POTENTIOLOGY (noun): study focusing on the development of new interatomic pair potential forms; sometimes pursued in an obsessive compulsive manner [The New Yorel Dictionary (2002, unpublished)].} IN SPECTROSCOPY: IT MATTERS

Research Projects

Organizational Units

Journal Issue

Abstract

Spectroscopists have long attempted to summarize what they know about small molecules in terms of a knowledge of potential energy curves or surfaces. For most of the past century, this involved deducing polynomial-expansion force-field coefficients from energy level expressions fitted to experimental data, or for diatomic molecules, by generating tables of many-digit RKR turning points from such expressions. In recent years, however, it has become increasingly common either to use high-level {\em ab initio} calculations to compute the desired potentials, or to determine parametrized global analytic potential functions from direct fits to spectroscopic data. In the former case, this invoked a need for robust, flexible, compact, and `portable' analytic potentials for summarizing the information contained in the (sometimes {\em very}\, large numbers of) {\em ab initio} points, and making them `user friendly'. In the latter case, the same properties are required for potentials used in the least-squares fitting procedure. In both cases, there is also a cardinal need for potential function forms that extrapolate sensibly, beyond the range of the experimental data or {\em ab initio} points. This talk will describe some recent developments in this area, and make a case for what is arguably the `best' general-purpose analytic potential function form now available. Applications to both diatomic molecules and simple polyatomic molecules will be discussed.

Description

\,{\em potentiology
Author Institution: Guelph-Waterloo Centre for Graduate Work in Chemistry and; Biochemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Keywords

Citation