q \ [(12 ] o~2)2

The Ðrst term is just the magniÐcation of the[ c2o~4]~1@2.
source in the absence of a planet (see For theeq. [3.2]).
major image, the second term is 2o~2. Thus, for a source of
surface brightness S, the total excess Ñux is exactly2nh

p
2 S,

the same as the result for an isolated planet. On the other
hand, to this order there is no excess Ñux when a planet
perturbs the minor image, a result already suggested by the
numerical calculations of & Rhie SuccessiveBennett (1996).
additional terms are each smaller by o~2. (To Ðnd the total
magniÐcation, one must remember to add in the magniÐ-
cation of the unperturbed image on the opposite side of the
lensing star, o 1 [ c~2 o~1.)

is exact for a Chang-Refsdal lens, but for aEquation (3.5)
planetary system it is exact only in the limit of an inÐnitely
small planet. Moreover, it is valid only when the planet is
aligned with the unperturbed image. The main value of
the result is therefore its use in understanding and classi-
fying planetary-system light curves. Nevertheless, it is inter-
esting to ask how accurate it is for realistic cases. For a
planet of Ðnite mass, the shear due to the lensing star will
change by over the source, where is thedcD O(ch

*
/h

e
) h

*source radius. The error induced by this di†erence is
This is smaller than the Ñux of[(dc/c)2nh

*
2 S Dnh

*
4 S/h

e
2.

the star by For cases of practical interest in[(h
*
/h

e
)2.

planetary searches, kas, while kas, so theh
*

[ 6 h
e
Z 100

error is typically less than 1%.

4. NUMERICAL INTEGRATION

To translate into a prescription for numeri-equation (2.1)
cal integration, we Ðrst approximate the boundary of the
source as a polygon of n (not necessarily equal) sides (see

We denote the (two-component) vertices in counter-Fig. 1).
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FIG. 1.ÈIllustration of integration technique. (a) Source plane for
Chang-Refsdal lens with shear c\ 0.6 and source size o \ 0.9 in units of
the planet Einstein radius (double arrow). Filled circles on source boundary
indicate 100 equally spaced positions of numerical integral and arrow(s

i
)

indicates direction of integration. Source boundary crosses caustic six
times. (b) Image plane. Filled circles are multiple images j \ 1, 2 . . .) of(u

i,j,source position Line segments between successive circles indicate terms(s
i
).

in the numerical integration as in Arrows indicatep
j
(u

i~1,j Â u
i,j) eq. (4.1).

e†ective direction of integration for each connected curve : for p \ 1
(outside the critical curve) the direction of increasing i, and for p \ [1
(inside the critical curve) the direction of decreasing i. Image boundary
crosses the critical curve six times, once each time the source crosses the
caustic. Gaps of image boundary at critical-curve crossings correspond to
the appearance or disappearance of two new images. Additional terms
given by must be added to complete the contours across theseeq. (4.3)
jumps. Note that the sense of the arrows remains the same along an image
boundary as it crosses the critical curve. The sense is opposite for the outer
and inner contours, implying that the numerical integral will automatically
subtract the area inside the inner contour from the area inside the outer
contour. That is, the image is the region between these two contours. Note
that with equal spacing along the source boundary [see (a)], some of the
““ jumps ÏÏ across the critical curve are rather large which might lead to
inaccurate integration. In practice, one would use a variable step size along
the source boundary and would shorten the steps whenever the changes in
the image position were large.

clockwise order by É É É with For eachs0, s1 s
n
, s

n
\ s0.source vertex there will be a variable number of images

i
,

positions The vertex images should be ordered so thatu
i,j.and lie on the same image curve. When the sourceu

i~1,j u
i,jcontour crosses a caustic and two images disappear, these

images should be replaced by ““ blanks.ÏÏ When a caustic is
crossed and two new images appear, they should be entered
into previously blank columns. With this ordering, the
parities of the image vertices depend only on j : Forp

i,j ] p
j
.

simplicity, we initially assume that if any caustics are
crossed, one of the source vertices is chosen to lie right on
the caustic.

The magniÐcation is then given by

A\ ;
i/1

n ;
j{

p
j
(u

i~1,j Â u
i,j)
N

;
i/1

n s
i~1 Â s

i
, (4.1)

where the prime in j@ indicates that there is no summation
for the Ðrst appearance of new images at a caustic (in which
case there is, of course, no previous image position u

i~1,j).In we assumed that if the source boundaryequation (4.1),
crossed a caustic (moving counterclockwise), thereby cre-
ating or destroying two images, then one of the vertices
would be chosen to lie exactly on the caustic. We now show
that if the Ðrst point does not lie on the caustic, there is a
simple prescription which in e†ect replaces the two terms
connecting the critical curve and the two images of the Ðrst
point inside the caustic with a single term that connects the
two image points directly. Let j and j ] 1 be two new
images and let be chosen to lie exactly on the caustics

iwhere they are created. The Ðrst term to be included in the
sum for the j image would be i ] 1 and this term would
include the boundary between the critical curve (at andu

i,j)the point at The situation is similar for image j ] 1.u
i`1,j.The two new images have opposite parities, p

j`1\ [p
j
.

Because lies on the caustic, The sum of thes
i

u
i,j \ u

i,j`1.Ðrst terms for these two new images will then be

p
j
(u

i,j Â u
i`1,j) ] p

j`1(ui,j`1 Â u
i`1,j`1)

\ p
j
u
i,j Â (u

i`1,j[ u
i`1,j`1) . (4.2)

To a good approximation sou
i,j\ (u

i`1,j] u
i`1,j`1)/2,

one may simply replace the two terms on the left-hand side
of with Now let be theequation (4.2) p

j
u
i`1,j`1 Â u

i`1,j. s
i{vertex on a caustic where the two images disappear. Using a

similar argument, one can show that the two last terms for
these images can be replaced by [p

j
u
i{~1,j`1 Â u

i{~1,j.Hence, it is not actually necessary to have vertices on the
caustics. Suppose that there are k caustic crossings, l \
1 É É É k where two images and are created, and kj

l
j
l
] 1

other crossings were they are destroyed. Let the Ðrst point
after the images have been created be and last before theyi

lare destroyed be If these Ðrst and last points do not lie oni
l
@.

the caustic, then the numerator in should beequation (4.1)
replaced by

;
i/1

n ;
j

p
j
(u

i~1,j Â u
i,j)

] ;
l/1

k
p
jl
[u

il,jl`1 Â u
il,jl [ u

il{,jl`1 Â u
il{,jl] . (4.3)

5. DISCUSSION

Some of the most interesting applications of Ðnite sources
e†ects in microlensing involve the color changes due to
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di†erential limb darkening For example, this(Witt 1995).
e†ect can be exploited to measure the Einstein ring size even
when single-band photometric e†ects are undetectable, and
it is especially useful in understanding planetary events

& Sasselov & Welch The method(Loeb 1995 ; Gould 1996).
given above cannot be directly applied to limb-darkened
stars since constant surface brightness was assumed.
However, one could model the source star as being com-
posed of rings of constant surface brightness, and each ring
could be evaluated by taking the di†erence of Ñuxes due to
sources contained within two successive rings.

At Ðrst sight, this solution for the limb-darkened case
seems to reintroduce a second dimension to the integration,
and therefore appears to render the method no more effi-
cient than traditional approaches. In fact, systematic inves-
tigations of Ðnite sources e†ects require that one determine
the magniÐcation for many di†erent source sizes. For the
case of constant surface brightness, one must evaluate the
magniÐcation separately for, say, 20 di†erent values of o.
For the limb-darkened case, one could determine magniÐ-
cations for all source sizes simultaneously by Ðrst evalu-
ating the Ñuxes from disks of constant surface brightness
o \ 0.1, 0.2, . . . 5.0, then taking di†erences to determine the
Ñuxes in rings, and Ðnally weighting these rings appropri-
ately for limb-darkened sources of various radii. Thus, in
practice, the computation for limb-darkened stars is no
more than a factor DO(2) more time consuming than for
stars of constant surface brightness. See & GouldGaudi

for more details.(1996)
The method given here is simpler than that of &Bennett

Rhie in that it requires only a one-dimensional inte-(1996)
gral, but it is more complicated in that one must Ðnd the
individual image positions corresponding to the source
boundary. (One must also Ðnd the parity and hence the
magniÐcation, but this need be done only once for each
image contour.) The method of choice therefore depends on
the lens system. For planetary system lenses, it is often pos-
sible to treat the e†ect of the planet as a perturbation on the
background shear generated by its parent star. In these

cases, the lens equation can be reduced to a quartic equa-
tion & Loeb which can be solved analytically.(Gould 1992)
The method given here is therefore far more efficient. In
general, binary lenses require solution of a Ðfth-order equa-
tion & Mao These are straightfor-(Witt 1990 ; Witt 1995).
ward to solve numerically, although there is no analytic
solution. However, in general, an n-mass lens system
requires solution of an (n2] 1)-order equation so that for
sufficiently complicated lenses, two-dimensional integration
over the image plane may be preferable.

Finally, we remark on an interesting aspect of the
relationship between Chang-Refsdal lenses and binary
lenses. & Mao have shown that the minimumWitt (1995)
magniÐcation of a point source inside a binary-lens caustic
is Planetary-system lenses are special cases ofA&\ 3.
binaries, so the theorem should hold rigorously for these
also. In the limit of a very small planet mass, the Chang-
Refsdal approximation is exact. Using the formalism of

et al. it is easy to show that for the case ofSchneider (1992),
c\ 1, the minimum magniÐcation inside the caustic is

i.e., a factor c~1 higher than theA
c,&(c) \ [c(1 [ c2)]~1,

magniÐcation of the unperturbed image. This achieves an
overall minimum at c\ 3~1@2, where A

c,&(3~1@2) \
(27/4)1@2D 2.6\ 3. However, to Ðnd the total magniÐcation
of the binary lens, one must add in the magniÐcation of the
other image, A@(c) \ (c~2[ 1)~1. Hence, the minimum
magniÐcation of the whole binary lens is

A&(c) \ A
c,&(c) ] A@(c) \ c3] 1

c(1 [ c2) . (5.1)

This takes on its minimum value at for whichc\ 12and so saturates the limit of & MaoA&(12) \ 3, Witt
(1995).

We would like to thank Scott Gaudi for stimulating dis-
cussions and helpful comments. This work was supported in
part by grant AST 94-20746 from the NSF and in part by
grant NAG5-3111 from NASA.

APPENDIX

PROOF FOR CAUSTIC CROSSING SOURCES

To see why remains valid even when the source crosses a caustic, divide the source into subsources each ofequation (2.1)
which lies entirely inside or entirely outside of caustics. For deÐniteness, take the case of a binary lens for which the source can
be divided into two subsources, one lying inside a caustic and having Ðve images and the other lying outside and having three
images. The magniÐcation is then given by the sum of two integrals of the form of one integral for eachequation (2.1),
subsource. The di†erence between this sum and applied directly to the whole source is eight additional lineequation (2.1)
integrals, Ðve for the image contours mapped from motion in one direction along the inside of the caustic segment, and three
for the image contours mapped from motion in the opposite direction along the outside of the caustic segment. We now show
that the sum of these eight contour integrals is identically zero and that it is therefore not necessary to break the source into
subsources. Consider Ðrst the two images that are present inside but not outside the caustic. These have opposite parities and,
for points along the caustic, are mapped into exactly the same points along the critical curve in the image plane. Hence the
two line integrals from these images make equal contributions of opposite sign. Now consider the remaining three images.
These are una†ected by the presence of the caustic and therefore the contours just inside and just outside the caustic are
mapped to the same contours in the image plane. However, since the directions of integration are opposite, the two line
integrals cancel for each image. It is therefore not necessary to break the source up into subsources. yields theEquation (2.1)
correct magniÐcation when applied directly to the source as a whole.
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