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Foreword

These notes are the result of combining two graduate coaasetric Geodesy and Geodetic
Astronomy, taught for many years at Ohio State University to studamtsuing the Master of
Science degree in Geodesy. Since the early 1990s, parts oftwlteseurses have become
irrelevant, anachronistic, and in need of revision. The resulting ¢aurse calledGeometric
Reference Systems, combines the geometrical aspects of terrestrial and tieélesference
systems with an emphasis on modern realizations of these geodetdinate systems. The
adjective,geometric, implies that no attempt is made to introduce the Earth’s griity which
historically formed an integral part of geodetic control. Of seuthe gravity field still holds a
prominent place in geodesy and it is covered in other courseswitBuhe advent of the Global
Positioning System (GPS), it arguably has a more spedalde to play in establishing and
realizing our reference systems, restricted essentallyaditional vertical control. For this
reason, the vertical datum is covered only briefly, since a tgbromderstanding (especially
with respect to transformations between vertical datums) can benlgchieved with a solid
background in geopotential modeling.

These notes are fashioned after corresponding texts of the previgges; notably R.H. Rapp’s
lecture notes, P.K. Seidelmann’s supplement to the Astronomicainatmand the International
Earth Rotation and Reference Systems Service (IERS) Techwatak on reference system
conventions. The present exposition is largely self-contained, leoywawd the reader need only
refer to these and other texts in a few instances to obtaixtanded discussion. The new
reference system conventions recently (2003, 2010) adopted by the tloterhAstronomical
Union (IAU) and the IERS have been added in a way that emphasidedlustrates the
evolution of reference systems that new satellite and spacevatises have wrought. The
current (2016) edition of these notes replaces the previous (2006, 201@y<editth several
revisions that correct errors or better elaborate some corargptiat bring the entire content up
to date, although the general topic is in a permanent state of evastioew techniques and
observational accuracies are achieved. In particular, the upcoainegdy implemented in
some cases) new paradigms in geodetic control in the U.S. ancheteewill modernize and
bring improved consistency to this important aspect of infrastrutdusciety and geophysical
science.

Problems are included to help the reader get involved in the densatf the mathematics of
reference systems and to illustrate, in some cases, the numerictd aplee topics.
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Chapter 1

Introduction

Geodesy is the science of the measurement and mapping of rtieés Bairface, and being
essentially an application of mathematics it makes use of cabedi and associated reference
systems. The object of this book is to study the various locagnadg and global reference
systems that are in use to describe coordinates of points onrth&s Barface or in near space
and to relate them to each other as well as to some "absbhuteg, visually, a celestial frame.
As the title of the book implies, we deal mostly with the geoynatthese systems, although the
physics of the Earth plays a very important part. However, ¢hevant geophysics and
geodynamics are discussed more comprehensively in other courggs/sical geodesy and
geodynamics. Also, the mapping of points and their coordinatesrenfane, that is, the topic
of map projections, is not treated in this text. The purpose islyrai explore the geometric
definition of reference systems and their practical realizations.

To establish coordinates of points requires that we set up a coerdysiém with origin,
orientation, and scale defined in such a way that these arssddeegto all users. Only until
recently, the most accessible reference for coordinatesaglobal perspective was the celestial
sphere of stars that were used primarily for charting and nangdtut also served as a
fundamental system to which other terrestrial coordinate sgstemid be oriented. Still today,
the celestial reference system is used for that purpose antierthought of as the ultimate in
reference systems. At the next level, one defines coordindatsrsyattached to the Earth with
various origins (and perhaps different orientations and scale). Wéahestwo fundamental
tasks before us:

1) to establish an external ("inertial") coordinate systeimmuoflocal universe that we
assume remains fixed in the sense of no rotation; and
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2) to establish a coordinate system attached to our rotating bitidgpEarth, and in
so doing to find the relationship between these two systems.

In fact, we will develop the terrestrial coordinate systesfore discussing the celestial
system, since the latter is almost trivial by comparisonthadmportant aspects concern the
transformation between the systems.

1.1 Preliminary Mathematical Relations

Although the conventional and well known Cartesian coordinateg,z, are certainly the

simplest from a mathematical perspective, the Earth islynesgherical and for global
applications, some type of curvilinear coordinates may be prederabhdeed, spherical
coordinates and spherical trigonometry are essential tools fondtteematical manipulations of
coordinates of objects on the celestial sphere. Similarly, l&dragterrestrial coordinates, the
early map makers used spherical coordinates, although, today, theaecty used for geodetic
terrestrial systems except with justified approximationds ltseful, nevertheless, to review the
polar spherical coordinates, according to Figure 1.1, whege is the co-latitude (angle from the
pole), A is the longitude (angle from theaxis), andr is radial distance of a point. Sometimes
the latitude,@, is used instead of the co-latitude — but we resenfer the "geodetic latitude”
(Figure 2.5) and usgy = 77/2- 6 instead to mean "geocentric" latitude.

X

Figure 1.1: Spherical polar coordinates.
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On a unit sphere, the “length” (in radians) ofraaq circle arc is equal to the angle subtended
at the center (see Figure 1.2). For a spheri@aigle, we have the following useful identities
(Figure 1.2):

sina _ sinb _ sinc |

. R - . ) (1.1)
sina sing  siny

law of sines:

law of cosines: cosc= co® cob+ sia sim cg-. (1.2)

If a set of coordinate axes is rotated about any xxough the origin, the Cartesian coordinates
of a given point change as reckoned in the rotagtd The coordinates change according to an
orthogonal transformation, known as a rotationjraef by a3x 3 matrix, e.g.,R(a) :

=R(a)| y| . (1.3)

new old

where a is the angle of rotation (positive if counterclagge as viewed along the axis toward
the origin).

Figure 1.2: Spherical triangle on a unit sphere.
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Specifically (see Figure 1.3), a rotation abowt th-axis (1-axis) by the angleg, is
represented by

1 0 0
R(a)=|0 cosxz sin |; (1.4)
0 -sina cosx

a rotation about theg -axis (2-axis) by the angle?, is represented by

cosf 0 -sing
R(B)=| 0 1 0 | (1.5)
sing 0 coss

and a rotation about the-axis (3-axis) by the angleg, is represented by

cosy  siny
R(y)=|-siny coy 0 (1.6)
0 0 1

where, for example(Ri(a)) = R (-a), and the property of orthogonality yields
R'=R', j=12=% (1.7)

The rotations may be applied in sequence and thértaation thus achieved will always result
in an orthogonal transformation. However, the tfotes are not commutative; in general,

R(a)R(B) 2 R(B)R(a).
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Figure 1.3: Rotations about coordinate axes.

1.2 Reference Systems and Frames

It is important to understand the difference betwaereference system for coordinates and a
reference frame since these concepts apply thrauighe discussion of coordinate systems in
geodesy. According to the International Earth Rotaand Reference Systems Service (IERS,
see Section 3.3):

A Reference System is a set of prescriptions and conventions togethién the
modeling required to define at any time a triad@drdinate axes.

A Reference Frame realizes the system by means of coordinates ohiteefpoints
that are accessible directly by occupation or bgeokation.

A simple example of a reference system is the sé¢hree mutually orthogonal axes that are
aligned with the Earth’s spin axis, a prime (Gremmv meridian, and a third direction
orthogonal to these two. That is, a system defim@s the axes are to be established (e.qg.,
mutual orthogonality and right-handedness), whaobties or models are to be used (e.g., what
we mean by a spin axis), and what conventions areetused (e.g., how theaxis is to be
chosen — where the Greenwich meridian is). A stnglample of a frame is a set of points
globally distributed whose coordinates are givembers that are mutually consistent in the
reference system. That is, a frame is the physealization of the system defined by actual
coordinate values of actual points in space thatagcessible to anyone. A frame cannot exist
without a system, and a system is of no practiahleswithout a frame. The explicit difference
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between frame and system was articulated fairhenmtg in geodesy (see, e.g., Moritz and
Mueller, 1987, Ch.9), but the concepts have beehodrad in the terminology of geodetic
datum that can be traced to the eighteenth century amblee (Torge, 1991; Rapp, 1992).
Indeed, the definition of a datum today refers gmadly to the conventions that establish how
the system is attached to the Earth — its origgprientation, and its scale. In this sense the
definition of a datum has not changed. The meaafregdatum within the context of frames and
systems is explored in more detail in Chapter 3.

1.3 The Earth’s Shape

The Figure of the Earth is defined as the physical (and mathematicalh&extent it can be
formulated) surface of the Earth. Itrmalized by a set of (control) points whose coordinates are
determined in some well defined coordinate systefrhe realization of the system applies
traditionally to land areas, but is extended toayclude the ocean surface and the ocean floor
with appropriate methods for their realizations.

The first approximation to the figure of the Eaikha sphere; and the coordinates to be used
would naturally be the spherical coordinates, dsee above (Figure 1.1). Even in antiquity it
was recognized that the Earth must be (more o) Iggkerical in shape. The first actual
numerical determination of the size of the Eartlerisdited to the Greek scholar Eratosthenes
(276 — 195 B.C.) who noted that at a particulaetioh year when the sun is directly overhead in
Syene (today’'s Aswan) it makes an angle, accordmghis measurement, o¥°12' in
Alexandrid. Further measuring the arc length between thecities, he used simple geometry
(Figure 1.4),

R=—, (1.8)

to arrive at a radius oR=6267 km, which differs from the actual mean Earth radiysobly
104 km (1.6%) (scholars think that it may be a jucsult, considering the various assumptions
that were mad®. See also Rapp (1991), who quotes an error ofah® Torge (2001), who
gives an error of 7%. These errors depend entmalythe accepted, perhaps controversial,
conversion of the distance unit used by Eratosthethe ‘Egyptian stadium,’ to the current unit,
the meter. Further details are given by Fisch@7$).

! which, however, is slightly3®) west of Aswan in longitude.
% see, e.g., http://en.wikipedia.org/wiki/History _of geodes
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Figure 1.4: Eratosthenes’ determination of Eanthtius.

A few other determinations were made, but notl @iéé middle of the Renaissance in Europe
(16th century) did the question seriously ariseardimg improvements in determining Earth’s
size. Using very similar, but more elaborate pdores, several astronomers and scientists made
various determinations with not always better rssuFinally by the time of Isaac Newton (1643
— 1727) the question of the departure from the phleshape was debated. Various arc
measurements in the 17th and 18th centuries, dsasdlewton’s (and others’) arguments based
on physical principles, gave convincing proof ttte# Earth isdlipsoidal in shape, flattened at
the poles, with approximate rotational symmetryulibe polar axis. An engaging account of
the controversy raging through the scientific comityin the 18' century of whether the Earth
is flattened or elongated at the poles is givenWlyitaker (2004). The debate was finally
resolved conclusively with measurements of arcs theaequator and at higher latitude, where a
pole-flattened Earth implies that one degree ofisrsubtended by a shorter distance near the
equator.

The next best approximation to the figure of treatlk, after the ellipsoid, is known as the
geoid, the equipotential surface of the Earth’s gra¥igyd that closely approximates mean sea
level. Anequipotential surface is a surface on which the gravity potémsia constant value.
While the mean Earth sphere deviates radially byoup4 km (at the poles) from a mean Earth
ellipsoid (a surface generated by rotating an s#lipbout its minor axis; see Chapter 2), the
difference between the mean Earth ellipsoid andyted amounts to no more than 110 m, and
in a root-mean-square sense by only 30 m. Thugaat over the oceans (over 70% of Earth’s
surface), the ellipsoid is an extremely good appnation (5 parts per million) to the figure of
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the Earth. Although this is not sufficient accyrdor geodesists, it serves as a good starting
point for many applications; the ellipsoid is alde mapping surface for most national and

international control surveys. Therefore, a stoflthe geometry of the ellipsoid is given in
some detail in the next chapter.
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1.4 Problems

1. Write both the forward and the reverse relatigus between Cartesian coordinates,y, ),
and spherical polar coordinatds, 8,1) .

2. Write the law of cosines for the spherical tgken analogous to (1.2), when the left side is
cosb. Also, write the law of cosines for the trianglegles, instead of the triangle sides (consult
a book on spherical trigopnometry).

3. Show that for rotations about the, y-, and z-axes, by small anglesr, £, and y, the
following approximation holds:

1 y -B
R(V)R(B)R(a)=|-y 1 a | (1.9)
L -a 1

and, that this is independent of the order of thation matrices.
4. Determine the magnitude of the angles thatlesvald so that the approximation (1.9) does

not cause errors greater than 1 mm when appliedrtestrial coordinates (use the mean Earth
radius,R=6371 km).
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Chapter 2

Coordinate Systems in Geodesy

Coordinates in geodesy traditionally have conformed to the Eattlaise, being spherical or a
type of ellipsoidal coordinates for regional and global applicatiand, Cartesian for local
applications where planar geometry suffices. Nowadays, wittlises providing essential
reference systems for coordinates, the Cartesian type impstant and useful for global
geospatial referencing. Because the latitude/longitude condépiways have the most direct
appeal for terrestrial applications (surveying, near-surfacgaton, positioning and mapping),
it is important to study in detail the coordinates associatdd avitellipsoid. In addition, since
astronomic observations have a profound historical significance inirdgfamd realizing our
reference systems and should be in the knowledge bank of any geodesisthatoti
(astronomic) and celestial coordinates are covered. Local co@sliaeg based on the local
vertical and deserve special attention, not only with respect ttefiretion of the vertical, but in
regard to their connection to global coordinates. In all casexdbealinate systems are
orthogonal, meaning that surfaces of constant coordinates intalwags at right angles. Some
Cartesian coordinate systems, however, are left-handed, rathahéasual right-handed, and
this will require extra (but not burdensome) care.

2.1 The Ellipsoid and Geodetic Coordinates

We treat the ellipsoid of revolution, its geometry, associated cotedimmd points on or above
(below) it, and geodetic problems of positioning and establishing netvworéa elementary
way. The motivation is to give the reader a more practical ejapicn and utilitarian approach
rather than a purely mathematical treatise of ellipsoidalmgéry (especially differential
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geometry), as well as a window into past geodetic practicks.rdader may argue that even the
present text is rather mathematical, which, however, cannot be du@dd no apologies are
made), and, that forays into historical methods have little beanngodern geodesy, but they
offer a deeper appreciation for the marvels of satellite-based geodetrol.

2.1.1 BasicEllipsoidal Geometry

It is assumed that the reader is familiar at least thi¢hbasic shape of an ellipse (Figure 2.1).
The ellipsoid for geodetic applications is formed by rotating an ellipse alisuninor axis,
which for present visualization is aligned with the Earth’s spis.aThis creates a surface of
revolution that is symmetric with respect to the polar axis aedeguator. Because of this
symmetry, one often depicts the ellipsoid simply as apselli The basic geometric construction
of an ellipse is as follows: for any two points, and F,, calledfocal points the ellipse is the

locus (path) of pointsP, such that the sum of the distand®5+ PF, is a constant.

Figure 2.1: The ellipsoid represented as an ellipse.

Introducing a coordinate systex,z) with origin halfway on the lineFF,, and z-axis

perpendicular toFF,, we see that ifP is on the x-axis, this constant is equal to twice the
distance fromP to the origin; this is the length of tkemi-major axiscall it a:

PF+ PF, = 2a. (2.1)
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Moving the point,P, to the z-axis, and letting the distance from the originrpdo either focal
point (F, or F,) be E, we also find by the theorem of Pythagoras that

E=va-b, (2.2)

where b is the length of theemi-minoraxis. E is called thdinear eccentricityof the ellipse
(and of the ellipsoid). From these geometricalsiderations it is easy to prove (left to the
reader), that the equation of the ellipse is given

X2 2

z
¥+F:1. (2.3)

An alternative geometric construction of the elégs shown in Figure 2.2, where points on
the ellipse are the intersections of the projestigerpendicular to the axes, of poirsand B,
sharing the same radius to concentric circles veithi, a and b, respectively. That is, a point,
P, on the ellipse is the intersection of lind® and BF . The proof is as follows. Let, z s be

distances as shown in Figure 2.2. Now

z_s Z_ 3§
4AOCB~A4ODA = Z=> = -2,
b a ¥ &
2 2 _
but x* + s’ = &; hence 0:%— a a2x2 :§+§—1. Hence,P represented byx, z) is on
the ellipse. QED
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Figure 2.2: Ellipse construction.

The ellipse, and hence the ellipsoid, is defingd tlwo essential parameters: a shape
parameter and a size (or scale) parameter (uri@ecircle or sphere that requires only one
parameter, the radius, which specifies its siz#).addition to the semi-major axi®, that
usually serves as the size parameter, any onenafrder of shape parameters could be used.
We have already encountered one of these, ther lemzentricity, E. The following are also
used; in particular, thigattening

f=22, (2.4)

thefirst eccentricity

e:—“aza_bz; (2.5)

and, thesecond eccentricity

e':—“""zb'bz. (2.6)
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Note that the shape parameters (2.4), (2.5), aijJ §2e unit-less, while the linear eccentricity,
(2.2) has units of distance. There are usefutioglships among these parameters (which are left
to the reader to derive):

@=2f- f2, 2.7)
E = ae, (2.8)
gz g2 € (1- €)(2+ &) =1 (2.9)
1+e?’ 1-¢’ ! -
2f - f2
2= 2.10
" Tty 219

When specifying a particular ellipsoid, one gehigrdenotes it by the pair of parameters,
(a, f). Many different ellipsoids have been defined he past. The current internationally

adopted mean Earth ellipsoid is part of the Geodeéiference System of 1980 (GRS80) and has
parameter values given by

a=6378137 m

2.11
f =1/298.25722210 ( )

Table 2.1 from (Rapp, 1991, p.169) lists ellipsoitifined in modern geodetic history. The
parameter estimates of the best-fitting ellipsardthe mean tide system) were published by
Groten (2004) as

a=6378136.72 0.1 m

2.12
1/ f =298.2523% 0.000( ( )

Note that these values do not define an adoptguseid; they include standard deviations and
merely give the best determinable values baseduorerd technology. On the other hand,
certain specialized observing systems, like the EXRBatellite altimetry system, have adopted
ellipsoids that differ from the standard ones KRS80 or WGS84 (Table 2.1). It is, therefore,
extremely important that the user of any systentamrdinates or measurements understands
what ellipsoid is implied. It is noted that theRE (Petit and Luzum 2010) recommends the use
of the GRSB8O0 ellipsoid.
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Table 2.1: Terrestrial Ellipsoids, from (Rap

19%aple 10.1).

Ellipsoid Name (year computed) semi-major axisa [m] | inverse flattening}/
Airy (1830) 6377563.396 299.324964
Everest (1830) 6377276.345 300.8017
Bessel (1841) 6377397.155 299.152813
Clarke (1866) 6378206.4 294.978698
Clarke (1880) 6378249.145 293.465
Modified Clarke (1880) 6378249.145 293.4663
International (1924) 6378388. 297.
Krassovski (1940) 6378245. 298.3
Mercury (1960) 6378166. 298.3
Geodetic Reference System (1967), GRS67 6378160. 8.28P1674273
Modified Mercury (1968) 6378150. 298.3
Australian National 6378160. 298.25

South American (1969) 6378160. 298.25

World Geodetic System (1966), WGS66 6378145. 298.25
World Geodetic System (1972), WGS72 6378135. 298.26
Geodetic Reference System (1980), GRS80 6378137. 8.221222101
World Geodetic System (1984), WGS84 6378137. 29228563
TOPEX/Poseidon (1992) (IERS recomm.)* 6378136.3 298

" McCarthy (1992)
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21.1.1 Problems

1. From the geometrical construction describedrgnoequation (2.3), derive the equation for
an ellipse, (2.3). [Hint: For a point on the edlgy show that

\/(x+ E)+ 22+\/( x- B+ 2=2¢

Square both side and show that

227~ X~ B~ Z=\(x B+ 2 x E+ %

Finally, square both sides again and reduce thatresfind (2.3).]
What would the equation be if the center of thgpsd were not at the origin of the coordinate
system?

2. Derive equations (2.7) through (2.10).

3. Consider the determination of the parameterncéllipsoid, including the coordinates of its
center, with respect to the Earth. For examplppese it is desired to find the ellipsoid that best
fits through a given number of points at mean ss&ll Assume that the orientation of the
ellipsoid is fixed so that its axes are paralletite global, geocentric coordinate frame attached
to the Earth.

a) What is the minimum number of points with knon Y, z) coordinates that are needed

to determine the ellipsoid and its center cooraisat Justify your answer.

b) Describe cases where the geometry of a givenfgeoints would not allow (a robust)
determination of 1) the flattening, 2) the sizeha ellipsoid.

c) What distribution of points would give the stgest solution? Provide a sufficient
discussion to support your answer.

d) Set up the linearized observation equationsthachormal equations for a least-squares
adjustment of the ellipsoidal parameters (includtegenter coordinates).
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2.1.2 Ellipsoidal Coordinates

In order to define practical coordinates of poimtsrelation to the ellipsoid, we consider the
ellipsoid with conventiona(x, Y, z) axes whose origin is at the center of the elligsdror any

particular point,P, in space, it is necessary first to define theridian plandor that point. It is
the plane that contains the point, as well as tm@mnaxis of the ellipsoid. Thiengitudeof P is
then given by the angle in the equatorial planenftbe x-axis to the meridian plane. This is the
same as the spherical longitude (due to the rot@teymmetry); see Figure 1.1. For the latitude,
we have a choice. Tlgeocentric latitudef P is the angley, at the origin and in the meridian
plane from the equator to thradial line through P (Figure 2.3). Note, however, that the
geocentric latitude is independent of any definédseid and, as already noted in Section 1.1, it
is identical to the complement of the polar angéraed for the spherical coordinates.

Y  a

X
Figure 2.3: Geocentric latitude.

Next, consider the ellipsoid throudh that is confocal (sharing the same focal pointish w
the eIIipsoid,(a, f); that is, it has the same linear eccentricy, Its semi-minor axis is

(Figure 2.4), which can also be considerexmardinateof P. Thereduced latitude 8, of P is

defined as the angle at the origin and in the naariglane from the equator to the radial line that
intersects the projection d?, along the perpendicular to the equator, at theerspof radius,

V=V E + 7.
Finally, we introduce the most common latitudeduse geodesy, appropriately called the
geodetic latitude This is the angleg, in the meridian plane from the equator to the timough

P that is also perpendicular to the basic eIIips(oidf); see Figure 2.5. The perpendicular to

the ellipsoid is also called tmormalto the ellipsoid. Both the reduced latitude amel geodetic
latitude depend on the underlying ellipsofd, f).
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- sphere (radius %)

‘ \/ellipsoid (va-1-E/%)

ellipsoid (a, f)

¥ a

< v > X

Figure 2.4: Reduced latitudegg, of P. Ellipsoid (a, f) and the ellipsoid throug® have the

same linear eccentricityg .

X
Figure 2.5: Geodetic latitude.

The relationships between these various latituday be determined by formulating the
coordinatesx, z of P in terms of each type of latitude. It turns cudttthese relationships are

straightforward only wherP is on the ellipsoid; but for later purposes, tlag derived for
arbitrary points. For the geocentric latitugle, simple trigonometry gives (Figure 2.3)

X=rcosy, z=rsiny. (2.13)

Also, for the reduced latitude, simple trigononetormulas applied in Figure 2.4 as in Figure
2.2 yield

X=VCcosf, z= usings. (2.14)
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For the geodetic latitude, consider first the pof, on the eIIipsoid,(a, f). From Figure

2.6, the geometric interpretation of the derivatimeslope, of the ellipse gives

tan( 90 - ¢) =_d—£(. (2.15)

The right side is determined from equation (2.3),

2 2
zZ:bz(l—X—j = 2zdz=-22 xdx=> dz_ x (2.16)
a

and, when substituted into equation (2.15), thetdg

b*x?sin’@= a’ 7 cos'y. (2.17)
Also from equation (2.3), there is

b*’x*+a’Z = & 1. (2.18)
Now, multiply equation (2.18) byb*sin® ¢ and add it to equation (2.17), thus obtaining

zz(a2 cos’ g+ I? sinzrp) = b* sirfe, (2.19)
which reduces to

_ a(l—ez)sinw

7= ——or»t
J1-€sinf g

(2.20)
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With a similar procedure, multiplying equation 18) by a’cos ¢, adding it to equation
(2.17), and simplifying, one obtainthé reader should verify this

y=_ acosy (2.21)

J1-€’sinf g

To find the(x, z) coordinates of a point above (or below) the efligswe need to introduce

a height coordinate, in this case #ipsoidal height h, above the ellipsoid (it is negative, i
is below the ellipsoid);h is reckoned along the perpendicular (the normaljhe ellipsoid
(Figure 2.6). It is a simple matter now to expreé:xsz) in terms of geodetic latitude and

ellipsoidal height:

a(l-€)sin
X:ﬂ.{-hcow, zZ= ( ) $

J1-€’siifg J1-€ sifg

It is easy to find the relationship between tHéedent latitudesif the point is on the ellipsoid
(h=0). Combining equations (2.13), (2.14), both sdex@d to the basic ellipsoidu(= b), with
equations (2.20) and (2.21), one obtains the fafigwelationships among these three latitudes,
using the ratioz/ x,

+ hsimp. (2.22)

_b b
tany = — tanB =— tamp, (2.23)
a a

which also shows that
Y<B<y. (2.24)

Again, it is noted that the relationship (2.23)dsobnly for points on the ellipsoid. For arbitrary
points in space the problem is not straightforwamd is connected with the problem of finding
the geodetic latitude from given rectangular (Casie) coordinates of the point (see Section
2.1.5).

The ellipsoidal height, geodetic latitude, andgitumde, (h,q),/i), constitute thegeodetic
coordinatesof a point with respect to a given eIIipsoi(la, f). These areorthogonal
coordinates, in the sense that surfaces of constarg, and A are orthogonal to each other.
The triple ofellipsoidal coordinates(u,,[z’,A), is also orthogonal; and, in fact, these cooréisat
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are more useful than geodetic coordinates for soma¢hematical developments since the
coordinate surfaces are relatively simple conssrgetoblem 2.1.2.1-4). The surface of constant

h, on the other hand, is not a simple shape (itoisam ellipsoid). However, the geodetic
coordinatesg, h, are certainly more intuitive thafi,u. They are the coordinates of choice for

many standard geodetic applications.
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2.1.2.1 Problems

1. Derive the following expressions for the diffeces between the geodetic latitude and the
geocentric, respectively, the reduced latitudgsodrfits on the ellipsoid:

_ .~ €sin2p
tan(g-y) 2(1—e2 sinzw)’ (2.25)
tan(@- B) =% , (2.26)

wheren=(a-b)/(a+ b. (Hint: see Rapp 1991, p.26.)

2. Calculate and plot the differences (2.25) an@gRfor all latitudes,0< @< 9C° using the
GRS8O0 ellipsoid parameter values.

3. Show that the differendgp— ) is maximum Whem):%cos‘l(—n) .

4. Mathematically and geometrically describe thefames of constantu, £, and, A,

respectively. As the linear eccentricity approachero, what do these ellipsoidal coordinates
and surfaces degenerate into?
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2.1.3 Elementary Differential Geodesy

This section derives the differential elements loa gurface of the ellipsoid and, in the process,
describes the curvature of the ellipsoid. Theedéhtial elements are used in developing the
geometry of geodesics on the ellipsoid and in sgivihe principal problems in geometric
geodesy, namely, determining the endpoint coordsaf geodesics, which are the elements
(sides) of triangulation networks.

2.1.3.1 Radii of Curvature

Consider a curve on a surface, for example a naaridic or a parallel circle on the ellipsoid, or
any other arbitrary curve. The meridian arc arelgéarallel circle are examplesmfne curves
curves that are contained in a plane that intesgbet surface. The amount by which the tangent
to the curve changes in direction as one movesgdioa curve indicates thaurvature of the
curve. Curvature may be defined geometricallyodlews:

Thecurvature y, of a plane curve is the absolute rate of chamgieeoslope angle of
the tangent line to the curve with respect to angth along the curve.

If a is the slope angle amslis arc length, then mathematically,

da
ds

_ (2.27)

With regard to Figure 2.7a, let be the unit tangent vector at a point on the guihe direction
of A identifies the slope of the curve at that poi@bnsider also the plane that locally contains
the infinitesimally close neighboring tangent vestdhat is, it contains the direction in whidh
changes due to the curvature of the curve. Foreptairves, this is the plane that contains the
curve. The unit vector that is in this plane amuipendicular toA, called x4, identifies the
direction of theprincipal normalto the curve. Note that the curvature, as giverquation

(2.27), has units of inverse-distance. The recipr®f the curvature is called thradius of
curvature p:

p== (2.28)
X

The radius of curvature is a distance along thecgral normal to the curve. In the special case
that the curvature is a constant, the radius ofature is also a constant and the curve is the arc
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of a circle. One may think of the radius of cutratat a point of an arbitrary curve as being the
radius of the circle tangent to the curve at tluabipand having the same curvature.

A curve on the surface may also have curvaturé shat it cannot be embedded in a plane.
A corkscrew is such a curve. Geodesics on thpselid are geodetic examples of such curves.
In this case, the curve has double curvaturépimion We consider only plane curves for the
moment.

ds

"

U
a) b)
Figure 2.7: Curvature of plane curves.

Let z=z( X describe the plane curve in terms of space coatefi{x, z). In terms of arc
length, s, one can writex = x(s) and z= z( §; and, a differential arc lengths, is then given

by
ds=+/d¥ + dZ . (2.29)

This can be re-written as

ds= [1+[ 9] ax. (2.30)
dx

Now, the tangent of the slope angle of the curvexictly the derivative of the curvez/ dx;
hence

a= tan'l(d—zj : (2.31)
dx

Using equations (2.27) and (2.30), one obtainghHercurvature,
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1 |d*4 1 (2.32)

so that, finally,

oz
dx®
X:—m- (2.33)
1+(dzj
dx
For the meridian ellipse, one has from equati@ss) and (2.16),
dz__b x__cosp. (2.34)
x &z sing

and, the second derivative is obtained as follds details are left to the reader),

G2 G, @ a
e & z{1+ bz( dJ ] (2:39)

Making use of equations (2.19), (2.34), and (2.8%,curvature, equation (2.33), becomes

b* JaZcog p+b? sirt g a2 cos g+ b’ sirfg

_a’ b?sing b’ sin’g
/Y_ § 3/2
(1+ cos ¢j (2.36)
sin @
:bilz(l—e2 sin’ q))

This is the curvature of the meridian ellipse;résiprocal is the radius of curvature, denoted
conventionally asv ,
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a(l— e2)
(1—e2 sin? qa)sy

M = - (2.37)

where equation (2.5) is used. Note thétis a function of geodetic latitude (but not longie,
because of the rotational symmetry of the ellipsoidsing the expression (2.27), the curvature
of the meridian curve on the ellipsoid is

1 _|d

= d—‘j, (2.38)

since the slope angle of the ellips®® — ¢ (see Figure 2.6); and, hence, sidde>0 (always)

dS'neridian = MCle (239)

which is the differential element of arc along theridian. The absolute value is removed with
the convention that itlg>0, thends>0; and, ifdg<0, thends<O0.

The radius of curvaturayl , is the principal normal to the meridian curved atherefore, it
lies along the normal (perpendicular) to the etlipgsee Figure 2.8). At the pole€90°) and
at the equatorgg=0°) it assumes the following values, from equatio8372

M :a(l—e2)<a

. (2.40)
M pole = —2 >a
1-¢€

equator

showing thatM increases monotonically from equator to eitherepaethere it is maximum.
Thus, also the curvature of the meridian decre@somes less curved) as one moves from the

equator to the pole, which agrees with the fact tha ellipsoid is flattened at the poles. The
length segmentM , does not intersect the polar axis, exceppat90°. It happens that the

"lower" endpoint of the radius falls on a curveirsdicated in Figure 2.8. The valueb and 4,
are computed as follows

A=a-M -a—a(l—é)zaé

equator
4,= Ivlpole_b: -b=be? (2.41)

o o|w

Using values for the ellipsoid of the Geodetic Refiee System 1980, equation (2.11), these are

Geometric Reference Systems 2-17 Jekeli, August 2016



4 =42697.67 n

(2.42)
4, =42841.31n

4,

Figure 2.8: Meridian radius of curvature.

So far only the meridian curve has been considefdd point on the ellipsoid, the curvature

of any other curve through that point is generdilferent. In particular, imagine the class of
curves that are generated as follows. At a pairthe ellipsoid, le be the unit vector defining

the direction of the normal to the surface. By Hyenmetry of the ellipsoid¢ lies in the
meridian plane. Now consider any plane that castdi; it intersects the ellipsoid in a curve
known as anormal section"normal” because the plane contains the norm#idcellipsoid at a

point) (see Figure 2.9). The meridian curve ipecgl case of a normal section; but the parallel

circle is not a normal section; even though it {[gane curve, the plane that contains it does not
contain the normal¢. A normal section on a sphere is a great cianhet the shortest spherical

path between two points on the sphere is a greeecarc. However, as shown below, the
shortest ellipsoidal path between two points orelhpsoid is (usuallypota normal section.
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parallel circle

normal section

Figure 2.9: Normal section (shown for the primeticat).

The normal section drawn in Figure 2.9, is anots@ecial case; it is thprime vertical
normal section- it is perpendicular to the meridian. Note théile the prime vertical normal
section and the parallel circle have the same tangiere they meet, they have different
principal normals. The principal normal of the adbal circle (its radius of curvature) is parallel
to the equator, while the principal normal of th@ne vertical normal section (or any normal
section) is the normal to the ellipsoid — but & fhoint only!

In differential geometry, there is the followingebrem due tdeusnier(e.g., McConnell,
1957)

Theorem: For all surface curvesC, with the same tangent vector at a point, eachirgav
curvature, x., at that point, and the principal normal of eaclaking an angle,g., with the

normal to the surface, there is

Xc COsg, = constar. (2.43)

Xc cosd. is called thenormal curvatureof the curve,C, at the point of tangency.

Applying this theorem to the ellipsoid, considbe tset of all curves that share the same
tangent at a point as the prime vertical normatisec For the prime vertical normal section,
one clearly hasg. =0°, since its principal normal is also the normalthe ellipsoid at that

point. Hence, the constant in equation (2.43}H@ set of curves is

constant Xprime vertical normal sectic* (244)

The constant is the curvature of that normal sedidahe point. Defining
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1
Xprime vertical normal section: ﬁ ' (245)

N is the radius of curvature of the prime verticalmal section at the point on the ellipsoid

where this radius is normal to the ellipsoid. Ttaallel circle through that point has the same
tangent as the prime vertical normal section, édadius of curvature i® =1/ X . e cie- THE

angle of its principal normajf, with respect to the ellipsoid normal is the gemdiatitude, @
(Figure 2.6). Hence, from equations (2.43) - (2.45

1cos¢:i, (2.46)
p N

which implies that
p = Ncosg, (2.47)

and thatN is the length of the normal to the ellipsoid frtime point on the ellipsoid to its minor
axis (see Figure 2.10).

Figure 2.10: Prime vertical radius of curvature.

The x-coordinate of a point on the ellipsoid whogecoordinate is zero is given by equation
(2.21); but this is als@. Hence, from equation (2.47)

N=—2& (2.48)

J1-€sifg
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From Figure 2.10 and equation (2.20), the poinntdrsection ofN with the minor axis is the
distance from the ellipsoid center given by

A=Nsing-z= N€ sing. (2.49)

At the equator £=0°) and at the poles¢{=+90°), the prime vertical radius of curvature
assumes the following constants, according to enqué2.48):

Nequator: a
2.50
Npole -_a >a ( )
1-¢

and we see thall increase monotonically from the equator to eifhede, where it is maximum.
Note that at the pole,
N .=M

pole —

(2.51)

pole?

since all normal sections at the pole are meridiafgain, the increase ilN toward the poles
implies a decrease in curvature (due to the flatteof the ellipsoid). FinallyN = a agrees

equator
with the fact that the equator, being the primeigal normal section for points on the equator, is
a circle with radiusa.
Making use of the basic definition of curvaturetlas absolute change in slope angle with
respect to arc length of the curve, equation (2.&@&)find for the parallel circle,

1

P

da
ds

; (2.52)

and, therefore, again removing the absolute valiie thhe convention that itiA <0 (dA >0),
then alsods<0 (ds>0), there is,

d%)arallel circle: NCOS¢ d" = d%rime vertical normal g@&m ? (253)
where the second equality holds only where thellgarercle and the prime vertical normal
section are tangent.

From equations (2.37) and (2.48), it is easilyfiezt that, always,

M<N. (2.54)
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Also, at any pointM and N are, respectively, the minimum and maximum raélicurvature
for all normal sections through that pointM and N are known as therincipal radii of
curvatureat a point of the ellipsoid. For any arbitrarynei the differential element of arc,
using equations (2.39) and (2.53), is given by

ds:\/Mzcka2+ N cos’p d1 2. (2.55)

To determine the curvature of an arbitrary norseddtion firstly requires a definition of the
direction of the normal section. Theormal section azimutha , is the angle measured in the
plane tangent to the ellipsoid at a point, cloclewa&bout the normal to that point, from the
(northward) meridian plane to the plane of the rarsection. Euler's formula gives the
curvature of the normal section having normal secéizimuth,a , in terms of the principal radii
of curvature:

_ 1 _sifa  coda
ter TN (2.56)

The radius of curvatureR,, of the normal section in azimutky,, can be used to define a

meanlocal radius of the ellipsoid. This is appropeigglthough rarely used) if locally one
wishes to approximate the ellipsoid by a spheréis tadius is the radius of the locally
approximating sphere. For example, one type ofmh@eal radius is th&aussian mean radius
which is the average of the radii of curvaturelbharmal sections at a point:

2T 2
1 1 da
= (h’:_J.
Re 277.!: R 2770 sir12c7+ coda
N M (2.57)
_ N = a(l—.f)
1-€’sif g

as shown in (Rapp, 1991, p.44; see also Problen3.2.11.). Note that the Gaussian mean
radius is a function of latitude. Another approaing radius is thenean radius of curvature
defined from the average of the principal curvature

-1
e

For the sake of completeness, other mean radiidafimed here that approximate the
ellipsoid globally rather than locally. One is @inerage of the semi-axes of the ellipsoid,

(2.58)
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R=%(a+ atb; (2.59)
another is the radius of the sphere whose surf@zeeguals that of the ellipsoid,

R, =,—, 2.60

A Nar (2.60)

where 2 is the area of the ellipsoid, given by (Rapp, 19942; see also Problem 2.1.3.4.-4.)

Z=2nb2( Y Lej (2.61)
1-¢© 2e 1+e
and, a third is the radius of the sphere whosemelaquals that of the ellipsoid,
3
=—V| , 2.62
R =2V 2.62)
whereV is the volume of the ellipsoid, given by
=2 e, (2.63)
3
Using the values of GRS80, all of these approxiomstimply
R=6371 km, (2.64)

as themean Earth radiusto the nearest km.

2.1.3.2 Normal Section Azimuth

Consider again a normal section defined at a pdintand passing through a target poit, see
Figure 2.11. We note that the pointg and n,, being the intersections with the minor axis of

the normals throughA and B, respectively, do not coincide (unlegg,=¢;). Therefore, the

normal plane atA that also contains the poif, while it contains the normal a, does not
contain the normal aB. And, vice versa! Therefore, unlegs = ¢, the normal section af

through B is not the same as the normal sectiorBathrough A. In addition, the normal
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section atA through a different target poinB', along the normal aB, but at heighth,., is
different than the normal section through (Figure 2.12). Note that in Figure 2.12Bn, and
AB'n, define two different planes containing the noraitah.

Both of these geometries (Figures 2.11 and 2.fi@ytahe definition of the azimuth & of
the (projection of the) target poing. If a,g is the normal section azimuth & at A, and

a,g is the azimuth, af\, of the "reverse” normal section coming frdnthrough A, then the
difference between these azimuths is given by Ra991, p.59),

2 2
aAB—a’AB:%sinaAB(N—Sj co§qo{ cosrAB—%N—s tawAj, (2.65)
A

A

where s is the length of the normal section. This is ppraximation where higher powers of
s/ N, are neglected. Furthermoredf,;. is the normal section azimuth &' at A, whereB'

is at a heighthy., along the ellipsoid normal & then Rapp (1991, p.63) gives the difference,

Opg = pg = %e'z COS @, simAB( cosr AB—%N—S tamAj : (2.66)
A A

The latter difference is independent of the hemfhthe pointA (the reader should understand
why!).

normal section
at 4 through B

normal section
at B through 4

Figure 2.11: Normal sections &t andB.
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Figure 2.12: Normal sections for target pointsiiecent heights.

2.1.3.3 Geodesics

Consider the following problem: given two points thie surface of the ellipsoid, find the curve
on the ellipsoid connecting these two points andrgathe shortest length. This curve is known
as thegeodesidcurve). Geodesics on a sphere are great circkeamnd these are plane curves;
but, as already mentioned, on the ellipsoid, gdoddgmve double curvature — they are not plane
curves and their geometry is more complicated. WMe find the conditions that must be
satisfied by geodetic coordinates of points on @dgeic. The problem can be solved using the
calculus of variationsas follows.

Let ds be the differential element of arc of arbitrary curve on the ellipsoid. In terms of
differential latitude and longitude, this elemestgiven by equation (2.55), repeated here for
convenience,

ds= M?dg? + Ncos? di 2, (2.67)

If a is the azimuth of the curve at a point then thameint of arc at that point may also be
decomposed according to the latitudinal and lomigial elements using equations (2.39) and
(2.53):

Geometric Reference Systems 2-25 Jekeli, August 2016



dscosa = Mdp

2.68
dssina = Ncosp dA ( )

Let I denote the length of a curve between two poiRtgnd Q, on the ellipsoid. The geodesic
between these two points is the paghthat satisfies the condition:

Q
| :j ds - min. (2.69)
P

The problem of finding the equation of the curveler the condition (2.69) can be solved by
the method of the calculus of variations. This hodthas many applications in mathematical
physics and general procedures may be formulatedparticular, consider the more general
problem of minimizing the integral of some functioﬁ(x, y(%), y( >§) where y' is the

derivative of y with respect tox:

| :J'Fdx ~ min. (2.70)

It can be shown (Arfken 1970) that the integragquation (2.70) is minimizedl and only ifthe
following differential equation holds

doF _oF o (2.71)

This isEuler’s equation Note that both total and partial derivatives ased in equation (2.71).
It is an equation fory(x). A solution to this equation (in essence, bygration) provides the

necessary and sufficient conditions p@x) that minimize the integral (2.70).
In our case, by comparing equations (2.69) arncDj2we have

Fdx=ds; (2.72)
and, the points on an arbitrary curve on the alighsire identified by

p=9(A). (2.73)

That is, A is chosen to be the independent variable of tinetional description of the curve
(i.,e., y=@ and x= A in the more general formulation above). From &#qug?2.67),
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ds:\/M2d¢2+ Nzcoszwdﬂlzz\/ Mz(j—f) +( Ncos;o)2 oh; (2.74)

so that

2
F:\/Mz(j—fj +(Ncosp)® =F(pgp), (2.75)
where @' =dg/dA .
Immediately, it is seen that in this caSedoes not depend ah explicitly, i.e.,

oF _o (2.76)
oA

Now let F be that function that minimizes the path lengtigttis, F must satisfy Euler’s

equation. A first integral of Euler’'s equation{2) can be obtained from equation (2.76); it will
be shown that it is given by

F- (p'a—Fl = constan. (2.77)
0p

To prove this, we work backwards. That is, startwith equation (2.77), we obtain
something we know to be true, and in the end weiathat our steps of reasoning can be
reversed to get equation (2.77). Thus, differémtemuation (2.77) with respect Ao

d oF
—| F-¢'— |=0. 2.78
d/‘( ¢a¢.j (2.78)

Explicitly, the derivative is

df ,0F ., d oF
aF _ poF _, 9 0F o 2.79
a? o0 Ay 00 (2.79)

Now, by the chain rule applied ﬂé()l,w(A) ,w'(A)) , we get
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d_F:a_F+a_F¢'+a_F¢"
dA 04 Jd¢ OJ¢ (2.80)
—@(ﬂ g(ﬂ

because of equation (2.76). Substituting equdBd80) into equation (2.79) yields

oF d oF
————|=0. 2.81
¢(6¢ dA aqu (281

Since, in generalg' # 0, we must have

oF _dOF (2.82)

But this is Euler's equation, assumed to hold for particularF . That is, theF defined by
equation (2.77) also satisfies Euler's equatiorhe process can be reversed to get equation
(2.77) from equation (2.82); therefore, equatidh3{) and (2.82) are equivalent in this case and
equation (2.77) is a first integral of Euler's etjoa (it has now been reduced tdi@st-order
differential equation).

From equation (2.75), it follows that

oF _ M’y (2.83)
og \/ M 2p?+ (N cosp)’
Substituting this into equation (2.77) yields
2 2
F-¢ OF \/M¢+Ncos¢)— Mg -
64” \/M 29*+(N cosp)
2 (2.84)
N
( COS(”) = constant
\/ M 2@+ (N cosgo)

The last equation is the condition czp()l) that must be satisfied for points having coordisat

(@A) that are on the geodesic.
The derivative g', can be obtained by dividing the two equation6§R.
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do :wcota. (2.85)
dA

Substituting this derivative which holds for an idry curve into the condition (2.84) which
holds only for geodesics, we get

N cosg)”
( 540)2 = \/ N 205(0 =constan. (2.86)
cota+1
\/M z(l\“li/losqocotaj +(N cosrp)2
The last equality can be simplified to
N cosg sino = constar. (2.87)

This is the famous equation known@siraut’s equation All points on a geodesic must satisfy
this equation. That is, I€ is a geodesic curve on the ellipsoid, wheres the geodetic latitude

of an arbitrary point orC, anda is the azimuth of the geodesic at that point,(itee angle with
respect to the meridian of the tangent to the gagods that point), they and a are related
according to equation (2.87). Note that Clairawgiguation by itself is only a necessary
condition, not a sufficient condition, for a curte be a geodesic; that is, if points on a curve
satisfy equation (2.87), then this is no guararniee the curve is a geodesic (e.g., consider an
arbitrary parallel circle). However, Clairaut'suagion combined with the conditiog' # 0, is
sufficient to ensure that the curve is a geodeSiais can be proved by reversing the arguments
of equations (2.77) — (2.87) (see Problem 2.1.3.4-8

From equations (2.47) and (2.14), specialized b, we find

=Nco
P =0 (2.88)
=acospf
which gives another form of Clairaut’s equation:
cosp sinp = constar. (2.89)

Therefore, for points on a geodesic, the produthefcosine of the reduced latitude and the sine
of the azimuth is always the same value. The saquation holds for great circles on the sphere,
where, of course, the reduced latitude becomegebeentric latitude.

Substituting equation (2.88) into equation (2.§ives

psina = constan. (2.90)
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Taking differentials leads to
sinadp+ pcosr da = (. (2.91)
With equations (2.88) and (2.68), equation (2.94y ine expressed as

da=—P 41, (2.92)
cosa ds

Again, using equation (2.68), this is the same as

da=-—P 4. (2.93)
M dg

It can be shown, from equations (2.37) and (2.48,

dp _d .
—=—(Nco =-M simy. 2.94
io dw( sp) ny (2.94)

Putting this into equation (2.93) yields anothendais equatiorBessel’s equatian

da =singdA . (2.95)

This also holds only for points on the geodesics iboth a necessary and a sufficient condition
for a curve to be a geodesic under the same rastrias before. That is, the arguments leading
to equation (2.95) can be reversed to show thatémsequence of equation (2.95) is equation
(2.87), providedy' £ 0 (or, cosa # (), thus proving sufficiency.

Geodesics on the ellipsoid have a rich geometay e cannot begin to explore in this text.
The interested reader is referred to Rapp (1998) Bmomas (1970). However, it is worth
mentioning, without proof, some of the interestiagts of geodesics on the ellipsoid.

1) Any meridian is a geodesic.

2) The equator is a geodesic up to a point; thahes shortest distance between two points on
the equator is along the equator, but not alwaytearly, for two diametrically opposite points
on the equator, the shortest distance is alongrtaedian (because of the flattening of the
ellipsoid). So, starting from a given point on #éguator, the equator serves as the geodesic to
another point on the equator, if that point is tout close to the “antipode,” depending on the
flattening. At some critical point near the antigo(and for points beyond that), the geodesic
from the starting point jumps off the equator andsralong the ellipsoid with varying latitude,
until for the antipode, itself, the meridian is tp@odesic.
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3) Except for the equator, no other parallel cirsla geodesic (see Problem 2.1.3.4-7.).

4) In general, a geodesic on the ellipsoid is npla@e curve; that is, it is not generated by the
intersection of a plane with the ellipsoid. Thedesic has double curvature, or torsion.

5) It can be shown that the principal normal of gemdesic curve is also the normal to the
ellipsoid ateach point of the geodesic (for the normal section, phi@cipal normal coincides
with the normal to the ellipsoid only at the poivitere the normal is in the plane of the normal
section).

6) Following a continuous geodesic curve on thp®id, it reaches maximum and minimum
latitudes, @, =—@.... like a great circle on a sphere, but it does regeat itself on

circumscribing the ellipsoid (like the great cirdees), which is a consequence of its not being a
plane curve; the meridians and equator are theexdgptions to this.

7) Rapp (1991, p.84) gives the following approxiendrmula for the difference between the
normal section azimuth and the geodesic azimdifh, (see Figure 2.13):

. e? s Y 2 1 s
aAB_aAB:?S|naAB N_ Cco w COQAB_ZN— taWA
A A

(2.96)

1
:_(aAB _aIAB)
3

where the second approximation neglects the seeondwithin the parentheses.

reciprocal normal
sections

betweem andB
Figure 2.13: Normal sections versus geodesic oeltipsoid.

Geometric Reference Systems 2-31 Jekeli, August 2016



2.1.3.4 Problems

1. Split the integral in equation (2.57) into footegrals, one over each quadrant, and consult a

Table of Integrals to prove the result.

2. Show that the length of a parallel circle artween longitudes), and A, is given by
L =(A,-1,) N cosp. (2.97)

3. Find an expression for the length of a mericaam between geodetic latitudgs and ¢ .
Can the integral be solved analytically?

4. Show that the area of the ellipsoid surface betwlongitudesA, and A, and geodetic
latitudesg and ¢, is given by

(]

(e{0)

S(@.@.ApA,) = (AZ—AJI(l_eZ—zzq))dw. (2.98)
a

Then consult a Table of Integrals to show that ithikices to

b’ sin 1, 1+esinp)”
Saahd) =5 00 ey 2 e (2.99)
a

(wheree is the first eccentricity, not the exponentiahinally, prove equation (2.61).

5. Consider two pointsA and B, that are on the same parallel circle.

a) What should be the differences,; —a',z and a,; —a ,z, given by equations (2.65) and
(2.66), and why?

b) Show that in spherical approximation the pdretital term in equations (2.65) and
(2.66) is approximately zero if the two poins,and B, are on the same parallel, and if the
distances is not large (hint: use the law of cosines on sphetriangle ABO, whereO is the
north pole, to show that approximately

: : s . S
Sing, = sing, cos —+ COP, Sift— COB:
A A
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Then solve for cog,; and use small-angle approximations to second dafethe sine and
cosine).

6. Suppose that a geodesic curve on the ellipstétha a maximum geodetic latitude, . .
Show that the azimuth of the geodesic as it cragsesquator is given by

iy = SN | |, (2.100)
\/1— e’sinf g,

7. Using Bessel's equation show that a parallatle€iarc (except the equator) can not be a
geodesic.

8. Prove that ifg' # 0 then equation (2.87) is a sufficient condition &ocurve to be a geodesic,

i.e., equations (2.77) and hence (2.69) are sadisfiThat is, if all points on a curve satisfy
equation (2.87) , the curve must be a geodesic.
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2.1.4 Direct/ InverseProblems

There are two essential problems in the computatfaoordinates, directions, and distances on
a particular given ellipsoid (see Figure 2.14):

The Direct ProblemGiven the geodetic coordinates of a point oneltipsoid, the azimuth to a
second point, and the geodesic distance betweepoihts, find the geodetic coordinates of the
second point, as well as the back-azimuth (azim@tihe first point at the second point), where
all azimuths argeodesi@azimuths. That is,

given: ¢, A,,a,,s,,; find: @,4,.,a,.

The Inverse ProblenmGiven the geodetic coordinates of two points loa ¢éllipsoid, find the
geodesic forward- and back-azimuths (geodesic dhshuas well as the geodesic distance
between the points. That is,

given: ¢, A, ¢, A,; find: a,,a,,s,,.

The solutions to these problems form the basigdlating traditional geodetic observations of
angles and distances to the establishment of admal control network of point coordinates for
a region. That is, they provide for the solutidngeneral ellipsoidal triangles (Ehlert 1993),
analogous to the relatively simple solutions ofespdal triangles, which constitute the elements
of a triangulation network on the mapping surfabe, ellipsoid. There are many solutions that
hold for short lines (generally less than 100 — 200) and are based on some kind of
approximation; in fact, one solution to the problentdeveloped by approximating the ellipsoid
locally by a sphere. None of these developmenssmgler in essence than the exact (iterative,
or series) solution which holds for any lengthio&l The latter solutions are fully developed in
(Rapp, 1992). However, we will consider only orfettee approximate solutions in order to
obtain some tools for simple applications. In facday with GPS virtually replacing the
traditional distance and angle measurements fordejeo control, the direct problem is
essentially irrelevant in geodesy. The indirealypem is still quite useful as applied to long-
range surface navigation and guidance (e.g., feamc commercial navigation).
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Pole

geodetic meridians

geodesic

Pl
Figure 2.14: Ellipsoidal geometry for direct ansgiense geodetic problems.

One set of solutions of these problems is the hegeseries solution, first developed by
Legendre and published in tidémoiresof the Paris Academy in 1806 (Jordan 1962). The
geodesic may be parameterized by the arc lergtiso that both coordinates and the forward
geodesic azimuth for points along the geodesiduaretions of s,

p=9(s), 1=A(9, a=a(9. (2.101)

Let @ denote the back-azimuth, so that=a + . Then, a Taylor series expansion formally
yields:

B=g+ W‘Slz 2 dé”‘ EX (2.102)
dA 1 d?A
A=A +— +—— +een 2.103
2 1 dslslz 2| dg 1%2 ( )
52:a1+”+_ 812+i@ §2+...; (2104)
ds[, * 2! d$|,

where s, is the geodesic distance froR=(g,4,) to P, =(@,A,). The derivatives in each

case are obtained from the differential elements géodesic and evaluated at the starting point,
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B. The convergence of the series is not guararfteedll s,, but it is expected fos, <« R

(mean radius of the Earth), although the convergemnay be slow.
We recall the equations (2.68):

dscosa = Mdyp
(2.105)
dssina = Ncosp di

which hold for any curve on the ellipsoid; and Bd'ssequation (2.95):
da =singdA, (2.106)
which holds only for geodesics. Thus, from equa{i105),

dg
ds

_ cosa;

M

, (2.107)

and

dA

sina;
ds

, Ncosg

(2.108)

Substitutingd A, given by equation (2.105), into equation (2.10&),find

da

_sing,
ds

. N

tang. (2.109)

This completes the determination of the first datiles.
For the second derivatives, it can be shown theri\(ations are left to the reader):

dM _ 3MN’€ sing cogp.

2.110

de a ( )

z—N = Me"” sing cosp; (2.111)
@

diw(Ncosw):—M sing. (2.112)
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Using the chain rule of standard calculus, we have

d’p _ ds(cosaj 1 da  cogr dM dp
ds d

=——sing——-————7=L, 2.113
M M ds M @ d: ( )

which becomes, upon substituting equations (2.1@7)09), and (2.110):

d’gl _ sin’a, F°N? coga, sig cop,
=- tan 2.114
agl,” MmN & M @19

Similarly, for the longitude,

¢ d

o8

(N cosp) (2.115)

d’A_d( sing \_ cozr da_  sim d
Ncosp) Ncog ds RN cosp @
which, with appropriate substitutions as abovejseafter simplification (left to the reader) to

d?)| _ 2sina, cogr,
tan 2.116
d¢|, Ncosg 4 ( )

Finally, for the azimuth,

sina cosr da sir dN dp sir dy
~——tan ta - ta —+ séap—, 2.117
s( ¢’j N s R P @ ds N R ( )

that with the substitutions for the derivativesbafore and after considerable simplification (left
to the reader) yields

2
d’a| _sing, Cosnl(1+2tan’-q+e codq). (2.118)

Clearly, higher-order derivatives become more carafed, but could be derived by the same
procedures. Expressions up to fifth order, als@mibelow, are found in (Jordan, 1962) and
(Rapp, 1991).

With the following abbreviations

V= ’S\f sina;, u= ZZ cor, , N°=e? cody , t= tam, (2.119)

1 1
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the final solution to the direct problem up toHiforder ins,/ N, is thus given as follows, the
details of which are left to the reader (see alatlm 3, Section 2.1.41).

i__ﬂ?:u—%vzt 2 W2t 6(1+3t +n?-¢7)- Enz(l—tz)
+‘2’_;t(1+ 32+/72—972t2)—%t(4+ 6°- 13 °- 9/%2)+i;/7% (2.120)
+%(1+ 302+ 45°) - ";‘(J;( 2+ 15°+ 16')
(A, -A)cosg =v+ uvt—§?+v—;2(l+ F+n?)
V;“ t(1+3% 4 )+V_jt(z+ a%+7?) (2.121)
+1£5t2(1+32)+"1_‘£(2+ 152+ 15°) - "31:2(} 20°+ 30)

ﬁz—(al+ﬂ):vt+v—;(1+ 2t2+/72)—%t(1+ 2tz+/72)+v—gt(5+ 6>+n°- 47

Vs”(1+2(12+ 24+ 2%+ % 5 28°+ 24+ B+ 8t

G I
1u0t(58+ 2807 + 24d)+%6( 61 180+ 120

(2.122)

)+ Y

+it(1+ 20t% + 244) -
120

The inverse solution can be obtained from theseséyiteration. Equations (2.120) and
(2.121) are written as

=g, -q=(1+7*)u+dp, (2.123)

M=) -7 = +Ah, (2.124)

cosy

where dp and d) are the residuals with respect to the first-otdems. Now, solving fou and
v, we have
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_dp-op _ 5\
u= Ty v=cosg (41 -N); (2.125)

and, with equation (2.119), the equation for theverd-azimuth is

(2.126)

a, = tan‘lﬁ = tan‘l(( qu) cog} M -0 j :

Ap-op

For the geodesic distance, there are two choicgs,iea; # 0, then from equations (2.119) and
(2.125)

_ Ncosg
=1 H{A1-). 2.127
et sinal( ) ( )

N, 4999 " goth equations (2.126) and (2.127) are solved

Similarly, if a, # 77/2, thens,, =
y.if @7 7 et cosa, 1n?

together by iteration with starting values obtaihgdnitially setting 5&0) =0 andn =0:

(0) — —1 2 yay (0) — N1 cosg
a,”’ =tan 1+n coyy— | . = a1 . 2.128
' (( ) Acoj 2 sinal(o) ( )

Then, using these values of” and s, new values,dg” and M® are computed using the
definitions of dp and o1 from equations (2.120) through (2.124). This phae continues
according to

iy y1e)
() — papct 2 AA -9 (3) — N, cosg 50) L
a;’ =tan [(1+/7 )cosq—Aw_ {i)] . Siy sinal(j) (A/] AN ) , 1= 1,2,..  (2.129)

Note that the updatedy’) and " are computed using bot))™ and a!'™; and, therefore,
the iteration must be done in concert for bath and a,. Also, &, is computed using the
solution of the direct problem, (2.122), onag, u, andv have been determined through the

iteration. The correct quadrant of the azimuthusthde determined by inspecting the signsiof
andv.
The iteration continues until the differences edw consecutive values sf, and a; are

smaller than some pre-defined tolerance. Noteelvew that the accuracy of the result depends
ultimately on the number of terms retaineddp and oA . Rapp (1991) reports that the accuracy

of the fifth-order solutions is about 0.01 arcsedhe angles for distances of 200 km. Again,
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exact solutions exist that are valid for any diseanand which are only marginally more
complicated mathematically, as derived in Rapp 2199
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2.1.41 _Problems

1. Derive equations (2.110) through (2.112).

2. Derive equations (2.116) and (2.118).

3. Derive equations (2.120) through (2.122) upetmosd order in products afandv.

4. Consider an ellipsoidal trianglef123, with sides being geodesics of arbitrary lengithe
following are given: lengths of sides,, and s, the angle,3, the latitude and longitude of

point 1, (qq,/il), and the azimuthg,, (see the Figure at the right and note the minangh in

notation from the main text). Provide a detailedgedure (i.e., what problems have to be solved
and provide input and output to each problem smhjtio determine the other two angl¢gs,,

B;, and the remaining side of the triangsg, .

Pole

5. Provide an algorithm that ensures proper quadietermination for the azimuth in the direct
and inverse problems.

6. For two points on an ellipsoid, with known caogtes, give a procedure to determine the
constant in Clairaut’s equation for the geodesat tonnects them.
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2.15 Transformations Between Geodetic and Cartesian Coordinates

The transformation between Cartesian and spherczadinates is straightforward (Problem 1.4-
1). Transforming from the geodetic coordinat@ss,/i,h), for points in space and related to the

ellipsoid, (a, ), to Cartesian coordinategx, y, 2), is also relatively simple, as shown below.

The reverse transformation from Cartesian to geodebrdinates is not as easy. In all cases, for
the sake of simplicity, it is assumed that the &€aan origin is at the ellipsoid center and that th
Cartesian coordinate axes are mutually orthogdoalgahe minor axis and in the equator of the
ellipsoid. Referring to Figure 2.15a, it is sekatt

x= peos (2.130)

y = psinA
where p :\/m. Since also (compare with equation (2.47))

p=(N+ h)cosp, (2.131)
from Figure 2.15b, it follows that

x=(N+ h)cosp cosl, (2.132)

y=(N+ h)cospsin . (2.133)
Now, from equations (2.22) and (2.48), we also have

z:(N(l— é)+ i)sin(p. (2.134)

In summary, given geodetic coordinateﬁzp,/i,h), and the ellipsoid to which they refer, the
Cartesian coordinateéx, Y, z), are computed according to:

(N + h)cosg cosl
=| (N+h)cospsim |. (2.135)

(N(l—e2)+ h)sinw

N < X

It is emphasized that the transformation from gé&éodeoordinates to Cartesian coordinates
cannot be done using equation (2.135) without kngwhe ellipsoid parameters, including the
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presumptions on the origin and orientation of tkesa These obvious facts are sometimes
forgotten, but are extremely important when consngedifferent geodetic datums and reference
systems.

(N +h)sing

eNsing| L ¢

a) b)
Figure 2.15: Geodetic latitude vs. Cartesian cowidis.

The reverse transformation from Cartesian to geodeordinates may be accomplished by
various techniques. The usual method is by itematbut closed formulas also exist. The
longitude is easily computed from equations (2.130)

A=tan* Y, (2.136)
X

The problem is in the computation of the geodediitude, but only ifh#0. From Figure
2.15b, we find

N+ h)si
tanwz(—)SIW; (2.137)
[XZ + y2
and, from equation (2.134), there is
(N +h)sing= z+ Né sing. (2.138)

Therefore, equation (2.137) can be re-written as
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} & Nsing
—tant| —Z | 1 , 2.139
@=tan (\/x2+y2(+ : B ( )

for z#0. If z=0, then, of coursep=0. Formula (2.139) is iterated am, with starting value
obtained by initially settingh=0 in equation (2.134) and substituting the resulting
z= N(l— ez)sinw into equation (2.139):

0) — ol z e
¢ =tan (\/xz+y2(l+1—e2j} (2.140)

Then, the iterations proceed as follows:

. i-1) o i-1)
([;J):tan.l[ z (Hezw sing/ ]J =12, (2.141)
\/x2+y2 7z

where NU™ s the prime vertical radius of curvature for tiagéitude, qéi‘l). The iteration
continues until the difference between the newaddralues ofy is less than some pre-defined

tolerance. This procedure is known as kevonen/Moritz algorithm Rapp (1991, p.123-124)
gives another iteration scheme developed by Bowtivaj converges faster. However, the
scheme above is also sufficiently fast for mostfical applications (usually no more than two
iterations are required to obtain mm-accuracy), avith today’s computers the rate of
convergence is not an issue. Finally, a closed-{tevative) scheme has been developed by
several geodesists; the one currently recommengethd International Earth Rotation and
Reference Systems Service (IERS) is given by Boskowl1989). In essence, the solution
requires finding the roots of a quartic equation.

Once ¢ is known, the ellipsoid heighty, can be computed according to several formulas.

From equations (2.131), we have

2 2
h=—\'X;3’—N, 0% 90 (2.142)
Cco

and, from equation (2.134), there is

h=—2_-N(1-¢€), pz0. (2.143)
sing

From Figure 2.16 and simple trigonometric relattops, a formula that holds for all latitudes is
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h:(\/x2 + V- Ncosqo) coso+( z- l\( t é) sinp) sip, (2.144)

which simplifies, using equation (2.48) to

h=4/x*+ y’ cosp+ zsinp— a/ + é sifg. (2.145)
X2+ y2 P
h
N cosp 2
Po | \(?
N(l—ez)sin¢

Figure 2.16: Determination df from (x, y, 2 and ¢.
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2151 Problems
1. Derive equation (2.144).

2. Show that the Cartesian coordinat¢g,y, z), can be computed from given ellipsoidal
coordinates(3,4,u), according to

X =+/U* + E? cosf cos
y =+ U+ E* cosf sin (2.146)

z=using

3. Show that the ellipsoidal coordinate@ﬁ,A,u), referring to an ellipsoid with linear

eccentricity E, can be computed from given Cartesian coordinébesy, z), according to

A=tanty
X
1/, 2\, 1 2 2\2 2.2 vz
u= E(r -E )+E (r +E) -4E“p (2.147)
g=tant YV T E r+E
up

where r®=x*+y?+z®> and p’=x*+y’. [Hint: Show that pZ:(u2+ EZ)COSZ,[J’ and

Z? = u’sin’? B; and use these two equations to solveufoand thens.]
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2.2 Astronomic Coordinates

Traditionally, for example with a theodolite (agstope that rotates with respect to vertical and
horizontal graduated circles), angular measuremigmszontal angles, directions, and vertical
angles) are made with respect to the directionrafity at a point, that is, with respect to the
tangent to théocal plumb line The direction of gravity at any point is detemed naturally by
the Earth’s somewhat arbitrary mass distributiod #re plumb line is defined by this direction.
Correspondingly, the plane that is perpendiculathtd plumb line at a point defines the local
horizontal, or level, plane. The direction of gtgwchanges from point to point, even along the
vertical, making the plumb line a curved line inasp, and one speaks of ttangentto the
plumb line at a point when identifying it with tligrection of gravity. Making such angular
measurements as described above when the targes poe the stars with known coordinates, in
fact, leads to the determination of a type of azhmand a type of latitude and longitude. These
latter terrestrial coordinates are known, theref@agastronomic coordinatesor alsonatural
coordinates because they are defined by nature (the directicdhe gravity vector) and not by
some adopted ellipsoid.

We start by defining a system for these coordmatdhis definition has changed as the
realization of the system has evolved with techgicll advancements from purely optical
observations (theodolites, transit telescopesplattes, zenith tubes) to global satellite and space
observations (satellite Doppler, satellite lasacking, GPS, very long baseline Interferometry
(VLBI), lunar laser ranging). Prior to the satielland space age, tteeaxis of this system was
defined in some conventional way by the Earth’sigpiis. Saving the details for Chapters 4, it
is noted that the spin axis is not fixed relativetie Earth’s surface (polar motion). Therefore,
the z-axis was defined by thenean motion of the pole and was called tkmnventional
International Origin (CIO). Today, the former astronomic system islaegpd by thelERS
Terrestrial Reference SystefiTRS), which is established and maintained by Ititernational
Earth Rotation and Reference Systems Service (IERShe ITRS is also known as a
Conventional Terrestrial Reference Syst@me that is established by international agre¢men
The correspondingz-axis is precisely defined according to slightlyffelient adopted
conventions (Chapter 3) and is referred to asBERS (International) Reference PqI®P). The
origin for longitudes is defined by the directiof a meridian through the Greenwich
Observatory in both cases; again, there is a subfference in the conventions and the
realization (Chapter 3).

To understand the traditional astronomic system,define theastronomic meridian plane
for any specific point, analogous to the geodetaridian plane for point coordinates associated
with an ellipsoid. However, there is one esserdiad important difference. The astronomic
meridian plane is the plane that contains the tainggethe plumb line at a point and is (only)
parallel to thez-axis. Recall that the geodetic meridian planetaios the normal to the
ellipsoid, as well as the minor axis of the ellijpso The astronomic meridian plane does not,
generally, contain the -axis. To show that this plane always exists, $§igpnsider the vector
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at any point,P, that is parallel to the -axis (Figure 2.17). This vector and the vectagent to
the plumb line together form a plane, the astromomeridian plane, and it is parallel to tke
axis. Again, it is emphasized that the tangerth&plumb line does not intersect Earth’s center
of mass (nor its spin axis) due to the arbitramgation of gravity. Thesreenwich meridian
planeis the plane that is parallel to the z-axis andtaims the tangent to the plumb line at the
Greenwich Observatory. The-axis is parallel to this plane by definition.

Now, theastronomic latitude @, of a point is the angle in the astronomic meridiane
from the equator (plane perpendicular to thexis) to the tangent of the plumb line. And, the
astronomic longitudeA, is the angle in the equator from the Greenwichidien plane to the
local astronomic meridian plane. The astronomkn:ratirmates,(cp,/l), determine the direction

of the tangent to the plumb line, just like the dyetic coordinates(qo,/i) , define the direction of

the ellipsoid normal. The difference between thge directions at a point is known as the
deflection of the vertical This angle is explored in detail in Section 2.2.

astronomic zenith

mto plumb line)
P

astronomic meridian plane
4 :
(parallel to z-axis)

parallel to z-axis }

D ¥

X

Figure 2.17: Astronomic meridian plane and astrocaraordinates.

To complete the analogy with previously defineddgic quantities, we also consider the
astronomic azimuth. Thastronomic azimutis the angle in thastronomic horizor{the plane
perpendicular to the tangent of the plumb line)nmfréthe northern half of the astronomic
meridian, easterly, to the plane containing both glumb line tangent and the target point (the
vertical plang; see Figure 2.19. Finally, tlestronomic zenith angl@lso known as theenith
distance is the angle in the vertical plane from the tamg® the (outward) plumb line
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(astronomic zenithto the target point. We note that heights are past of the astronomic
coordinates, but that heights may be included endéfinition of natural coordinates, where in
this case the height is based on the geopotetttialjs treated later briefly in connection with

vertical datums (Chapter 3).
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221 Problems

1. Provide a justification that, theoretically, twisstinct points on a surface (like the ellipsoid,
or geoid) could have the same astronomic latitudel@ngitude,@ and /.

2. Determine which of the following would affectetlastronomic coordinates of a fixed point
on the Earth’s surface: i) a translation of the rdowte origin of the(x, Y, z) system; ii) a

general rotation of théx, Y, z) system. Determine which of the following would d&féected by

a rotation about thez-axis: astronomic latitude@; astronomic longitude/; astronomic
azimuth, A. Justify your answers in all cases.

3. Assume that the ellipsoid axes are paralleheo(k, Y, z) system. Geometrically determine

if the geodetic and astronomic meridian planesaf@oint are parallel; provide a drawing with
sufficient discussion to justify your answer. Wha¢ the most general conditions under which
these two planes would be parallel?
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2.2.2 Loca Terestrial Coordinates

This set of coordinates forms the basis for traddl three-dimensional geodesy and for close-
range, local surveys. It is the local system inciwtwe make traditional geodetic measurements
of distance and angles, or directions, using de#ameasuring devices, theodolites, and
combinations thereof (total station). It is al$idl ssed for modern measurement systems, such
as in photogrammetry, for local referencing of gedl data, and in assigning directions for
navigation. The local coordinate system can banddfwith respect to the local ellipsoid normal
(local geodetic systenor the local gravity vectolddcal astronomic systeim The developments
for both are identical, where the only differenodhe end is the specification at one point of the
type of latitude and longitude, i.e., the directminthe vertical. The local system is Cartesian,
consisting of three mutually orthogonal axes; hasvetheir principal directions do not always
follow conventional definitions (in surveying the@ettions are north, east, and up; in navigation,
they are north, east, and down, or north, west,ugmd

For the sake of practical visualization, consiflest the local astronomic syster(Figure
2.18). The third axisw, is aligned with the tangent to the plumb linghag local origin point,
P, which is also the observer’s point. The firsisax, is orthogonal tov and in the direction

of north, defined by the astronomic meridian. Atiek second axisy, is orthogonal tow and
u and points east. Note thatv, w are coordinates in laft-handedsystem. LetQ be a target

point and consider the coordinates®fin this local astronomic system.

w (astronomic zenith)

u

(north)
v (east)
g
(3 y
AP
X

Figure 2.18: Local astronomic systemy, w.
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\)
Figure 2.19: Local astronomic coordinates and nrealsquantities.

With reference to Figure 2.19, the measured gtiesitare the distance fro® to Q,
denoted byc,,; the astronomic azimuth @ at P, denotedA,,, (it is discussed in Section 2.3
how to determine azimuths from astronomic obsesma); and the vertical angle @ atP,
denoted,V,,. The local Cartesian coordinates @fin the system centered & are given in

terms of these measured quantities by

Upg = CpoCOSVp, COSA,
Vg = Cpo COSVpg SINAL, (2.148)

Whg = CpSINVpg

Ily

Figure 2.20: The relationship between the, w and|| x,|| v, || z systems.

Consider now a Cartesian coordinate systerR @hat is parallel to the globa, y, z system
(Figure 2.20); denote its axes, respectively||bxy || y, and|| z. Note that thev-axis is always
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in the plane generated hbyx and ||y since theu,w-plane is perpendicular to the equator
because of the definition of the meridian plandée Tartesian coordinates of the paintin this

system are simply

[ X0 = AXpq = X5~ %p
| yPQ EAyPQ = yQ_ Yp (2-149)
120q=42%0= %~ 2%

The relationship between thev,w and || x,|| y,|| z systems is one of rotation and accounting

for the different handedness of the two systemse fbllowing transformations change the local
coordinates of the poinQ, from (u, v, w) to (|| x| y,I| 2):

AXoq 1 0 0) U
AYpq | = R(180-/) R(90-@;) 0 -1 Q| v |, (2.150)
4z, 0 0 1){wy

where the right-most matrix transforms from a ledaded system to a right-handed system; only
then can one apply the rotation matricBs,and R,, defined by equations (1.4) and (1.5). The

resulting transformation is (left to the readeveoify):

Axpq —sin®, cos/l, - siMl,  co@, CO8.\ Up,
AYpy |=| —SIN@psinAl,  cosly,  co@p SiAL || Vg |- (2.151)
A4z, COS®, 0 Sing; Weq

Therefore, substituting equation (2.148) gives

Axoq —sin@, cos/l, - siMl, co@, co8.\(Cp, CBS, CBs,
AYpy |=| —SIN@,sinA,  cosl,  co@, sid, || Cp, COS,, S
Az, CcosS®P, 0 sind, Coo SIVpg

col (2.152)

which describes the transformation from measurednties, C.q,Vpo, Ao, to Cartesian

coordinatedifferencedn a global system, provided also astronomicudgtand longitude of the
observer’s point are known.

It is remarkable that conventional determinatiohsstronomic latitude and longitude (see
Section 2.3), as well as of astronomic azimuthtiear angle, and distance can be used to
determine these relative Cartesian coordinatess-glthe basis for traditional three-dimensional
geodesy, that is, the computation of all three dimates of points from terrestrial geometric
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measurements. It is noted, again, that theserdetations are relative, not absolute, where the
latter can be obtained only by specifying the cmzmbs,(xp, Yo, zp), of the observer’s point in

the global system. Nowadays, of course, satefijtetems, such as the Global Positioning
System (GPS), provide the three-dimensional Camesbordinates virtually effortlessly in a
global system. Historically (before satellitespwever, three-dimensional geodesy could not be
realized very accurately because of the difficuitfy obtaining the vertical angle without
significant atmospheric refraction error. Thisase of the principal reasons that traditional
geodetic control for a country was separated imdnzbntal and vertical networks, where the
latter is achieved by leveling (and is, therefonet strictly geometric, but based on the
geopotential).
The reverse transformation fro@ﬁqu,AyPQ,Asz) to (cpq,VPQ, APQ) is easily obtained

since the transformation matrix is orthogonal. rkrequation (2.151), we have

Upg -sin®, cos/l, - simMl, co®, cod, T Ax PO
Voo |=| —SIN@,sinAl,  cosl,  co@, sif | | AY oo ; (2.153)
Woq COsSP,, 0 Sing; Az,

and, with equation (2.148), it is easily verifidht

—AXpoSinAp+Ay,,c0M

v

tanA,, =—= = . . . : (2.154)
Upg —AXpoSIN@P,COAN L~ Ay, SIMP , SIN o+ Az, COP

SiNVpy =—2 =i(AXPQ cosP, cogl,+AY,, COP, St +Az,, Sib F) (2.155)
Coo  Cro

Cog =A%+ AYag+ A2, (2.156)

Analogous equations hold in the case ofltdeal geodetic coordinate systenin this case
the ellipsoid normal serves as the third axis,resve in Figure 2.21, and the other two axes are
mutually orthogonal and positioned similar to theesin the local astronomic system. We
assume that the ellipsoid is centered at the owgithe X, y, z system and designate the local

geodetic coordinates b(/r,s,t). It is easily seen that the only difference bemvéehe local

geodetic and the local astronomic coordinate systenthe direction of corresponding axes,
specifically the direction of the third axis; arnthjs is defined by the geodetic latitude and
longitude. This means that the analogues to empmii2.152) and (2.154) through (2.156) for
the local geodetic system are obtained simply Ipjaceng the astronomic coordinates with the
geodetic latitude and longitude, and A, :
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Axpq —sing, cost, —siM, cog, cob,)(Cpy, COS, QOS,

AYpo |=| —sing sind,  cosl,  co, SiA, || Cpy COS, SNy, (2.157)
A4z, COS@: 0 sing, Cpq SilVpq
where a,,, is the normal section azimuth amg, is the vertical angle in the normal plane(@f
The reverse relationships are given by

—A%po SiNAp + Ay, cosi

tana,, = : : : , (2.158)
—A%po SiNG, COSA, — Ay, SiP, sitl ,+ 42, cog,

S 1)V :ci(AXPQ cosy, Cod + Ay, CoB, S +AzZ,, Smp), (2.159)
PQ

Cog =A%+ AYag+ A2, (2.160)

The latter equations have application, in particuehen determining normal section azimuth,
distance, and vertical angle (in the normal plainejn satellite-derived Cartesian coordinate
differences between points (such as from GPS).e Mt the formulas hold for any point, not

necessarily on the ellipsoid, and, again, thas ithe normal section azimuthot the geodesic
azimuth in these formulas.

(3 t (geodetic zenith)
(north)"
S (east)
P
geodetic meridian
/
@ y
7
X
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2221 Problems
1. Derive equation (2.151).

2. Show that the transformation from local geodéticlocal astronomic coordinates (same
origin point, P) is given by

Upg 1 ~(/ = 2;) sing, ~(?:.- ) Moo
Voo | =| (e = Ap)sing, 1 ~(/M = 25) cop, || Spq | (2.161)
Woo D, - @, (Np=A,)cosp, 1 trg

where second and higher powers in the differen¢es,—¢.) and (4, -4,), have been

neglected. (Hint: the coordinates in the two gystehave the same Cartesian coordinate
differences.)

3. Suppose the geodetic coordinat@&,,Ap) and (%,/]Q), of two points on the ellipsoid are

given and the distance between them is under 200 Kbevelop a procedure to test the

computation of thegeodesicazimuths,&,, and &, obtained by the solution to the inverse

geodetic problem (Section 2.1.4). Discuss theditgliof your procedure also from a numerical
viewpoint.

4.a) Derive the following two equalities:

tan(AD —y ): tanA,, — tanz _ Ted/po~ SedHtpo
© TPV 1+ tanAs, tale,  edd pot SedVeo

(2.162)

b) Now, show that to first-order approximatiom, j.neglecting second and higher powers in
the differences(®, -¢,) and (A, -A,):

_ Seot r
tan( Avg = @pg) = (Ap=Ap) smw;%(cbp—wp)—%(/l A Jcosp,.  (2.163)
feq *Spq fpo* Sk
(Hint: use equation (2.161).)

c) Finally, with the same approximation show that

ADQ—aPQ:(/IP—/}P)sin¢P+((¢>P—(pP) Sing o= (A A | cop , cog P() tan . (2.164)
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The latter is known as the (extendédplace conditionwhich is derived from a more geometric
perspective in Section 2.2.3.
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2.2.3 Differences Between Geodetic and Astronomic Quantities

As we will see in Section 2.3, the astronomic lmté, longitude, and azimuth are observable
guantities based on a naturally defined and redlcordinate system, such as the astronomic
system or the terrestrial reference system alltded Section 2.2. These quantities also depend
on the direction of gravity at a point (anotherunally defined and realizable direction).
However, the quantities used for mapping purposestt®e geodetic coordinates, based on a
mathematically defined ellipsoid. Therefore, it necessary to develop equations for the
difference between the geodetic and astronomicdosates (and azimuths), in order to relate
observed quantities to mathematically and geogcafiiuseful quantities. These equations are
also extremely important in realizing the propeewotation of one system relative to the other.

Already in Problem 2.2.2.1-4, the reader was askedlerive the difference between
astronomic and geodetic azimuth. This is now dasieg spherical trigopnometry that also shows
more clearly the differences between astronomic geatletic latitude and longitude. In fact,
however, the latter coordinate differences aredasived, per se, and essentially are just given
names, i.e., the components of the astro-geodefleation of the vertical, under the following
fundamental assumption. Specifically, it is assdirtteat the two systems, the astronomic (or
terrestrial) and geodetic systems, are paralleammg that the minor axis of the ellipsoid is
parallel to the z-axis of the astronomic system and the correspgndiraxes are parallel.
Under this assumption we derive the difference betwthe azimuths. Alternatively, one could
derive the relationships under more general cambtiof non-parallelism and subsequently set
the orientation angles between axes to zero. @&heltrwould obviously be the same, but the
procedure is outside the present scope (the rdlegamations are given in Section 3.1).

Figure 2.22 depicts the plan view of a sphererafefined radius as seen from the outside,
along the tangent to the plumb line or along theal@astronomic coordinate axigy, that is,
from theastronomic zenith The origin of this sphere could be the centemass of the Earth or
the center of mass of the solar system, or evemliserver’'s location. Insofar as the radius is
unspecified, it may be taken as sufficiently lasge that the origin, for present purposes, is
immaterial. This is called theelestial spheresee also Section 2.3. All points on this splaeees
projections of radial directions and since onenk/ @oncerned with directions, the value of the
radius is not important and may, as well, be asslga value of 1 (unit radius), so that angles
between radial directions are equivalent to greé@lecarcs on the sphere in terms of radian
measure.

Clearly, the circle shown in Figure 2.22 is thet(@nomic) horizon Z_, denotes the

astronomic zenith, and, is the geodetic zenith, being the projection &f éflipsoidal normal
through the observe? (see Figure 2.21). As noted earlier, the angatarbetween the two

zeniths is theastro-geodetic deflection of the vertica#® (the deflection of the tangent to the

plumb line from a mathematically defined vertidak ellipsoid normal). It may be decomposed
into two angles, one in the south-to-north dirattié, and one in the west-to-east directign,

(Figure 2.23). The projections of the astronomeridian and the geodetic meridian intersect on
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the celestial sphere because the polar axes divihesystems are parallel by assumption (even
though the astronomic meridian plane doesauuttainthe z-axis, the fact that both meridian
planes are parallel to the-axis implies that on the celestial sphere, thesjgetions intersect in
the projection of the north pole). On the horizbowever, there is a differencé, between

astronomic and geodetic north.

astronomic northl ( geodetic north

astronomic
meridian

geodetic
meridian

north pole

local
horizon

celestial sphere

Figure 2.22: Astronomic and geodetic azimuths.
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o
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Figure 2.23: Deflection of the vertical components.

Geometric Reference Systems 2-59 Jekeli, August 2016



Now, the angle at the north pole between the n@rdis 41 = /1-A, again, because the
two systems presumably have parakkebxes (common origin on the celestial sphere).mRtwe
indicated astronomic and geodetic latitudes, appbtia of the law of cosines, equation (1.2), to
the triangleZ OF yields

cos( 90-¢)= cog cds 90-@+¢&)+ sin Hin YOP+§)  cos. (2.165)

Sinces is a small angle (usually of the order of 10 acgsenis simplifies to

sing= sin(®-¢), (2.166)
and hence
=0 -g. (2.167)

Applying the law of sines, equation (1.1), to theng triangleZ OF, one finds

sinp _sin(90-¢)

. = , (2.168)
sindA sin90
and, hence, with the same approximations,
n=(A-A)cosp. (2.169)

Thus, the north and east componerdtsand 77, of the deflection of the vertical are essentially
the differences between the astronomic and theajieddtitudes and longitudes, respectively.
The great circle ara),Q,, in Figure 2.22 is the same as the astronomic w@thiyA, to the

target point,Q, while the great circle arc (approximately, sitioe two zeniths are closg),Q, ,

is the same as the geodetic (normal section) ahinaut of the target point. Thus, from Figure
2.22, one obtains

A-a=UQ-yQ=4+4, (2.170)

It remains to find expressions faf and 4,.
From the law of sines applied to trianglgOu, , we find
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sin4 _ sing
sindd  sin90

4 =AAsing, (2.171)
with the usual small-angle approximation. Simyaih triangle Q,QQ,, the law of sines yields

sing, _ sin(90’ - zg)
sindp sin90

= 4,=4pcosz,. (2.172)

Also, triangleZ,QH (see also Figure 2.23) gives

sindp sina siny
= Ap=(&+e¢ : 2.173
sin(é+¢)  sinz, p=(¢+e) sinz, ( )
Finally, from the approximately planar trianglg FH we obtain
’7 (2.174)

= tan(180-a)’

which could also be derived by rigorously applyihg laws of cosines and sines on the spherical
triangle and making the usual small-angle approiona.
Substituting equations (2.173) and (2.174) intoatipn (2.172) results in

4, =(&+¢)sina cotz (2.175)
=(&sina - coxr) cotz |

where the approximatioz= z = z is legitimate because of the small magnitudedpf We
come to the final result by combining equationd72) and (2.175) with equation (2.170):

A-a =(A-A)sing+(& sina -7 cowr) cot, (2.176)

which, of course, in view of equations (2.167) d8dl69) is the same as equation (2.164).
Equation (2.176) is known as the (extendeaf)lace condition Again, it is noted thatr is the
normal section azimuth. The second term on tha sgle of equation (2.176) is the extended
part that vanishes (or nearly so) for target pomt(or close to) the horizon, where the zenith
angle is90°. Even though this relationship between astron@ndt geodetic azimuths at a point
is a consequence of the assumed parallelism afdiresponding system axes, its application to
observed astronomic azimuths, in fact, also ensthiss parallelism, i.e., it is a sufficient
condition. This can be proved by deriving the eéguaunder a general rotation between the
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systems and specializing to parallel systems. gbedetic (normal section) azimutla ,
determined according to equation (2.176) from olerastronomic quantities is known as the
Laplace azimuth

ThesimpleLaplace condition (foz =90°),

A-a=(A-2)sing, (2.177)

describes the difference in azimuths that is comnooall target pointsQ, with respect to a

given point, P, and is due to the non-parallelism of the astran@nd geodetic meridian planes
at the observer’s location, i.e., Bt (Figure 2.22). Interestingly, the simple Laplaoadition is
also the Bessel equation derived for geodesicsatmgu(2.95), which, however, is unrelated to
the present context. The second term in the egtbhdplace condition (2.174) (for target points
with non-zero vertical angle) depends on the azinofithe target. It is analogous to the error in
angles measured by a theodolite whose verticalti®foalignment (leveling error).

A final note on the origin of longitudes is neededlistinguish between directions in space
and points on the Earth’s surface. Specifically,definition the zero astronomic and the zero
geodetic meridian planes are parallel, hence, sdoh& astronomic and geodeticaxes. This is
clearly required to make the two systems paralhel & is assumed in the derivations of the
deflection of the vertical and Laplace’s conditi@ee also Figure 2.22). However, for a global
geodetic system that ésogeocentri¢ e.g., that defined by GPS, the deflection of\tbeical at
the Greenwich Observatory is not zero. By equathh69), this means that the zero geodetic
longitude in this system on the Earth’s surfaceaos at the Greenwich observatory, which by
definition has maintained a zero astronomic lordgtu In fact, the geodetic longitude is about
102 m to the east of the Greenwich observatoryis laometry is elaborated in Section 3.3 and
Figure 3.3.
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2.23.1 Problems

1. Suppose the geodetic system is rotated witheptdp the astronomic system by the small
angle, w,, about the polar axis. Repeat all derivationstang show that the components of the

deflection of the vertical and the Laplace conditawe now given by

{=0-¢
n=(A-A-w,)cosp (2.178)
A-a =(N-A-w,)sing+((®-g¢)sina-(A-A-w,) cop cog) cat

2. Suppose that an observer determines the astrorm@muth of a target. Describe in review
fashion all the systematic corrections that musaglied to obtain the correspondiggodesic
azimuthof the target that has been projected (mappedpatee normal onto an ellipsoid whose
axes are parallel to the astronomic system.
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2.3 Celestial Coordinates

In order to determine astronomic coordinates offsoon the Earth, angular observations of stars
are made relative to naturally defined directiomstioe Earth and combined with the known
coordinates of the stars. Therefore, it is negggsaunderstand how the celestial coordinates of
stars are defined and how they can be related ghrterrestrial observations to the astronomic
coordinates. Later we also discuss the orientatibthe terrestrial coordinate systems with
respect to inertial space and, again, there is fadtie celestial coordinates.

For the moment, we deal only with directions, oglas, because all celestial objects that
concern us (such as stars or natural radio souacesxtremely distant from the observer on the
Earth. Thus, as in Section 2.2, the coordinatections of observable objects, as well as general
directions, are projected radially onto ttedestial sphere At the risk of being too repetitive, this
is a fictitious sphere having infinite or arbitrge:g., unit) radius; and, formally the centerlost
sphere is at the center of mass of the solar systdowever, it can have any of a number of
centers (e.g., the geocenter), where transformétoon one to the other may or may not require
a correction, depending on the accuracy of our cdatpns. Certainly, this is of no
consequence for the most distant objects in theetse, the quasars (quasi-stellar radio sources).
The main point is that the celestial sphere showldrotate in time, meaning that it defines an
inertial systen{we ignore the effects of general relativity).

To implement the transformation from celestialagironomic coordinates on the basis of
astronomic observations, three coordinate systemsindroduced: 1) thdérorizon systemin
which astronomic observations are made; 2)etipgatorial, right ascension system which the
celestial coordinates of objects are defined; ahdh® equatorial, hour angle systenthat
connects 1) and 2). Each coordinate system isielbfby mutually orthogonal axes that are
related to naturally occurring directions; two suflitections are needed for each system. Each
system is either right-handed, or left-handed, daoyvention.

2.3.1 Horizon System

The horizon system of coordinates is defined oncilestial sphere by the direction of local
gravity and by the direction of Earth’s spin axigersecting the celestial sphere at tiwath
celestial pole(NCP) (Figure 2.24). (For the moment it is asstiriet the spin axis is fixed to
the Earth and in space; see Chapters 3 and 4rfara precise definitions of the polar direction,
both for terrestrial and for celestial systemshe positive third axis of the horizon system is the
negative (upward) direction of gravity (the zenghin the positive direction). The first axis is
defined as perpendicular to the third axis and ha &stronomic meridian plane, positive
northward. And, the second axis is perpendicutaithie first and third axes and positive
eastward, so as to formleft-handedsystem. The intersection of the celestial sphétie the
plane that contains both the zenith direction andlgect is called theertical circle
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The (instantaneous) coordinates of stars (or atkéstial objects) in this system are the
zenith angle and the astronomic azimuth. Thesealm® the observed quantities; however,
instead of azimuth, one typically observes onlyoaizontal angle with respect to some other
accessible reference direction. Both are “astraobin the sense of being an angle that is
turned about the direction defined by the astrowmorenith. The horizon system is fixed to the
Earth and the coordinates of celestial objects ghamtime as the Earth rotates.

A 3, Zenith

vertical
circle

north celestial
pole (NCP)

celestial
equator

astronomic

) horizon
celestial—

sphere

Figure 2.24: Horizon system.

2.3.2 Equatorial, Right Ascension System

The equatorial, right ascension system of coordmat defined on the celestial sphere by the
direction of Earth’s spin axis (the north celespale) and by the direction of tmrth ecliptic
pole (NEP), both of which, again, are naturally defimekctions. And, again, it is assumed for
the moment that the NEP is fixed in space. Fi@Qu2& shows the (mean) ecliptic plane, which is
the plane of the average Earth orbit around the dure direction perpendicular to this plane is
the north ecliptic pole. A point where the ecliptirosses the celestial equator on the celestial
sphere is called an equinox; thernal equinox Y, is the equinox at which the sun crosses the
celestial equator from south to north as viewedhfthe Earth. It is the point on the Earth’s orbit
when Spring starts in the northern hemisphere. arfgte between the celestial equator and the
ecliptic is theobliquity of the ecliptic ¢ ; its value is approximately =23.44 .
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The first axis of the right ascension system ifingel by the direction of the vernal equinox
and the third axis is defined by the north celégticde (NCP). By definition these two axes are
perpendicular since the vector defining the digeciof the vernal equinox lies in the equatorial
plane with respect to which the polar axis is pedieular. The second axis is perpendicular to
the other two axes so as to formight-handedsystem. The intersection of the celestial sphere
with the plane that contains both the third axi€RY and the object is called theur circle of
the object (Figure 2.26), the reason for which Wwédcome apparent in Section 2.3.3. The right
ascension system is assumed to be fixed in spaceitiis annertial systenin the sense that it
does not rotate in space (again, this is made pre@se in Chapter 4).

The coordinates of stars (or other celestial db)em the right ascension system are the
celestial coordinatesieclination and right ascension Very much analogous to the spherical
coordinates of latitude and longitude on the Edhé,declinationg, is the angle in the plane of
the hour circle from the equatorial plane to thgeot) and the right ascensioa,, is the angle in
the equatorial plane from the vernal equinox, cerahbckwise (as viewed from the NCP), to the
hour circle of the object (despite the same natati confusion should arise between right
ascension and azimuth). For geodetic applicatitrese coordinates for stars and other celestial
objects are assumed given. Since the right asmersistem is fixed in space, so are the
coordinates of objects that are fixed in space.wéil@r, stars actually do have small lateral
motion in this system and this must be known fecme work (see Section 4.2.1).

For later reference, we also define dodiptic systemvhich is a right-handed system with the
same first axis (vernal equinox) as the right asimensystem. Its third axis, however, is the
north ecliptic pole. Coordinates in this systere #reecliptic latitude (angle in theecliptic
meridianfrom the ecliptic plane to the celestial objeemnd theecliptic longitude(angle in the
ecliptic plane from the vernal equinox to the aatipneridian of the celestial object).

north ecliptic pole (NEP)

mean ecliptic plane spring

summer NCP (north celestial pole)

winter

vernal equinox
(First Point of Aries)

Figure 2.25: Mean ecliptic plane (seasons areh®nbrthern hemisphere).
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celestial
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celestial

1, vernal equinox equator

ecliptic

Figure 2.26: Equatorial, right ascension system.

2.3.3 Equatorial, Hour Angle System

The equatorial, hour angle system of coordinatestieduced as a link between the horizon
system, in which observations are made, and tl aigcension system, in which coordinates of
observed objects are given. As with the previoissesns, the hour angle system is defined by
naturally occurring directions: the direction ofrtbés spin axis (NCP), which is the third axis of
the system, and the local direction of gravity, ethitogether with the NCP defines the
astronomic meridian plane. The first axis of tlystem is the intersection of the astronomic
meridian plane with the celestial equatorial plaaed, the second axis is perpendicular to the
other two axes and positive westward, so as to fateft-handedsystem (Figure 2.27). As in
the case of the horizon system, the hour anglesyst fixed to the Earth.
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hour
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celestial
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sphere

astronomic
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Figure 2.27: Equatorial, hour angle system.

The (instantaneous) coordinates of stars (or otk&stial objects) in this system are the
declination(the same as in the right ascension system) andaiwr angle The hour anglet,
that gives this system its name, is the angle enatuatorial plane from the local astronomic
meridian to the hour circle of the celestial objetitis reckoned clockwise as viewed from the
NCP and increases with time. In fact, it changes860° with a complete rotation of the Earth
relative to inertial space for objects fixed on tbelestial sphere (note that the declination
remains constant as the Earth rotates — assuménditaction of the spin axis remains fixed; it
does not, as discussed in Chapter 4).

2.3.4 Coordinate Transfor mations

Transformations between coordinates of the horiaod right ascension systems can be
accomplished with rotation matrices, provided daeeds taken first to convert the left-handed
horizon system to a right-handed system. We takehar approach that is equally valid and
makes use of spherical trigonometry on the celesplaere. Consider the so-callastronomic
triangle (Figure 2.28) whose vertices are the three imporgoints on the celestial sphere
common to the two systems: the north celestial,pgbke zenith, and the star (or other celestial
object). It is left to the reader to verify thaetlabels of the sides and angles of the astronomic
triangle, as depicted in Figure 2.28, are corrdwet parallactic angle p, is not needed in the

present context). Using spherical trigonometriomiolas, such as the law of sines, equation
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(1.1), and the law of cosines, equation (1.2} #lso left to the reader to show that the follawin
relationship holds:

sinz cosA -sil 0 co® cas co
sinzsinA|= 0 -1 0 co® sin|. (2.179)
cosz cosp 0 siw sid

The matrix on the right side is orthogonal, so thatfollowing inverse relationship also holds

coso cos - Sip 0 co® sin cds
CosO sint |= O -1 0 siz Sim |. (2.180)
sind cosp 0 siw co3s

Z (zenith)

S(star)
Figure 2.28: Astronomic triangle on the celest#iere.

Figure 2.29 completes the transformation betwegiems by showing the relationship
between the right ascension and the hour anglecal®e the hour angle also is a measure of
Earth’s rotation with respect to a reference ondélestial sphere, the hour angle is identified
with a particular type of time, callesidereal time(it is discussed in more detail in Chapter 5 on
time systems). We define:

t, = hour angle of the vernal equinoxceal sidereal time L$Y . (2.181)
It is a local time since it applies to the astromomeridian of the observer. Clearly, from Figure
2.29, the local sidereal time of an observer vigwan arbitrary celestial object with right

ascensiong , and hour angle;, is given by

LST=a +t. (2.182)
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It is noted that 24 hours of sidereal time is thme as 360 degrees of the hour angle. Also, the
hour angle of the vernal equinox at the Greenwiehidgian, t$, is known asGreenwich Sidereal

Time(GST).

local astronomic
meridian celestial equator

vernal
equinox

Greenwich astronomic
meridian

Figure 2.29: Transformation between right ascenaimhhour angle systems.

2.3.5 Determination of Astronomic Coordinates and Azimuth

The following is a very much abbreviated discussanthe determination of astronomic
coordinates,(cp,/l), and astronomic azimuthA, from terrestrial observations of stars. For

more details the interested reader is referred telMr (1969). In the case of astronomic
latitude, @, suppose a star crosses the local astronomic iaed the observer. At the time of
transit, the hour angle of the startis 0°, and according to Figure 2.28, one has for stassipg
north and south of the zenith,

W-p=90-3,+z, = D=3, 2,

(2.183)
-3, =90-P+z, = P=+ 2,

where J,,, o5 and z, z5 refer to the corresponding declinations and zeaitgles. The

declinations of the stars are assumed given anaze¢heh angles are measured. Combining
these, the astronomic latitude of the observeivisngby
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1 1
cp:E(a'N +53)—§(ZN— Zg). (2.184)

The reason for including stars on both sides ofziwith is that atmospheric refraction in the
observed zenith angle will tend to cancel in theosd term in equation (2.184) if the
corresponding zenith angles are approximately eqiddo, it can be shown (Problem 2.3.6-2)
that knowing the exact location of the astronomiridian (i.e., knowing that =0°) is not a
critical factor when measuring the zenith angla star at itg€ulmination(the point of maximum
elevation above the horizon, which the star attagg crosses the meridian).

Determining the astronomic longitude of an obsereguires that a reference meridian be
established (the reference for latitudes is theatmuwhich is established by nature).
Historically, this is the meridian through the Gregch Observatory near London, England. The
longitude of an observer at any other point is $ynpe difference betweeh ST and GST,
each converted to angular measure (see Figure: 2.29)

A=LST- GST. (2.185)

If one waits until a star crosses the local astnaeaneridian, whert =0°, then from equation
(2.182), LST=a, where the right ascension of the star must bergivAlternatively, using the
law of cosines applied to the astronomic trian@ligre 2.28), one can calculate the hour angle
for any sighting of a star by measuring its zeratigle and having already determined the
astronomic latitude,

_ C0Sz— sin@ sird
cos® co®

cost

(2.186)

It can be shown (Problem 2.3.6-3) that errors & zlenith measurement and the astronomic
latitude have minimal effect when the star is obsérnear thegrime vertical With t thus
calculated, theLST is obtained, again, from equation (2.182) andkim@wvn right ascension of
the observed star.

Either way, with the hour angle known or calculatene needs a reference for longitudes,
and this is provided by th&ST. It means that the observer must have a cloctof@meter)
that keeps Greenwich Sidereal Time that is recololeally at the moment of observation.

The determination of astronomic azimuth is lesaigitforward and can be accomplished
using either a calculation of the hour angle frobme measurement or the measurement of the
zenith angle. For the first case, the hour anglepf a star can be calculated using equation
(2.182), whereLST is determined from equation (2.185) based on gique determination of
the observer’s longitude and a recording@$T at the moment of observation. Now, from
equation (2.179), one has
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sint
tanA. = , 2.187
A sin® cod — cog tad ( )

where A is the (instantaneous) astronomic azimuth of tae & the time of observation. The
observer’s astronomic latitude and, as alwaysd#wination and right ascension of the star are
assumed to be.

Alternatively, using a star's observed zenith angis astronomic azimuth from the law of
cosines applied to the astronomic triangle (Figugs8) is given by

sind - sin® cog
cos® sinz

COSA = (2.188)

This does not require a determination of the hawgiea (hence no longitude and recording of
GST), but is influenced by refraction errors in thaite angle measurement.
Of course,z or t and, therefore A; will change if the same star is observed at secgfit

time. To determine the astronomic azimuth of aetdrial target,Q, one first sets up the
theodolite so that it sight®. Then at the moment of observing the star (Withtheodolite), the

horizontal angleD , between the target and the vertical circle ofstae is also measured. The
astronomic azimuth of the terrestrial target isstgiven by

A, = A-D. (2.189)

Having established the astronomic azimuth of aablet fixed target, one has also established,
indirectly, the location of the local astronomicndean — it is the vertical circle at a horizontal
angle, A,, counterclockwise (as viewed from the zenith) fribi target.
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2.3.6 Problems
1. Derive equation (2.179).

2. a) Starting with the third component in equaii@ri79), and also using the first component,
show that (assumingd =0)

do=-—92 _tanAcosp dt. (2.190)
COsSA

b) Determine the optimal azimuth for the obseoratf a star so as to minimize the error in
calculating the astronomic latitude due to errarghie zenith angle measurement and in the
determination of the hour angle.

3. a) As in Problem 2, use equation (2.179) ancerotielationships from the astronomic
triangle to show that

dz  cotA

dt = ——
SiINAcos? co®

do. (2.191)

b) Determine the optimal azimuth for calculatingtar's hour angle so as to minimize the
error in calculating the astronomic longitude daestrors in the zenith angle measurement and
in the determination of the astronomic latitude.

4. a) As in Problem 2, use equation (2.179) anthéurtrigonometric relations derived from
Figure 2.28, to show that

_ COosp cod
sinz

dA dt+cot zsin A dp, (2.192)

where p is the parallactic angle.
b) Determine optimal conditions (declination oktktar and azimuth of observation) to

minimize the error in the determination of astrommarimuth due to errors in the calculations of
hour angle and astronomic latitude.

5. a) From equation (2.188), show that

sinA;dA;=(cotz- cosA ta®) do—( taw- cod car d. (2.193)
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b) Show that the effect of a latitude error is imized if the hour angle is =90° or

t =270 ; and that the effect of a zenith angle error imimized when the parallactic angle is
p=90°.
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Chapter 3

Terrestrial Reference Systems

Geodetic control at local, regional, national, and international |éasdeen revolutionized by
the advent of satellite systems that provide accurate positioapability to terrestrial observers
at all scales, where, of course, the Global Positioning Sy&&8) has had the most significant
impact. The terrestrial reference systems and framesgdodetic control have evolved
correspondingly over the last several decades. Countries and nt@neund the world are
revising, re-defining, and updating their fundamental networkski® &avantage of the high
accuracy, the ease of establishing and densifying the control, arallgriimportant, the
uniformity of the accuracy and the connectivity of the control thathe achieved basically in a
global setting.

These reference systems and their realizations are comwsioerthis chapter, from the
traditional to the modern, where it is discovered that the eskeatieepts hardly vary, but the
implementation and utility clearly have changed with the td@shave become available. Even
though the traditional geodetic reference systems have been am #re process of being
replaced by their modern counterparts in many economically dedeteg®ns, they are still an
important component for many other parts of the world. It is imphrtaerefore, to understand
them and how they relate to the modern systems.

The starting point is the definition of tlgeodetic datum. Unfortunately, the definition is
neither consistent nor explicit in the literature and is now even confeising vis-a-vis the more
precise definitions of reference system and reference frame (Sechom he2National Geodetic
Survey (NGS, 1986), defines the geodetic datum as “a set of corsgianifying the coordinate
system used for geodetic control, i.e., for calculating coordinatpsinfs on the Earth.” The
definition given there continues with qualifications regarding thelbmurof such constants under
traditional and modern implementations (which tends to confuse the iaksksiinition and
reduces it to specialized cases rather than providing a conckptndation). Other sources are
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less deliberate, and add no clarification. For example, Torge (12943 ¢hat a geodetic datum
“defines the orientation of a conventional [coordinate] systettm respect to the globaX,Y,Z -
system, and hence, with respect to the body of the earth.” Ma€#8), the title of his paper
notwithstanding, only states that a geodetic datum “is usualiyedein terms of five parameters
...; Ewing and Mitchell (1970) are also vague about the definitiongéadetic datum is
comprised of an ellipsoid of revolution fixed in some manner to theigatysarth”; while
Bomford (1971) states that a datum is the ellipsoid and/or the thoedirtates of an origin point
relative to the ellipsoid. Finally, Rapp (1992) attempts to bringes@erspective to the
definition by giving a “simple definition” for a horizontal datum, whics analogous to the
discussion by Moritz.

All of these endeavors to define a geodetic datum are ¢dr¢@ivard the horizontal geodetic
datum (i.e., for horizontal geodetic control). A more systemafinitien of the geodetic datum
is given below with an attempt to relate this to the definitionetérence systems and frames
given earlier in Section 1.2. The NGS definition, in fact, providesagonably good basis.
Thus:

A Geodetic Datum is a set of parameters and constants that defines a coordyshéen,
including its origin and (where appropriate) its orientation ancesaalsuch a way as to make
these accessible for geodetic applications.

This general definition may be used as a basis for defining tnaadithorizontal and vertical
datums. It conforms to the rather vaguely stated definitions fourttiel literature (quoted
above) and certainly to the concepts of the traditional datums shtblior geodetic control.
Note, however, that the definition alludes to both the definitionsgétam of coordinates and its
realization, that is, thérame of coordinates. Conceptually, the geodetic datum defines a
coordinate system, but once the parameters that constitute allpartiatum are specified, it
takes on the definition of a frame. Because of the still widgeus&the term, we continue to
talk about the geodetic datum as defined above, but realize thateaproper foundation of
coordinates for geodetic control is provided by the definitionsfeferce system and reference
frame. In fact, the word “datum” by itself still formakipnnotes the definition of parameters for
the origin, orientation, and scale of a system, and thus is moedycssociated with its frame.
Indeed, the IERS extends the datum to include also temporal ratekanfie of these
fundamental parameters (see Section 3.3).

It is now a simple matter to define the traditional geodddicm for horizontal and vertical
control:

A horizontal geodetic datum is a geodetic datum for horizontal geodetic control in which points
are mapped onto a specified ellipsoid.
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A vertical geodetic datum is a geodetic datum for vertical geodetic control in which pairgs
mapped to the geopotential with a specified geoid.

The horizontal datum is two-dimensional in the sense that two cooslinatgéude and

longitude, are necessary and sufficient to identify a point in ttveonke however, the geometry
of the surface on which these points are mapped is such thaalimatien, or accessibility,

requires a three-dimensional conceptualization. The vertical datuthgeasther hand, is one-
dimensional and requires the value of only a single parameter,igive point, to be realizable.
Vertical datums are discussed only briefly in this text (however, se®&&cH).

3.1 Horizontal Geodetic Datum

The definition of any terrestrial coordinate system requhresspecification of its origin and its
orientation with respect to the Earth. If geodetic coordinatesuaed one must specify in
addition the ellipsoid to which they refer. For three-dimensionstesys, it is seen later that
scale is also important; however, for horizontal systems tasgronly the angles, latitude and
longitude, the coordinate system scale is not as critical sinisebasically associated with
heights. The scale parameters associated with horizontal @isteeasurements are part of the
instrument error models, not part of the coordinate system sch&refdre, the definition of the
traditional horizontal geodetic datum is basedemght parameters: three to define its origin,
three to define its orientation, and two to define the ellipsoid. Nlwae that, however, the
definition of thedatum requires that these coordinate system attributes be accetsibles, for
its practical utilization, the coordinate system must be realizablérase.

The origin could be defined by placing the ellipsoid center atehéer of mass of the Earth.
This very natural definition had one important defect before tretegde of observable artificial
satellites — this origin was not accessible with sufficiesdusacy. In addition, the ellipsoid
thus positioned relative to the Earth rarely “fit” the region imol geodetic control was to be
established. A good fit means that the ellipsoid surface shouldyckyggroximate a regional
reference surface for heights - goid, or approximately mean sea level. This was important in
the past since observations on the surface of the Earth need to kedredthe ellipsoid, and the
height required to do this was only known (measurable) with respdut geoid. Therefore, a
good fit of the ellipsoid to the geoid implied that the differebeéveen these two surfaces
regionally was not as important, or might be neglected, in thectieduof observations.
Nevertheless, it should be recognized that the neglect of thid, g&ven with a good fit, can
produce systematic errors of the order of a meter, or more, tilatteday’'s accuracy
requirements certainly are very significant.

This alternative definition of the “origin”, so as to provide a goochl fit, places the
ellipsoid with respect to the Earth such that a specific point@arth’s surface has given (i.e.,
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specified or defined) geodetic coordinates. Taisim origin point, also called thénitial datum
point, is then obviously accessible — it is a monumented marker on thi@sEsurface (see
Figure 3.1).

The coordinates(%,/io,ho), of the origin point can be chosen arbitrarilyf bgually they

are determined under an imposed additional comditiat the separation between the ellipsoid
and the geoid in the particular region should beimized. In the former case, one could choose

% = CDO’ AO = /|0’ hO= H 0 (31)

where H, is the height of the origin point above the geftlte orthometric height); this is a

measurable quantity, again defined by nature. IRegaquations (2.167) and (2.169), repeated
here for convenience,

f=0-9

n=(A-2)cosp (3-2)

this choice for the origin point coordinates desiniee deflection of the vertical at this point ® b
zero (the normal to the ellipsoid is tangent to phenb line at this point). The ellipsoid/geoid
separation (thgeoid height, or geoid undulation, N, ) at this one point is also zero (Figure 3.2).

Alternatively, one could also specify particulaiues for the deflection of the vertical and the
geoid undulation at the origin poing,,”7,,N,. Then the geodetic latitude, longitude, and

ellipsoidal height of the origin point are given by

— —_ ‘;O —_
=@,-¢, A=N—"2—, h,=H +N.,. 3.3
% 0 0 0 0 c 0 0 o} ( )

Whether the origin point coordinates are definedelgyation (3.1) or by equation (3.3), the

assumption is that the geodetic and astronomiesystre parallel, because this was assumed in
deriving the first two equations (Section 2.2.3).
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Figure 3.1: Datum origin point.
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Figure 3.2: Geoid undulatior, , at the origin point, in general.

Indeed, the only logical definition of the oriemta of the datum is to make the ellipsoid
axes parallel to the fundamental astronomic (cotweal terrestrial reference) system (Section
2.2); and, this is how the orientation is alwagBned. The three parameters associated with the
orientation are the anglesy,,w,,w,, between the ellipsoidal and they,z-axes of the

astronomic system; their values are zero in the ohparallelism,

w, =0, @,=0, w =0 (3.4)

The definition of orientation is thus simple enough, but the ficatrealization of this condition

is less straightforward. Section 2.2.3 developeel telationships between astronomic and
geodetic quantities under the assumption that e dystems are parallel and that, basically,
they are concentric (i.e., the placement of thgiorivas considered to have no effect). In
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particular, and in addition to equations (3.2)wis found that the astronomic and geodetic
azimuths are related by Laplace’s condition (2.176)

A-a =(/-2)sing+((®-g¢) sina—(/-1) cogp coa) cat. (3.5)

Not only are these necessary conditions for pdistbe they are also sufficient. In other words,
using equations (3.2) and (3.5) to relate astronaanid geodetic coordinates and azimuth for
points in a networks ensures (in theory) that W dystems are parallel.

To show sufficiency, suppose that the two systemes not parallel. Then each of the
equations (3.2) and (3.5) would contain additiceains involving the angles),w,,w, It is

outside the scope of this exposition to derive ftiilowing formulas; however, they may be
found, in some fashion, in (Heiskanen and Mori@67, p.213) and (Pick et al., 1973, p.436);
see also the analogous polar motion equations heraistronomic coordinates and azimuth
(Section 4.3.1). Neglecting second-order termghi small rotation anglesq,,w,,w,, the

geodetic coordinates and azimuth become

B =P~ & SiNA+ @, cosA (3.6)
Ay =4 +(a)X cosd +w, sim) tap—-w,, (3.7)
Aoy = a'+(a)X cosd +w, sim) se@, (3.8)

where ¢, A and a refer to the geodetic coordinates and azimuth @iat for the non-rotated
ellipsoid, and ¢.,1,,, and a,, are corresponding quantities for the same poinérwthe

ellipsoid is rotated about its center. The astooigéic deflections at a given point with respect to
a rotated ellipsoid then become

$ot =P~ @~ W SINA + @), COA, (3.9)
Nrot :(/I—)Imt)cos¢+(a)X cosl +w, sin\) Sip—w, CaB; (3.10)

and the azimuthg,_, , with respect to the rotated meridian becomes

rot ?

01 = A= (A=A )sing=((@ - @) sina =(A-1,,) cop cog) cat
—((—a)xsin/1+a)y cos/]) sim'—((a)x cod +w, sir\) Sip—- w, ceps) QQJ%; a (3.11)

+(a)X cosd +w, sin/]) cogp+w, Sip
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To first order, the non-parallelism effect is ipdadent of a possible origin off-set,
(Ax,Ay,Az). Substituting equations (3.6) and (3.7) into egua (3.9) and (3.10), it is found

that &, =®-p=¢ and 7, =(A-A)cosp=n. Thus, the deflection of the vertical does not

change at a point (in first-order approximationgda a small rotation of the ellipsoid. But it
does change if computed using determined quantifigsA, ., in a rotated geodetic system, as

seen in equations (3.9) and (3.10). Substitutfig=@-@,,, 7. =(A-1)cosg,, and
0 = A= (A=A )sing~((@~@,) sina—(A-1,,) cop cog) cat on the left sides of
equations (3.9), (3.10), and (3.11), respectivglg/ds three equations i, w,,w, that for

arbitrary points can only be satisfied if thesations are zero. Therefore, the use of (3.2) and
(3.5) is also sufficient to yield parallelism oktkystems.

As an aside, the deflections and azimuth are tijresensitive to a displacement of the
ellipsoid, since the ellipsoid normal through anmpahen changes direction. Assuming only a
displacement and no rotation, equations (3.2) &) fold for the new deflection components
and the geodetic azimuth. Neglecting effects duthé ellipsoidal eccentricity (i.e., using the
mean Earth radiusR, equation (2.64)), it can be shown that (Heiskaned Moritz 1967,
p.207)

Sais = P~ Wyis
3.12
:¢>—¢+sin¢(d—;cosﬁl +A—Fg/ sirﬂj—%z cog (3.12)
N = (A= Ags) COSP
Ax . . A (3.13)
:(/l—/l)cosqo+(?x sim —Ey coslj
0y = A= (A= Ag)sing—((@ - @y,) sina = (A=A ) cop cos) cat
= a+tanw(—A—Rz( sind +A—F:/ cosﬂj (3.14)

—((sin;{ﬁcos&+ﬂ simj—g co&j sia::—(ﬁ siah—ﬂ cds) am% (/¢
R R R R R

where ¢, 14, are geodetic coordinates that refer to an ellppswith its center displaced by
(4x, 4y, 4z) from the geocenter.

Of particular importance in realizing the paradfiel of the horizontal datum relative to the
astronomic system is the determination of the geodeimuth of a targetQ), from the origin

point according to equation (3.5),
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Uo0 = Avg —(/IO—/]O)singa—((cpo—qoo) sina o, = (A4 ) cop, cosr @) cat g, (3.15)

where the coordinatesp,A,, have already been chosen, and the quantiégs/,, A,,, have

been observed (i.e., they are not arbitrary, beitdafined by nature); see also Section 2.2.3. The
zenith angle,z,,,, is also obtained by observation. It is sometirstzged that the Laplace

azimuth, a, ,, at the origin is a parameter of the horizontaldggic datum. However, we see

with equation (3.15), that, in fact, this is nghaameter in the sense that it is given an arbitrar
specified value. Only bgomputing the geodetic (Laplace) azimuth according to equats.15)
(in general at other points, equation (3.5)) cae ba assured that the datum is realized as being
parallel to the astronomic system. In theory, amyg Laplace azimuth in a geodetic network is
necessary to ensure the parallelism; but, in practeveral are interspersed throughout the
region to reduce the effect of observation errooiikt, 1978). That is, a single error in azimuth
propagates in a systematic way through the netweaildsing significant rotational distortions,
unless controlled by other azimuth observations aodespondingly computed Laplace
azimuths elsewhere in the network.

To summarize, the horizontal geodetic datum afexencesystem is defined as a system of
coordinates referring to an ellipsoid, with speszifparameters (e.ga, f ), whose origin is fixed
to the Earth in some prescribed way (e.g, by “attag’ the ellipsoid to a monument on the
Earth’s surface), and whose orientation is defiwétl respect to the astronomic system, always
by equation (3.4). The datum as a referefreene is realized by the three origin point
coordinates (as illustrated above), and by theetloreentation parameters indirectly through the
utilization of equations (3.2) and (3.5) at allqtsiin the network where astronomic observations
are related to geodetic quantities. Here, the attinplays the most critical role in datum
orientation.

3.1.1 Examplesof Horizontal Geodetic Datums

Table 3.1, taken from (Rapp, 1992), lists manyhaf horizontal geodetic datums of the world

(not all are still in service). NIMA (1997) alsstls over 100 datums (however, without datum
origin point parameters). Note that the datumiorapordinates (Table 3.1) were chosen either
according to equations (3.1) or (3.3), or by mirzimg the deflections or the geoid undulations
(geoid heights) over the region of horizontal cohtor, they were simply adopted from a

previous network adjustment. Again, it is beyohd present scope to explore the details of
these minimization procedures and adjustments.
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Table 3.1: Selected Horizontal Geodetic Datums (NAS78)

DATUM SPHEROID ORIGIN LATITUDE LONGITUDE (E)
Adindan Clarke 1880 STATION Z, 22°10°074110 31°29'217608
American Samoa 1962 Clarke 1BE6 BETTY 13 ECC -14 20 08.341 189 17 07.750
hrc-Cape (South Africa) Clarke 1880 Buffelsfontein =33 59 32.000 25 30 44 822
Argentine International Campo Inchauspe -35 58 17 297 49 48
Ascension Island 1958 International Mean of three statfons -07 57 345 37
Australian Geodetic 1966 Australian Johnston Geodetic Station -25 56 54,55 133 12 30.08
National
Bermuda 1957 Clarke 1866 FT. GEORGE 8 1937 32 22 44,360 295 19 01.890
Berne 1858 Bessel Berne Observatory 46 57 08.560 07 26 22,335
Betfo Island, 1966 International 1966 SECOR ASTROD 01 21 42.03 172 55 47.90 -
Camp Area Astro 1961-62 USGS International CAMP AREA ASTRO =77 50 52.521 166 40 13.753
Canton Astro 1966 International 1966 CANTON SECOR ASTRO -02 46 28.99 188 16 43.47
Cape Canaveral* Clarke 1856 CENTRAL 28 29 32.364 279 25 21.230
Christmas Island Astro 1967 International SAT.TRI.STA. (059 RM3 02 00 35.91 202 35 21.82
Chua Astro (Brazil-Geodetic) International CHUA =15 45 41.16 3N 53 57.44
Corrego Alegre International CORREGO ALEGRE -19 50 15.140 311 02 17.250
{Brazil-Mapping}
Easter Island 1967 Astro International SATRIG RAM No. 1 =27 10 39.95 250 34 16.81
Efate [New Hebrides) International BELLE VUE IGHN -17 44 17.400 168 20 33.250
Eurcpean (Europe 53) International Helmertturm §2 22 51.446 13 03 58.928
Graciosa Island {Azores) [nternational SW BASE 39 03 54.934 331 57 3s.118
Gizo, Provisional DOS International GUX 1 =09 27 05,272 159 58 31,752
Guam 1953 Clarke 1866 TOGCHA LEE NO. 7 13 22 38.4% 144 45 51.56
Heard Astro 1965 International INTSATRIG 0044 ASTRO =53 01 11.68 73 23 22.64
Iben Astro, Navy 1947 (Truk) Clarke 1866 IBEN ASTRO 07 29 13.05 151 49 44.42
Indian Everest xalianpur 24 07 11.26 77 39 17.57
1sla Socorro Astro Clarke 1866 Station 038 18 43 44,93 249 02 39.28
Johnston [sland 1961 Internaticnal JOHKSTOM ISLAND 1961 16 44 49.729 150 2% 04.781
Kourouw (French Guiana) International POINT FONDAMENTAL 05 15 53.699 -52 48 09.149
Kusaie, Astro 1962, 1965 International ALLEN SODAND LIGHT 05 271 48.80 162 58 03.28
Luzon 1811 (Philippines) Clarke 1866 BALANCAN 13 33 41.000 121 52 03.000
Midway Astro 1961 International MIDWAY ASTRO 1961 28 11 34.80 182 36 24.28
New Zealand 1948 International | PAPATAHI -41 19 08.900 175 02 51.000
North American 1927 Clarke 1886 MEADES RANCH 39 12 26.686 261 27 29,494
01d Bavarian Bessel Munich 48 OB 20.000 11 34 26.483
01d Hawaiian Clarke 1866 OAHU WEST BASE 21 18 13.89 202 09 04. 21
Ordnance Survey G.B. 1936 Airy, Herstmonceux 50 51 s55.2N1 00 20 45.882
OSGB 1970 (SN) Afry Herstmonceux 50 51 55.27 00 20 45,882
Falmer Astro 1969 (Antarctica) International ISTS 050 -64 46 315.71 295 56 39.53
Pico de las Nieves (Canaries) International PICO DE LAS NIEVES 27 57 41.273 344 25 49.476
Pitcairn Island Astro International PITCAIRN ASTRO 1967 =25 04 06.97 229 53 12.17
Potsdam Bessel Helmertturm 52 22 53.954 13 04 D1.153
Provisional S, American 1956 International LA CANCA 08 34 17.17 296 08 25.12
Provisiognal 5. Chile 1963 International HITO XVIIT -53 57 07.76 291 23 28.76
Pulkovo 1942 Krassovski Pulkovo Observatory 59 46 18.55 0 19 42.09
Qornog (Greenland) International Ko. 7008
South American 1969 Snlilglégkner‘lcnn CHUA =19 45 41,653 311 53 55.936
Southeast Island (Mahe) Clarke 1880 ~04 40 39.450 55 32 00.166
South Georgia Astro International ISTS 061 ASTRD POINT 1968 -54 15 38.93 323 30 43.97
Swallow Islands (Solomons) International 1966 SECOR ASTRO =10 18 21.42 166 17 56.79
Tananarive International Tananarive Observatory =18 55 02.10 47 33 06.75
Tokyo bessel Tokyo Observatory (AZABU) " 35 35 17.5148 ] 139 44 40.%0
Tristan Astro 1968 International INTSATRIG 069 RM MNo. 2 =37 03 26.79 347 40 53.21
USAFETR* Clarke 1B&66 PAD 3 28 27 57,7564 | 279 27 43.1180
Yiti Levu 1916 (Fiji) Clarke 1880 MONAVATU {latitude only) =17 53 28.285
SUVA (lm{tm only) 178 25 35.B35
Wake [sland, Astronomic 1962 International ASTRO 1 19 17 19.99 166 38 46,294
Wake-Eniwetok 1960 Hough WAKE 19 16 19.606 166 39 21.798
| WCT Vandenberg Adjustment® Clarke 1866 ARGUELLO 2, 1959 34 34 58.021 239 26 22.361
White Sands* Clarke 1866 KENT 1909 32 30 27.079 253 31 01.306
Yof Astro 1967 (Dakar) Clarke 1880 YOF ASTRO 1967 14 44 41.52 342 30 52.58

* Local datums of special purpose, based on MAD 1927 values for the origin stations.
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3.1.2 Problems

1. Describe a step-by-step procedure to computgebdetic latitudes and longitudes of points
in a network of measured horizontal angles andigstidine distances. Use diagrams and
flowcharts to show how the coordinates could bematied from the coordinates of other points
and the measurements (hint: direct problem!). Assuhat the astronomic coordinates are
observed at every point, but that the astronomimath is observed only at the origin point. We
already discussed all corrections needed to trams@bserved azimuths @eodesic azimuths;
assume similar procedures exist to transform ditdige distances and angles to geodesic
distances and angles between points on the ellipsbor helpful discussions of this problem,
see (Moritz 1978).

2. a) The software for a GPS receiver gives passtio terms of geodetic latitude, longitude,
and height above the ellipsoid GRS80 (the ellipdordWGS84). Forg=40°, A =-83", and

h=200 m, compute the equivaler([x, y,z) coordinates of the point in the corresponding

Cartesian coordinate system.
b) Compute the geodetic coordina(@s/l,h) of that point in the NAD27 system, assuming

that it, like GRS80, is geocentric (which it is ot
c) Now compute the coordinaté&,/],h) of that point in the NAD27 system, knowing that

the center of the NAD27 ellipsoid is offset fromathof the WGS84 ellipsoid by
XWGSS4_XNAD27:_4 m, yWGSS4_yNAD27:166 m, Z\NGSS4_ZNAD27:183 m. Compare your result

with 2.b).

3. Suppose the origin of a horizontal datum isrfiby a monumented point on the Earth’s
surface.

a) The deflection of the vertical at the originirmgas defined to be zero. If the geodetic
coordinates of the point arg=40° and A =-83", what are the corresponding astronomic
latitude and longitude at this point? What assuongtabout the orientation of the datum does
this involve?

b) Suppose the ellipsoid of the datum is shiftedhie z-direction by 4 m, which datum
parameters will change, and by how much (give aimeate for each one based on geometrical
considerations; i.e., draw a figure showing thesegpuence of a change in the datum)?
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3.2 Geodetic Control in the U.S. (and North America)

Each datum in the world has a history that refléieéseconomic development of the region. In
the U.S., national geodetic control is the resqdahtyi of the National Geodetic Survey (NGS,
part of NOAA, the National Oceanic and Atmospheaministration, under the Department of
Commerce); in Canada, this responsibility falls tte Geodetic Survey Division of the
Department of Natural Resources (Natural Resou@msada). The North American Datum
interestingly chronicles the westward expansion glothalization from its initial definition for
the eastern U.S. to the present-day definitione New England Datum of 1879 used the Clarke
1866 ellipsoid with origin point at Station Prinm@pn Maryland. This datum was adopted for
the entire country as the U.S. Standard Datum d118oon after the trans-continental
triangulation was completed, 1871-1897 (32 yeatsr dhe completion of the trans-continental
railroad in 1869!). In 1909 the datum origin wdmsen to be at Meades Ranch, Kansas, upon
an adjustment of the coordinates to fit the obsemeflections of the vertical at hundreds of
points throughout the country. When Canada and iddexadopted this datum for their
triangulations in 1913, it became the North Amari€atum.

In 1927, a major re-adjustment of the horizontetworks across the continent was
undertaken by holding the coordinates at MeadesRfxed. However, these coordinates have
no special significance in the sense of equati@s) (or (3.3), being simply the determined
coordinates in the previous triangulations and stdjents. The datum was named the North
American Datum of 1927 (NAD27). The orientationtibé datum was controlled by numerous
Laplace stations throughout the network. It wasreded later with new satellite observations
that the orientation was accurate to about 1 ar@Repp, 1992, p.A-6). The adjustment was
done in parts, primarily treating the western aastern parts of the country separately. Errors
were distributed by the residuals between obseagtnomic and geodetic latitude, longitude,
and azimuth along survey triangulation arcs, muloé lleveling residuals are distributed along
leveling loops. Geoid undulations were kept snmathis way, since, in essence, this amounts to
a minimization of the deflections, which is eques to minimizing the slope of the geoid
relative to the ellipsoid, and thus minimizing thariations of the geoid undulation over the
network. Even though the new, more representdtiternational Ellipsoid (Table 2.1) was
available, based on Hayford’s 1909 determinatitmes Clarke Ellipsoid of 1866 was retained for
the datum since it was used for most of the contipums over the preceding years.

In the reduction of coordinates of points in NAD®7the ellipsoid, the geoid undulation was
neglected, and thus all lengths technically redethe geoid and not the ellipsoid, or conversely,
the ellipsoid distances have a systematic errortdufis neglect. This error manifested itself
regionally as distortions of relative positions aeped by several hundreds and thousands of
kilometers within the network. Similarly, most &&g were not corrected for the deflection of
the vertical and were reduced to the ellipsoidf dsey were turned about the ellipsoid normal.
These approximate procedures and other deficiengigse adjustment caused distortions of
sections of NAD27 (i.e., locally) up to 1 part i&,@00 (1 m over 15 km)!
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Because of its realization, fundamentally at aewdrial monument, the NAD27 ellipsoid is
not geocentric. This was the situation for alluias in the world prior to the use of satellites for
geodetic positioning. However, once satelliteerad the picture, it was possible to realize the
(0,0,0) origin of a datum at Earth’s center, recognizingttsatellites orbit around the center of

mass of the Earth. Of course, this realizatiotheforigin is indirect and is subject to errors in
determining the satellite orbit and other obseoratl errors. In addition to the new satellite data
for point positioning, extensive gravity observasoin North America (particularly the U.S.,
propelled by the search for oil) yielded good medel the geoid undulation and the deflection
of the vertical. Also, early satellite altimetrpcasatellite perturbation analyses yielded much
better values for Earth’s size and its dynamidélang.

Hence, in the 1970’s and 1980’s a major re-adjastmas well as ae-definition, of the
North American Datum was undertaken. The ellipsoabs changed to that of the Geodetic
Reference System 1980 (GRS80) and was assumedgeobentric gystem definition). That is,
the Meades Ranch station was abandoned as tha pogit in favor of the geocenter (center of
mass of the Earth). This geocentric realizatiors wehieved by satellite Doppler observations
which yield three-dimensional coordinates of powtith respect to the centroid of the satellite
orbits (i.e., the center of mass). Although astroic observations of azimuth still served to
realize the orientation of the new datum, spedifiche z-axis rotation angled,), the satellite

observations could now also provide orientatiomeeslly the other anglesy, and «,. In

addition, very long-baseline interferometry (VLBI@gan to deliver very accurate orientation on
a continental scale. Since geoid undulations coold be estimated with reasonable accuracy,
they were used in all reductions of distances arglea to the ellipsoid. This was, in fact, an
important element of the re-adjustment, since nbe ellipsoid/geoid separation was not
minimized in any way. The geoid undulation over tonterminous U.S. varies between about
-7 m (southern Montana and Wyoming) ar@7 m (over the Great Lakes). The result of this
vast re-adjustment and re-definition was the Ndaktherican Datum of 1983 (NAD83). For
further details of the re-adjustment, the readeatiiected to Schwarz (1989) and Schwarz and
Wade (1990).

New realizations of NAD83 (now viewed as a 3-Derefice system) were achieved with
satellite positioning techniques, originally the dpter-derived positions, but then with satellite
and lunar laser ranging, and significantly with @B&bal Positioning System (GPS) that all
provided increased accuracy of the origin and ¢atgom. The NAD83(1986) realization is
based on a transformation of the Doppler staticoraioates by a4.5 m translation in thez-
direction, a 0.814 arcse rotation about thez-axis, and a scale change of0.6 ppm.
Improvements in the realization continued with Higtcuracy Regional Networks (HARNS)
derived from GPS, where the realizations NAD83(HARMO89 - 1997) changed the scale by
—-0.0871 ppn, but retained the known origin and orientatiorset§ of approximatel m and
0.03 arcse, respectively, from the geocenter and the origimfpfor longitudes as realized by
observations using satellite and space technigses @lso Table 3.3). Nationally, new
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realizations of NAD83 made use of the Continuoudjyerating Reference Stations (CORS),
based on GPS, throughout the U.S., yielding NAD&#RS93), NAD83(CORS94), and
NAD83(CORS96) with each new adjustment. In alsthesalizations, the origin and orientation
of the NAD83(1986) frame were, again, basicallyireed. Further realizations that re-adjusted
the HARNSs as close as possible to NAD83(CORS96yasggnated NAD83(NSRS2007), where
NSRS stands for thidational Spatial Reference System and represents the fundamental geodetic
control in the United States in all dimensions {pamtal and vertical) and aspects (such as
providing accurate control of shorelines). A swjusnt reprocessing of all CORS station data
from 1994 to 2011 resulted in the realization, NAE®11), with published coordinates given
for the epoch 2010.0.

The National Geodetic Survey (NGS) has plaffiéé modernization of the NSRS within
the next decade that is based on yet another “ggmashift” in terms of defining and realizing
the coordinate systems. The many conventionalssipe,” fixed benchmarks that surveyors
have employed for centuries to access the coorliratne will no longer be maintained by NGS
and will not form the primary control. Instead,etiNAD83, already viewed as a three-
dimensional system, will be replaced by a systeat it defined and actively maintained using
Global Navigation Satellite Systems (GNSS). Thiestde firstly GPS, but also the Russian
GLONASS (GLObal'naya NAvigatsionnaya Sputnikovaysst&na), the European Galileo
System, the Chinese BeiDou (Compass) System, dretsoas they come on line. The system
definitions of origin, orientation, and scale nowllwe the same as for the International
Terrestrial Reference System. The realization balactively maintained using an extensive
foundational CORS network that is accurately tiedttie International Terrestrial Reference
Frame (Section 3.3). Thus, the 2-meter originedfigill finally disappear and the system will be
truly geocentric. NGS will make available matheicsdt tools (software accessible on the
internet, similar to the current Online Positionibiger Service, OPU$ that allow users to
obtain coordinates for any point for which they gmavide GNSS (e.g., GPS) data. In this way,
the user community will be responsible for any lam@numentation of control; and, all such
control will be tied unambiguously and with preoisidefined by the user to the national CORS
network. The motivation behind this planned modeoperation is the realization that
permanently emplaced monuments on the Earth’s@idan no longer be viewed as associated
with constant coordinates. Plate tectonics, samsid, and other deformation of the crust due to
natural and anthropogenic causes make this coobsplete at the centimeter level of precision.
In fact, NGS has already been migrating to this mesde by providing coordinates of CORS

! NGS (2008). The National Geodetic Survey Ten-Y&lan, Mission, Vision and Strategy, 2008-2018.
http://www.ngs.noaa.gov/INFO/NGS10yearplan.pdf

2 Proceedings of the 2010 Federal Geospatial Suomiinproving the National Spatial Reference System.
http://www.ngs.noaa.gov/2010Summit/2010FederalGatidSummitProceedings.pdf

% Report from the 2015 Geospatial Summit on Imprgyire National Spatial Reference System.
http://www.geodesy.noaa.gov/2015GeospatialSummidiREromThe2015Geospatial Summitv7.pdf

* www.ngs.noaa.gov/OPUS/
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sites at a near current epoch (e.g., 2010.0) tegeitih velocities due to known motions within
the frame of NAD83(2011) (see Section 3.4.1).

With the replacement of NAD83, NGS also planséplace the vertical datum NAVD88
(Section 3.5) by a geopotential model, where agfancontrol is achieved actively without the
need, at least on a national level, to maintairsigasnarkers.

3.3 International Terrestrial Reference System

The international efforts to define a terrestrigétem can be traced back to the turn of the last
century (1900’s) when the International Latitudev&e (ILS) (that was established in 1899 by
the International Association of Geodesy (IAG))anged observations of astronomic latitude in
order to detect and monitor the motion of the 8lection 4.3.1). The ILS was reorganized into
the International Polar Motion Service (IPMS) in629by resolution of the International
Astronomical Union (IAU); and, the IPMS officiallgontinued the work of the ILS. Also, the
Rapid Latitude Service (RLS) of the Bureau Inteoral de I'Heure (BIH) in Paris, France, was
established in 1955 again by the IAU, and predicedrdinates of the instantaneous pole and
served primarily to help in the time keeping wofkite BIH®. In addition, the U.S. Navy and
the Defense Mapping Agency (U.S.) published polatiom results based on the latest observing
technologies (such as lunar laser ranging (LLR)\zergl long baseline interferometry (VLBI)).

In 1960, it was decided finally at the General ésbly of the International Union of
Geodesy and Geophysics (1.U.G.G.) to adopt assteiakepole the average of the true celestial
pole during the period 1900-1905 (a six-year peawedr which the Chandler period of 1.2 years
would repeat five times; see Section 4.3.1). Ténverage was named thHeonventional
International Origin (CIO) starting in 1968 (not to be confused witle thelestial Intermediate
Origin, Chapter 4). Even though more than 50 olaeries ultimately contributed to the
determination of the pole through latitude obseoret, the CIO was defined and monitored by
the original 5 latitude observatories under thgiosl ILS (located approximately on the 39th
parallel; including Gaithersburg, Maryland; Ukiabalifornia, Carloforte, Italy; Kitab, former
U.S.S.R.; and Mizusawa, Japan).

The reference meridian was originally defined ke &stronomic meridian through the
Greenwich observatory, near London, England. Ha&wnefrom the 1950s until the 1980s, the
BIH monitored the variation in longitudes (due tolgr motion and variations in Earth’s spin
rate, or length-of-day) of many observatories (ati)) and a mean “Greenwich” meridian was
defined, based on an average of zero-meridiansy@lgéed by the variation-corrected longitudes
of these observatories. The basis of these lothgstwltimately was an accurate determination of
time as observed from Earth rotatiddT(l, Chapter 5).

® For a history of the BIH, see (Guinot 2000).
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These early conventions and procedures to defider@alize a terrestrial reference system
addressed astronomidirections only; no attempt was made to define a realizabiging
although implicitly it could be thought of as beiggocentric. From 1967 until 1988, the BIH
was responsible for determining and monitoring @® and reference meridian. In 1979 the
BIH Conventional Terrestrial System (CTS) repladbd 1968 BIH system with a better
reference to the CIO. However, the CIO as origyndefined was not entirely satisfactory
because it could be accessed only through 5 latiblb$ervatories. As of 1984, the BIH defined
the BIH CTS (or BTS) based on satellite laser nagpgVLBI, and other space techniques. The
alignment was based on maintaining continuity i@ #stronomic longitude origin for time
determination based on Earth rotation (mean sote torrected for polar motion, UT1; Chapter
5). In addition, the mean pole during 1980-1983nasitored by the BIH served to define the
third axis of the BTS84. With the inclusion of edite observations, an (indirectly) accessible
origin of the system could also be defined (geao@nt As new and better satellite and VLBI
observations became available from year to year,BHH published new realizations of its
system: BTS84, BTS85, BTS86, and BTS87.

One consequence of defining geocentric, essentially geometric, system not based on
astronomic observations, but on the systems rebbyesatellite and space techniques, is that the
geodetic longitude origin does not coincide witle @istronomic longitude origin. As noted
above, the primary consideration by BIH for defmithe orientation of the BTS was that the
historical time system should remain unbroken (oontly in the Earth-rotation based time,
UT1). Thus, the astronomic longitude origin wasintened approximately at the Greenwich
Observatory. However, in aligning the BTS framethe frames realized by the satellite and
space techniques, which presumably maintainediantation to previously determined geodetic
coordinates that only needed to be corrected fgeacentric translational offset, the geodetic
longitude of the Greenwich Observatory is not zdyot deviates from the zero astronomic
longitude by the east component of the deflectibthe vertical at the Observatory. This was
confirmed recently by Malys et. al (2015), who admcument the history of the Greenwich
longitude. Figure 3.3 adapted from Bomford (19@J), (and Malys et al., 2015) shows the
geometric relationships between astronomic and gj@odystems that result in the non-zero
(geocentric) geodetic longitude at the Greenwiclsédmtory. Indeed, the geodetic longitude
there in today’s geocentric terrestrial referemaene is—5.31"; or, the geodetic zero meridian is
about 102 m to the east of the astronomic meridiadhe Greenwich Observatory.
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Figure 3.3: Relative geometry of geodetic and asintic meridians at GreenwichG() and
another point,P, on the same latitude circle &. The polar axis is the semi-minor axis of a
geocentric ellipsoid. Note that the zero meridianshe geodetic and astronomic systems are
parallel. The geodetic and astronomic longitude® owould be equal if the east deflection of
the vertical (DOV) atP were zero.

In 1988 the functions of monitoring the pole ahd teference meridian were turned over to
the newly establishethternational Earth Rotation Service (IERS), thus replacing the BIH and
the IPMS as the corresponding service organizatidite time service, originally also under the
BIH, now resides with the Bureau International dsids et Mésures (BIPM). The IERS,
renamed in 2003 tinternational Earth Rotation and Reference Systems Service (retaining the
same acronym), is responsible for defining andizie@ both thelnternational Terrestrial
Reference System (ITRS) and thénternational Celestial Reference System (ICRS). In each case,
an origin, an orientation, and a scale are defam®@dng other conventions for the system. The
system is then realized as a frame by the speticaof these datum parameters and the
coordinates of points worldwide. Since various esbgg systems (analysis centers and
techniques) contribute to the overall realizatioh tbe reference system and since new
realizations are obtained recurrently with improwddervation techniques and instrumentation,
the transformations among various realizationsoagaramount importance. Especially, if one
desires to combine data referring to realizatiohslifferent reference systems, or to different
realizations of the same system, it is importaniriderstand the coordinate relationships so that
the data are combined ultimately in one consistentrdinate system. We first continue this

Geometric Reference Systems 3-16 Jekeli, August 2016



section with a description of the ITRS and its irzlon and treat transformations in the next
section.

The IERS International Terrestrial Reference Sysie defined by an orthogonal triad of
right-handed, equally scaled axes with the follaypaalditional conventions:

a) Theorigin is geocentric, that is, at the center of mas$efHarth (including the mass of the
oceans and atmosphere). Nowadays, because ofpability to detect the small (cm-level)
variations due to terrestrial mass re-distributjadhe origin is defined as an average location of
the center of mass and referred to some epoch.

b) Thescale is defined by the speed of light in vacuum andtiime interval corresponding to
one second (see Chapter 5) within the theory oéiggmelativity and in the local Earth frame.

c) Theorientation is defined by the directions of the CIO and thedgic reference meridian
as given for 1984 by the BIH. These principal cli@ns are now called the IRP (International
Reference Pole) and the IRM (International Refezeleridian) (also, ITRF Zero Meridian).
Since it is now well established that Earth’s ciiast which the observing stations are located) is
divided into plates that exhibit tectonic motiorf (floe order of centimeters per year), it is further
stipulated that the time evolution of the orierdatof the reference system has no residual global
rotation with respect to the crust (“no-net-rotaticondition). That is, even though the points
on the crust, through which the system is realizadye with respect to each other, the net
rotation of the system with respect to its initiafinition should be zero.

The realization of the ITRS is the Internationatréstrial Reference Frame (ITRF) and requires
that three origin parameters, three orientationapaters, and a scale parameter must be
identified with actual values. These seven pararmsedre not observable without conventions
(see below) and their specification is formulatgdhe IERS in terms of constraints imposed on
the solution of coordinates from observations. @&twer, the constraints are cast in the form of a
seven-parameter transformation (see Section 34) &n a priori defined frame to the realized
frame: three translation parameters that realigeotigin; three angle parameters that realize the
orientation, and a scale change parameter thatesahe scale. As a simple example (which is
not practiced anymore), suppose a previous franmaos a point with defined coordinates
(analogous to the Meades Ranch origin point, batwknto refer to the geocenter). The next
realization, based on new observations, could lzek to the previous frame by constraining
the translation to be zero. Because these datams{ormation) parameters are determined for
points on the Earth’s crust (“crust-based framai)d because the Earth as a whole is a dynamic
entity, the parameters are associated with an epodhtoday, are supplemented with rates of
change, making the total number of parameters equisd.

Unlike the origin of the historical (traditionadjeodetic datum that could be accessed at a
physical point on the Earth, the geocenter is atiokesonly indirectly by dynamical modeling of
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satellite orbits and observations of distancestiveao the satellites in these orbits. In either
case, however, whether a marker on the Earth’sseirdr its geocenter, the origin is defined by
a convention, just like all other parts of the aboate system. As such it is not, a priori, an
observable, or measurable, quantity like a distamcan angle. This is the classiatum defect
problem, well known in all types of surveying, whabservations of distances and angles must
ultimately berelated to a point or direction that is fixed or defineg donvention.

With satellite techniques, on the other hand,gheithe advantage of knowing that the center
of mass is the centroid for all orbits. In thahse, the center of mass of the Earth serves as a
natural origin point that, in theory, is accessibléat is, if the orbit is known, observationgy(e.
distances) from points on the Earth’s surface totpan the orbit are in a geocentric system, by
definition. Determining the orbit by dynamical metls (using and/or solving for the
gravitational field of the Earth, as well as otlierces acting on the satellite) is beyond the
present scope (Seeber 2003). Suffice it to satyrtbirall origin realizations are the same as
obtained by different analysis centers that, moeeoprocess different satellite data (satellite
laser ranging, lunar laser ranging, GPS, Dopplé&)daGenerally, the most precise methods are
based on satellite laser ranging (SLR).

For the first ITRFs in the early 1990s, it wastousary to relate all frames realized by
particular analysis centers and/or satellite tepies to one of the satellite laser ranging (SLR)
solutions from the Center for Space Research (@®R)stin, Texas, which was considered to
be the best solution that accesses the center €f aral thus realizes the origin. The origins of
solutions (i.e., realized coordinate systems) fratimer techniques, such as Doppler and GPS,
were related by IERS to the ITRF origin throughramslation determined by using stations that
are common to both the CSR and the other solutibaser, a weighted average of selected SLR
and GPS solutions was used to realize the origior ITRF2000, the origin was realized by a
weighted average of “the most consistent SLR smhsti submitted to the IERS (Petit and
Luzum 2010). With ITRF2005 and ITRF2008, the |IElR®d a time series over 13 years and 26
years, respectively, of re-processed SLR dataletteel, globally distributed sites to realize the
origin. The latest realization, ITRF2014, followse same procedures as for ITRF2005 and
ITR2008, reprocessing all data up to 2014 and drogialso enhanced models for post-seismic
deformation at earthquake-prone sties.

The scale similarly was realized for the early FBRoy the SLR solutions from the CSR
analysis center, with the scale of other solutitmasformed accordingly. For all subsequent
realizations of scale, SLR was combined with Veond) Baseline Interferometry (VLBI), which
accurately measures coordinate differences obstmseparated by large distances (several 1000
km) using observed directions to quasars (Chapter @ is noted that VLBI provides no
information on the origin of coordinates.)

Satellite and space observational techniques itonta information on the absolute
longitudinal orientation of a system. This oriditta has no obvious natural reference and is
completely arbitrary (the Greenwich meridian). Onight argue that the equatorial orientation
(or, equivalently, the polar direction) like thenter of mass is a natural reference that is
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accessible indirectly from astronomic observatidfisBl, and satellite tracking (since the orbit
is also defined by the figure axis of the Eartlg Section 4.3.2). However, the polar direction is
complicated, a result of both polar motion withpest to the Earth’s crust, and precession and
nutation with respect to the celestial sphere Gbapter 4). Besides this, the stations on the
Earth’s crust, which ultimately realize the ITR$¢ an constant motion due to plate tectonics.
Thus, the adopted convention for realizing the mdagon of the ITRS is to ensure that each
successive realization after 1984 is aligned vhthdrientation defined by the BIH in 1984 (with
some early adjustments for different solutionshef Earth Orientation Parameters (Chapter 4).

The methods of combining different solutions anttaducing the constraints needed to
address the datum defect (i.e., specifying origgale, and orientation) has become increasingly
complicated as more data are assimilated and asalgsters employ various weighting schemes
to account for the various observational accuraciBsese details are beyond the present scope
and the interested reader is referred to the IER®/€ntions of 2003 (McCarthy and Petit 2003)
and of 2010 (Petit and Luzum 2010) and referenkbeeein (specifically also publications by
Altamimi et al. 2002a,b, and references therein).

The model for the coordinates of any of the ohbisgrgtations participating in the realization
of ITRS is given by

x(t)=x0+(t—t0)v0+z:Axi (), (3.16)

where x, andv, are the coordinates and their velocities for theeoving station, defined for a
particular epochf,. These are solved on the basis of observed crta:t&ﬁ,x(t), at time, t,
using some type of observing system (like satelder ranging). The quantitieglx,, are

corrections applied by analysis centers to accdiant various, short-wavelength, local
geodynamic effects, such as solid Earth tides,oteading, and atmospheric loading, with the
objective of accounting for the non-constant vdlesi Details for corresponding recommended
models are provided by the IERS Conventions 201@&p&r 7). The coordinate vectot,, and

the linear velocity,v,, for each participating station is provided by ERs a result of the
assimilation of all data, and these represent timseguent realization of ITRS at epoth, In

the past, the linear velocity was modeled largelythe tectonic plate motion model, NNR-
NUVEL1A (McCarthy, 1996); thus,

Vo = Vyuveria t OV, (3.17)

where v,,e14 IS the velocity given as a set of rotation ratsthe major tectonic plates, and
dV, is a residual velocity for the station. The new@&Fs (since ITRF2000) appear to indicate
significant departures of the station velocitieg, from the NNR-NUVEL1A model, which,

however, does not impact the integrity of the ITRF.
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3.3.1 World Geodetic System of the U.S. Department of Defense

The World Geodetic System 1984 (WGS84) is the edent of the ITRS for the U.S.
Department of Defense (and includes also a glokalitgtional model). It is the evolution of
previous reference systems, WGS60, WGS66, and WGBWVIA 1987). The corresponding
reference frame for WGS84 as originally realized1®87 on the basis mostly of satellite
Doppler observations agreed approximately with NBAD8The next realization, designated
WGS84(G730), made use of observations from 12 GB&oss around the world and was
aligned with the ITRF92 to an accuracy of aboutc20in all coordinates. Here, G730 denotes
the 730" week of the GPS satellite ephemerides. The matization, WGS84(G873), improved
on this and was designed to be consistent with BERWhich was achieved with about 10 cm
accuracy. The next realization, WGS84(G1150), based on GPS observations at 17 U.S. Air
Force and NIMA (National Imagery and Mapping AgeXicstations, and it is consistent with
ITRF2000 at the 2 cm level of accuracy (Merrigaralet2002. Finally, the latest realization,
WGS84(G1674), is actually adjusted to be consistetit ITRF2008. That is, all the WGS84
stations adopted their ITRF2008 coordinates andcitié@s for epoch 2005°0(Wong et al.
2012).

3.4 Transformations

With many different realizations of terrestrial eefnce systems, as well as local or regional
datums, it is important in geodetic application&now the relationship between the coordinates
of points in these frames. Especially for the imedilon of ITRF, extensive use is made of
transformations to define the evolution of the imdlons and the relationships of ITRF to the
realizations of reference systems of contributimglgsis centers or space techniques. The
transformations of traditional local horizontal aiais (referring to an ellipsoid) with respect to
each other and with respect to a global terrestef@rence frame is a topic beyond the present
scope. However, for standard Cartesian systekesthie ITRS and WGS84, and even the new
realizations of the NAD83 and other modern realiret of regional datums (like the European
Coordinate Reference Systeipsa simple 7-parameter similarity transformatiarelfnert
transformation) serves as the basic model for the transformations

According to the definition of the IERS, this teormation model is given by

® Renamed in 2003 to National Geospatial-IntelligeAgency (NGA)
” https://www.ion.org/publications/abstract.cfm?jg=pticlelD=2164
8 http://www.unoosa.org/pdflicg/2012/template/WGS,pgi

® http://www.euref.eu/
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Xo =T +(1+ D) R X o, (3.18)

where x,, is the coordinate vector of a point in the framoewhich its coordinates are
transformed, and,,,, is the vector of coordinates of that same poirthenframefrom which it

is transformed. (Perhaps it is not the best mmtatiut it is the clearest in defining the diretio
of the transformation, and the reader is cautiom&do confuse “to” with the epoch,.) The
translation, or displacement, between frames isrghy the vectorT , and the scale difference
is given by D. The IERS definition concerning the rotationswestn frames is somewhat
counter-intuitive, where the rotation matrix, helenotedR", represents rotations angles in the
negative (clockwise) sense, rather than the usositipe (counterclockwise) sense; see Figure
3.4. Since the rotation angles are small, we lare equation (1.9):

1 -R3 R2
R' =R (R)R; (R2)R;(R3)=| R3 1 -R1, (3.19)
-R2 RL 1

whereRL, R2, and R3 are the small rotation angles, in the notation @efthition of the IERS.

Ytrom

Yo

&,

* X
Xy from

Figure 3.4: Transformation parameters for the IER®E the NGS models. IERS and NGS
conventions are illustrated witRl,R2,R3 and¢,, ¢, , ¢, , respectively.
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Since D is also a small quantity, we can neglect secoderaerms and write

X X T1 X 0 -R3 R2)\(x
y| =|y| +|T2/+D|y| + R3 0 -R1|y| . (3.20)
z to z from T3 z from —RZ Rl O z from

Each of the seven parameters of this mo@ig], T2, T3, RL, R2, R3, andD, may have a time
variation that is modeled simply as being linear,

B(t)= By + By (t-t5), (3.21)

where 3 refers to any of the parameters. The 14 paras)efyr and 43, , i =1,...,7, then
constitute the complete transformation. Combirgggations (3.20) and (3.21), we have

x(t) x(t) T1(t) x(t) 0 -R3t) RAt) [ x(t)

y(t)| =[y(t)| +[T2(t) [+D(t)] y(t)| +| R3(t) 0 -RAt)||y(t)| .

z(t) ) \z(t)) - (T3(t) z(t) ) (-R2(t) RYt) 0 Nz(t))
(3.22)

noting that the transformation, as given by theapaaters, (t) , Is valid at a particular epoch,

Thus, transformations among the various framesimegareful consideration not only of
velocities of the points themselves in a particuleame, but also the “velocity” of the
transformation parameters, themselves. In gengraliransformation of coordinates of a point
between two different frames may proceed in two svaguppose the point coordinates in the
“from”-frame vary in time (within that frame),

Xfrom (t) = Xfrom (to) + Xfrom [Gt _to) ’ (323)

where the coordinate velocity,,,,, and the coordinates &, both in the “from”-frame, are

known. Further, suppose that the transformatiorarpaters between the “from”- and “to”-
frames area given by equation (3.21). Then thedtoates of this point in the “to”-frame at the
epoch,t, can be computed either according to

Xirom (tO) - Xy (tO) - Xto(t)
i ) (3.24)
,Bo Xto
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or

Xfrom (tO) = Xfom (t) - Xy (t)
: : (3.25)

Xfrom IB(t)

where the vertical arrows indicate either Helmemns$formations and simple velocity
transformations, given by equation (3.23). Theoe#y, X, can be determined from the

to?

derivative of equation (3.22),

X X T.l x(t) 0 -R3 R'Z x(t)
y| =|y| +/T2[+D|y(t)] + R3 0 -R1|y(t)| |, (3.26)
z to z from T3 Z(t) from —R2 R]_ 0 Z(t) from

which neglects second-order terms. The transfoomaihethods described by equations (3.24)
and (3.25) are equivalent if the velocitie8, X, X, Offwithin the frames are accurately

related according to equation (3.26).

Table 3.2 lists the transformation parameters grtbe various IERS (and BIH) terrestrial
Reference Frames since 1984. [These numbers votaened from various IERS publications
and internet sites and have been known to contaimesinconsistencies (see also the ITRF
internet sité%)]. Rates of the parameters are given only sire@31 Note that ITRF96 and
ITRF97 were defined to be identical to ITRF94 widspect to epoch 1997. In order to obtain
transformation parameters for other than the ligedch, equation (3.21) should be employed.
For example, using the last row of Table 3.2, ttandlation inx between ITRF2005 and
ITRF2008 at the epoch,=200G, is given by

T1(t) =T4(t,) + T 2t ~t,)
=0.05 cm~ 0.03 cm/yif—~ 5 Wi (3.27)
=0.20 cm

The Petit and Luzum (2010) provide transformatianameterdrom ITRF2008 to all previous
frames for the epocht=200C; see also the IERS internet site for parametduega
corresponding to the most recent (and previousizegen.

10 hitp://itrf.ensg.ign.fr/
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Table 3.3 lists transformation parameters from \8&® ITRFI0 as published by McCarthy
(1992) as well as from recent ITRFs to NAD83(CORS&6published by the National Geodetic
Survey. These are no longer available on the interneiyidual transformations may be found
in the literature; e.g., Soler and Snay (2004).teNbat the rotation parameteus,, 5, in Table

3.3 represent the more intuitive rotations from fiteen-frame to theto-frame. Also, note that
the transformation parameters formally are estimatith given associated standard deviations
(they are not listed here). Therefore, the deteation of the vector of coordinates through such
a transformation, in principle, should include gorous treatment of the propagation of errors.

Geometric Reference Systems 3-24 Jekeli, August 2016



Table 3.2: Transformation parameters for recemesénal reference frames.

From To T1|T1 | T2|T2 | T3|T3 | RI|R1L | R2|R2 | R3|R3 | D|D t,
cm cm cm 0.001" | 0.001" | 0.001" | 10°®
cmiyr | cmiyr cmiyr 0.001"/yr 0.001"/yq 0.001"/yi 107 /yr
BTS84 BTS85 5.4 2.1 4.p -0[9 -25 -3.1 0.5 1984
BTS85 BTS86 3.1 —6.0 -5)0 -1.8 -1.8 -5/81 41.7 1984
BTS86 BTS87 -3.9 0.3 -13 -0/4 2.5 1.5 -D.2 1984
BTS87 ITRFO 0.4 -0.1 0.p 00 0/0 —-Q.2 —-0.1 1984
ITRFO ITRF88 0.7 —0.3 -0.7 —-03 0.2 0.1 D.1 1988
ITRF88 ITRF89 0.5 3.6 2.4 -0/1 0}0 0.0 —-0/31 1988
ITRF89 ITRFO0 -0.5 -2.4 3.8 0/0 010 Q.0 0.3 1988
ITRF90 ITRF91 0.2 0.4 1.6 0.0 0/0 0.0 -0/03 1988
ITRF91 ITRF92 —1.1 -1.4 0.6 0/0 0l0 Q.0 —-0/14 1988
ITRF92 ITRF93 -0.2 -0.7 -0.7 -0.39 0.80 -0.96 0.12 | 1988
-0.29 0.04 0.08 -0.11 -0.19 0.05 0.0
ITRF93 ITRF94 -0.6 0.5 1.5 0.39 -0.80 0.96 -0.04| 1988
0.29 -0.04 -0.08 0.11 0.19 -0.05 0.0
ITRF94 ITRF96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1997
0.0 0.0 0.0 0.0 0.0 0.0 0.0
ITRF96 ITRF97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1997
0.0 0.0 0.0 0.0 0.0 0.0 0.0
ITRF97 ITRF2000 -0.67 -0.61 1.85 0.0 0.0 0.0| -0.155| 1997
0.00 0.06 0.14 0.0 0.0 -0.02| -0.001
ITRF2000 | ITRF2005 -0.01  0.08 0.58 0.0 0.0 0.0| -0.040| 2000
0.02 -0.01 0.18 0.0 0.0 0.0/ -0.008
ITRF2005 | ITRF2008 0.05  0.09 0.47 0.0 0.0 0.0| -0.094| 2005
-0.03 0.0 0.0 0.0 0.0 0.0 0.0
ITRF2008 | ITRF2014 -0.16  -0.19 -0.24 0.0 0.0 0.0 0.002| 2010
0.00 0.00 0.01 0.0 0.0 0.0/ -0.003
X T1(t) 0 -R3t) RAt))(x
y| =|y| +T2(t) |+D(t) +| R3(t) 0 -RIAt)|ly (3.28)
2o from T3(t) from —RZ(t) Rl(t) 0 Z Jtrom
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Table 3.3: Transformation parameters for otheestrial reference frames. Note thegt=—R1,
£, =-R2, £, =-R3.

From To TL|T1| T2|T2 | T3|T3 |el|él  |e2|é2 |€3|¢é3  |D|D t,
cm cm cm 0.001" |0.001" |0.001" |10
Cm/yr Cm/yr Cm/yr 0001"/ yl’ 0001"/ yl’ 0001"/ yl’ 10_8 /yr
WGS72 ITRF90 -6.0 51.] 4723 18.3 -0.3 5470 23.1] 1984
WGS84 | ITRF90 -6.0 51.7 22.3 18.3 -0.3 7.0 1.1] 1984
ITRF96 NADS83 99.1| -190.7 -51.3 25.8 9.7 11.7 0.0 1997
(CORS96) 0.0 0.0 0.0 0.053 -0.742  -0.032 0.0
ITRF97 NADS83 98.9| -190.7 -50.3 25.9 9.4 11.6 -0.09 1997
(CORS96) 0.07 -0.01 0.19 0.067 -0.757  -0.031 -0.02
ITRF2000 | NAD83 99.6| -190.1 -52.2 25.9 9.4 11.6 0.0 1997
(CORS96) 0.07 -0.07 0.05 0.067 -0.757  -0.051 -0.02
IGS08 NADS83 99.343| -190.331| -52.655| 25.91467 9.4264% 11.5993% 0.171504 1997
(2011) 0.079] -0.060| -0.134| 0.06667 -0.75744 -0.05133 -0.010201
L original realization; sign error fag, has been corrected.
X X T1(t) 0 &(t) -g(t))x
y| =|y| +[T2(t)|+D(t)|y| +|-&(t) 0 g(t) ||y (3.29)
z to z from T3(t) from £y (t) —Ex (t) O z from

3.4.1 Transformationsto and Realizations of NAD83

IAG resolutions (Resolutions Nos.1 and 4; IAG 198)ommend that regional high-accuracy
reference frames be tied to an ITRF, where suchdsaassociated with large tectonic plates may
be allowed to rotate with these plates as londpag toincide with an ITRF at some epoch. This
procedure was adopted for NAD83, which for the eoninous U.S. and Canada lies (mostly)
on the North American tectonic plate. This plats Iglobal rotational motion estimated
according to the NNR-NUVEL1A model by the followingtes (McCarthy 1996),

0 =0.000258 rad/10 yr 0.053 masAr 1.6 mmiyr
Q,=-0.003599 rad/10 y - 0.742 masfyr 22.9 mm

©, =-0.000153 rad/10 yr - 0.032 mashr- 0.975 mn

(3.30)
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where the last equality for each rate uses theoappation that the Earth is a sphere with radius,
R=6371km. These rates are in the same sense as the IER8ntimn for rotations.

The transformation between a regional frame anBFTcan be determined (using the
standard Helmert transformation model) if a sudiinti number of points exists in both frames.
Such was the case for the transformation betweeD33HARN) and ITRF93 on the basis of 9
VLBI stations in the U.S. that had accurate 3-Drdowtes in both frames (Soler and Snay
2000). The resulting transformation parametersevagplied in a transformation of all CORS
stations whose coordinates originally were deteeshinn ITRF93, which thus yielded the
realization NAD83(CORS93). This procedure was abpad with respect to ITRF94 and
ITRF96, using also additional VLBI sites in Cand@aaymer et al., 2000). The solution for the

Helmert transformation parameters from ITRF96 to D88(CORS96) resulted in (see also
Table 3.3):

T1(1997.0 = 0.9910 m

T2(1997.0=-1.9072 ir

T3(1997.0 =- 0.5129 m

R1(1997.0 =- 25.79 ma (3.31)
R2(1997.0 = - 9.65 mas

R2(1997.0 =~ 11.66 me

D(1997.0 = 6.62 ppb

where the angles refer to the convention used RSIEand the epoch 1997.0 indicates the epoch
of validity of the transformation parameters. Témale factor for these transformations to
NAD83 was set to zero[?((1997.() = () so that the two frames, by definition, have thens

scale. Snay (2003) notes that this is equivalerdetermining a transformation in which the
transformed latitudes and longitudes of the point®ne frame would best approximate the
latitudes and longitudes in the other in a leasiasgs sense. That is, the scale is essentially the
height, and the height is, therefore, not beingsiarmed. We thus have

X X T1(1997) 0 -R 3(1997) R 2(1997) x
y =y +| T2(1997)|+| R3(1997) 0 -R 1(1997) y (3.32)
z NAD83(CORS 96) z ITRF 96(1997) T3(1997) -R 2(1997) R 1(1997) 0 ITRF 96(1997)

Since the regional frame, NAD83(HARN), is attachedhe North American tectonic plate,
the ITRF coordinates of points on that plate hawvelacity, while corresponding coordinates in
NADS83 have virtually no velocity due to plate matiunless the point is on another plate; see
Problem 3.4.2-3). Now, the transformation paramnsetthus determined, refer to a particular
epoch (1997.0 in this case). At other epochsNAB83 coordinates presumably do not change
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at the VLBI sites used to determine the transfolonaparameters; but, their coordinates in the
ITRF do change because the North American platsmasing (rotating) in a global frame.
Therefore, the transformation between NAD83(CORS#&&) ITRF96 at other epochs should
account for this motion. For points on the Nortiméfican plate we may incorporate the plate
motion, equations (3.30), into the ITRF transforimafrom one epoch to the next as

x(t) x(1997) 0 -0,(t-1997 @, (t- 199F)(x( 199
y(t) =1 y(1997) + Q,(t-1997 0 -0, (t- 199y| y( 199 ,
{z(t)}mp% L(1997)}TRF% -0, (t-1997 @ (t- 199y 0 {z( 1993@;%

(3.33)

where, e.g., bottx(t) and x(1997.0 refer to the IRTF96, but at different epochs. Sitiating
this into the ITRF96-NAD83 transformation, we ohtai

x(t) T1 0 -R3(t) RAt))(x
=| y(t) + T2|+| R3(t) 0 -RIt)|y , (3.34)
T3) (-R2(t) RIt) 0 J\z

NAD83(CORS 96) Z (t) ITRE96 ITRF 96(1997.0)

where

Ri(t) = R1(1997.0- 2, (t- 19970
R2(t) = R2(1997.0- @, (t- 1997 (3.35)
R3(t) = R3(1997.0- 2, (t— 1997

which agrees with Table 3.3, since the transforomatequation (3.29), uses angles defined in the
reverse sense (NGS convention). Hence, e.g.,

£ (t)=-R(t) =-R1(1997.0+ 2, (t - 1997.L. (3.36)

Using the transformation, equation (3.34), NGS treadized NAD83 at all CORS stations and
designated this realization NAD83(CORS96). By mi@bn all temporal variations in the
displacement and scale parameters in this transtimwere set to zero.

For transformations to NAD83 from the next redi@a of ITRS, the NGS adopted slightly
different transformation parameters than determidsd the IERS. The transformation
parameters from ITRF96 to ITRF97 are published e® Zincluding zero time-derivatives of
these parameters); see Table 3.2. Yet, the Irtenah GNSS Service (IGS) determined the
transformation ITRF96 to ITRF97 based solely on GB&tions and found non-zero
transformation parameters. Since the control netsvef NAD83 are now largely based on
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GPS, NGS decided to use the IGS-derived ITRF9G-RFB7 transformation, yielding the
transformation parameters between ITRF97 and NAB83jiven in Table 3.3 and obtained
from:

ITRF97 - NAD83CORS 96)= (ITRF 97~ ITRF 9§ (3.37)
+(ITRF96 - NAD83CORS 96) |

For ITRF2000, there were only insignificant diffeces between the transformation parameters
determined by IERS and by IGS, and thus we have

ITRF 2000 NAD 83CORS 96) (ITRF 2000- ITRF 97 _
+(ITRF97 - ITRF 96)
+(ITRF96 -~ NAD 83(CORS 96)

(3.38)

as verified by the numerical values in Tables 3@ 3&.3.

Since the IERS-derived transformation paramet@rdRFs are time-dependent, the more
general transformation to NAD83 now yields time-elegient coordinates in NAD83. However,
for the most part these reflect only very small iom@d¢ within the NAD83 frame. In order to
determine velocities of control points within NAD&3ased on their velocities in the ITRF, one
can use equation (3.26). Itis expected that wiodte ITRF velocity associated with a point (the
first term in equation (3.26)) is cancelled by fhlate motion, given by the last term, so that
within NAD83 there is essentially no motion, ongsidual motion due to local effects. For
example, those points near a plate boundary (sachear the west coast of the U.S.) have
significant motion within NAD83 that is determindyy the total motion of ITRF minus the
overall plate motion model.

Recently, NGS updated all NAD83 coordinates ofGBRS stations to the epoch 2010.0,
and used formula (3.26) to determine the correspgndlAD83 velocities. A utility called
OPUS! (On-line User Positioning Service) (Soler and Sr28p4) is offered by NGS to
determine 2010.0 coordinates, in NAD83 for any point observed by static diffetial GPS
observations. For simple examples of how the NARB8 ITRF coordinates of CORS points
are related, see Problem 3.4.2-3.

M http://www.ngs.noaa.gov/OPUS/

Geometric Reference Systems 3-29 Jekeli, August 2016



3.4.2 Problems

1. a) Rigorously derive the approximation, form@820), from the exact equation (3.18)
(3.15) and clearly state all approximations. Deiae the error in coordinates of the point in
Problem 3.1.2-2 when using equation (3.20) instehcquation (3.18) for the parameters
associated with the ITRF2000 — NAD83(CORS86) trammsétion.

b) Given the coordinates of a point in Columbygs: 40°, A =-83°, h=200 m, in the
NAD83(CORS86) frame, compute its coordinates in fA@F89, as well as in the ITRF94,
based on the transformation parameters in Tabkargl 3.3.

2. a) Which of the following remain invariant in &parameter similarity transformation,
equation (3.18)7?
i) chord distance; i) distance from originiii) longitude
b) Answer 2.a) for each of the quantities listedaseR =1 (identity matrix) (be careful!).

3. Using the web site: http://www.ngs.noaa.gov/CQREd the coordinate data sheet of CORS
station Westford (WES2) in eastern Massachuselitk (on the station and then use the links
“Get Site Info” and “Coordinates”; then click ondgition and Velocity” and use the Positions at
ARP (antenna reference point)).

a) Using the listed 1GS08(2005) coordinates anaaoreés for this GPS station, compute the
NADS83 coordinates and their velocity for 2010.0 adnpare them to the values published by
NGS. Use the transformation IGS08-to-NAD83(20hl T able 3.3.

b) Do the same for the CORS station, Point LomaPbQ®b), near San Diego, Southern
California.
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3.5 Vertical Datums

Nowadays, heights of points could be reckoned u§iRg with respect to an ellipsoid; in fact,
we have already introduced this height as the slgal height,h (Section 2.1.2). However,
this height does not correspond with our intuitsense of height as a measure of vertical
distance with respect tolevel surface. Two points with the same ellipsoidal height nieeyat
different levels in the sense that water would flieam one point to the other. Ellipsoidal
heights are purely geometric quantities that haveannection to the gravity potential; and, it is
thegravity potential that determines which way water flows. An unpdréd lake surface comes
closest to a physical manifestation of a levelatef Mean sea level (often quoted as a reference
for heights) is also reasonably close, but not bdquaa level surface, due to various non-
gravitational forces that cause the hydrostatidlgguwm of the mean surface to deviate from
being gravitationally level. We magefine a level surface simply as a surface on which the
gravity potential is constant. Discounting frictiono work is done in moving an object along a
level surface; water does not flow on a level stgfaand all points on a level surface should be
at the same height — at least, this is what wetimély would like to understand by heights. The
geoid is defined to be that level surface that clos@lgraximates mean sea level (mean sea level
deviates from the geoid by up to 2 m due to thesipmt variations in pressure, salinity,
temperature, wind setup, etc., of the oceans).reTisestill today considerable controversy about
the exactrealizability (accessibility) of the geoid as a definite surfeaed the definition given
here is correspondingly (and intentionally) vague.

A vertical datum, like a horizontal datum, regsir@n origin, but being one-dimensional,
there is no orientation; and, the scale is inheirethe measuring apparatus (leveling rods). The
origin is a point on the Earth’s surface wherehbaght is a defined value (e.g., zero height at a
coastal tide-gauge station); but, an alternativenidien is now being considered by some
countries (see below). This origin is obviouslgessible and satisfies the requirement for the
definition of a datum. From this origin point, gkis (that is, height differences) can be
measured to any other point using standard levebiragedures (which we do not discuss
further). Traditionally, a point at mean sea leselved as origin point, but it is not important
what the absolute gravity potential is at this poisince one is interested only in height
differences (potential differences) with respectht® origin. This is completely analogous to the
traditional horizontal datum, where the origin gofa.g., located on the surface of the Earth)
may have arbitrary coordinates, and all other gomithin the datum are tied to the origin in a
relative way. Each vertical datum, being thus rekdi with respect to an arbitrary origin, is not
tied to a global, internationally agreed upon, icaitdatum. The latter, in fact, does not yet exis
officially, although much debate, discussion, htere, and candidate models have centered on
just such a datum.

Figure 3.5 shows the geometry of two local velttztums each of whose origin is a station
at mean sea level. In order to transform fromaréical datum to another requires knowing the
gravity potential difference between these origoings. This difference is not zero because
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mean sea level is not exactly a level surfacegbfices in height between the origins typically
are several decimeters.

P Q
He N\ P Qo HS
0 //7\/
vertical datumA Wn Sea Level %ertical datumB
ellipsoid

Figure 3.5: Two vertical datums with respect taamsea level.

The heights that are measured and belong to eydartvertical datum ultimately are defined
by differences in gravity potential with respectite origin point. There are a number of options
to scale the geopotential difference so that itaggnts a height difference (that is, with distance
units). The most natural height (but not necelysdre most realizable height from a theoretical
viewpoint) is theorthometric height, H , defined as the distance along the (curved) pliing
from the level surface (a local geoid), that pagbesugh the datum origin, to the point in
qguestion. With sufficient accuracy, we may negldet curvature of the plumb line and
approximate the orthometric height as a distanoagathe ellipsoidal normal. Analogous to
Figure 3.2, we then have

H=h-N, (3.39)

where N is the distance from the ellipsoid to the leveifate that passes through the origin
point. This is the (localgeoid undulation. It is equal to the global geoid undulation mirius
offset of the origin point or local vertical datdnom the global geoid.

For North America, théNational Geodetic Vertical Datum of 1929 (NGVD29) served the
U.S. for vertical control until the late 1980’'s;daanada’s Geodetic Vertical Datum of 1928
(CGVD28) until 2013 was still the official datumrfeertical control. The origin of NGVD29
was actually based on sevedafined heights ofzero at 21 coastal (mean sea level) tide-gauge
stations in the U.S. and 5 in Canada. Similarhsuédable set of coastal tide gauge stations
served to define the origin of CGVD28. Definingadeight at different points of mean sea
level caused distortions in the network since, asech above, mean sea level is not a level
surface. Additional distortions were introducedcdgse leveled heights were not corrected
rigorously for the non-parallelism of the level fawes.

In 1988 a new vertical datum was introduced, Nloeth American Vertical Datum of 1988
(NAVDS88). Its origin is a single station with afoeed height (not zero) at Pointe-au-Pere
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(Father’s Point), on the St. Lawrence river in Ruski, Québec, which is also the origin point
for thelnternational Great Lakes Datum of 1985 (IGLD85). Despite this location for thegin,
NAVD88 was never officially adopted by Canada. iDefy the origin at a single point
eliminated the theoretical problem of constrainenggvel surface to a non-level surface (mean
sea level). Also, the leveled heights were mogerdusly corrected for the non-parallelism of
the level surfaces.

However, recent analyses determiffedith improved gravity models and GPS (providig
andh, respectively, in equation (3.39)), that the entietwork has a tilt error of more than 1
meter from the east coast (where the origin liesjhe west coast. This is due in part to the
propagation of systematic leveling errors, but akeo remaining model errors in the
implementation of the theory of orthometric heightermination.

To rectify these problems (among others), NGS ptarreplace NAVD88 by a geopotential
model. This new paradigm in vertical control camges a re-definition of a system analogous to
the re-definitions of past horizontal datums. $sence, there will be no physical benchmark to
define the origin of the datum. Instead, a chosdoe, W,, of the gravity potential will serve

the function of defining the geoid. With an actargeopotential model, it is then just a matter
of determining the ellipsoidal height of a pointsiftg GPS) and determining the geoid
undulation, N, for this point from the gravity model. Makingeusf equation (3.39) then yields
the orthometric heightH . Clearly, the geopotential model must be veryueate so that the
computational error iflN is commensurate with that &f. The goal is cm-level accuracy fét

over the entire continent. New Zealand has alre@ashjtuted such a system in 2009 based on a
geoid model (Amos 2010); and The Geodetic Surveyisioin (GSD) of Natural Resources
Canada likewise replaced CGVD28 with CGVD2818vhich is a gravity model with one of its
equipotential surfaces), =62,636,856.0 rh f, representing the reference for heights. It is

close to mean level around the coasts of Canadandiuspecifically tied to a mark on the
ground. NGS is developing an accurate gravity rhéden a systematic survey of gravity by
airborne systems throughout the country to brihgxkting and new gravity data to a common
level of accuracy. Eventually, the combined NG® &SD vertical datums will become a
unified North American Vertical Datum.

2 proceedings of the 2010 Federal Geospatial Supmiinproving the National Spatial Reference System.
http://www.ngs.noaa.gov/2010Summit/2010FederalGatieBummitProceedings.pdf
13 http://www.nrcan.gc.ca/earth-sciences/geomaticslgic-reference-systems/9054# Toc372901509
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Chapter 4

Celestial Reference System

Ultimately the orientation of the terrestrial referencstam is tied to an astronomic system, as it
has always been throughout history. The astronomic referencensystenore correctly, the
celestial reference systei® supposed to be anertial reference system in which our laws of
physics hold without requiring corrections for rotations. For geogetiposes it serves as the
primal reference for positioning since it has no dynamics. Coslyerns is the system with
respect to which we study the dynamics of the Earth as angptaddy. And, finally, it serves,
of course, also as a reference system for astrometry.

We will study primarily the transformation from the celalstreference frame to the
terrestrial reference frame and this requires some undersgadithe dynamics of Earth
rotation and its orbital motion, as well as the effects of obsgmréhestial objects on a moving
and rotating body such as the Earth. The definition of the =#lesterence system was until
rather recently (1998), in fact, tied to the dynamics of thehEaithereas, today it is defined as
being almost completely independent of the Earth. The changénitide is as fundamental as
that which transferred the origin of the regional terrestatdrence system (i.e., the horizontal
geodetic datum) from a monument on Earth’s surface to the gencelités, as always, a
guestion of accessibility or realizability. Traditionally, theeotation of the astronomic or
celestial reference system was defined by two natuoaityirring direction in space, the north
celestial pole, basically defined by Earth’s spin axis (oselto it), and the intersection of the
celestial equator with the ecliptic, i.e., the vernal equinox (see Section 2.3.2). h®xgmamics
of these directions were understood, it was possible to defg@directions that are fixed in
space and the requirement of an inertial reference systenfulfiled (to the extent that we
understand the dynamics). The stars provided the accessibilibhetsystem in the form of
coordinates (and their variation) as given in a fundamental catatogh is then the celestial
reference frame. Because the defining directions (the oimmtatepend on the dynamics of the
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Earth (within the dynamics of the mutually attracting bodies insolar system), even the mean
directions vary slowly in time. Therefore, the realization of glistem included an epoch of
reference; i.e., a specific time when the realization held tRog.any other time, realization of
the frame required transformations based on the motion of the obseaxaklewhich in turn
required a dynamical theory based on a fundamental set of itsnatad parameters. All this
was part of the definition of the celestial reference system.

On the other hand, it is known that certain celestial objectedogliasars(quasi-stellar
radio sources), exhibit no perceived motion on the celestial spher® dieir great distance
from the Earth. These are also naturally occurring directmrighey have no dynamics, and as
such would clearly be much preferred for defining the orientaifathe celestial system. The
problem was their accessibility and hence the realizabilitheframe. However, a solid history
of accurate, very-long-baseline interferometry (VLBI) meesents of these quasars has
prompted the re-definition of the celestial reference systermne whose orientation is defined
by a set of quasars. In this way, the definition has fundamentalyged the celestial reference
system from alynamicsystem to &inematic(or, geometrical) system. The axes of the celestial
reference system are still (close to) the north celeptild and vernal equinox, but are not
defined dynamically in connection with Earth’s motion, rather #reytied to the defining set of
guasars whose coordinates are given with respect to these Mresover, there is no need to
define an epoch of reference, because (presumably) theseodiseetll never change in inertial
space (at least in the foreseeable future of mankind).

The IERSInternational Celestial Reference Systéf@RS), thus, is defined to be an inertial
system (i.e., non-rotating) whose first and third mutually orthogooatdinate axes (equinox
and pole) were realized initially (1995) by the coordinates of 60§ aotrextra-galactic sources
(quasars), as chosen by the Working Group on Reference Frames odhtéheational
Astronomical Union (IAU); see Feissel and Mignard (1998). Ofeh2&2 sources defined the
orientation, and the remainder comprised candidates for additionab ttee reference frame.
The origin of the ICRS is defined to be the center of masfiefsblar systembérycentric
system) and is realized by observations in the framework of the theory oalgatetivity.

By recommendations from the International Astronomical Uniod ¢uly adopted) the pole
and equinox of the ICRS are supposed to be close to the mean dynaotecahd equinox of
J2000.0 (Julian date, 2000, see below). Furthermore, the adopted pole and equ®BSfdot
the sake of continuity, should be consistent with the directions edalar FK5, which is the
fundamental catalogue (fifth version) of stellar coordinatesréfars to the epoch J2000.0 and
served as realization of a previously defined celestial mfersystem. Specifically, the origin
of right ascension for FK5 was originally defined on the basikefiiean right ascension of 23
radio sources from various catalogues, with the right asceosiome particular source fixed to
its FK4 value, transformed to J2000.0. Similarly, the FK5 pole based on its J2000.0
direction defined using the 1976 precession and 1980 nutation series @& b€&he FK5
directions are estimated to be accurate to + 50 milliaregethé pole and = 80 milliarcsec for
the equinox; and, it is now known, from improved observations and dynamicdéls
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(McCarthy 1996, McCarthy and Petit 2003, Petit and Luzum 2010), thatClR& pole and
equinox are close to the mean dynamical equinox and pole of J2000.0wiinet these
tolerances. Thus, the definition of the ICRS origin of right asoanand pole are only
gualitative with respect to FK5 — fundamentally they are defindx tgeometric axes fixed by a
set of quasars. The precise transformation to a dynamidahsysuch as defined by modern
theories, is briefly discussed in Section 4.1.3.

The realization of the ICRS, thiternational Celestial Reference Fram¢CRF) is
accomplished with VLBI measurements of the quasars; and, as dimesvanprove the
orientation of the ICRF will be adjusted so that it has no netioatatith respect to previous
realizations (analogous to the ITRF). The original realizatias @esignated ICRF1; and, it was
extended in 1999 and again in 2002 with additional objects observed with WuBltotaling
667 and 717, respectively. The next significant realization, des@ym@RF2, was constructed
in 2009, where now 295 quasars define the system (being more statidet@mdistributed in
the sky than for ICRF1), and which also includes an additional 3118gejdrtic sources.
Aside from VLBI, the principal realization of the ICRS is throutjie Hipparcos catalogue,
based on recent observations of some 120,000 well-defined stars usiHgpplaecos (High
Precision Parallax Collecting Satellite), optical, orbitiapscope. This catalogue is tied to the
ICRF with an accuracy of about 0.6 mas (milliarcsec) in @ach Additional catalogues for up
to 100 million stars are described by Petit and Luzum (2010).

4.1 Dynamics of the Pole and Equinox

Despite the simple, geometric (kinematic) definition and ratdin of the ICRS, we do live and
operate on a dynamical body, the Earth, whose naturally endowedodise@ssociated with its
spin and orbital motion) in space vary due to the dynamics of motiamndieg to gravitational
and geodynamical theories. Inasmuch as we observe cetdgéiels to aid in our realization of
terrestrial reference systems, we need to be able to tranbfetiveen the ICRF and the ITRF,
and therefore, we need to understand these dynamics to the ektkmatst, that allows us to
make these transformations accurately. The description ofathefdrmation, comprisingarth
orientation parametetshas also changed in recent years. Here, both the traditiongptiesc
and the modern transformation are treated, where the traditionalk qmerhaps a bit more
accessible in terms of physical intuition, whereas, the ladeds to hide these concepts.
Furthermore, the opportunity was taken in the new approach to iraplecertain nuances
necessary for an unambiguous definition of Earth rotation. Thus, wenda the traditional
approach and evolve this into the modern transformation formulas.

Toward this end, we need, first of all, to define a system of fignce the theoretical
description ofdynamicsinherently requires it). We call the relevant time schkDynamic
Time referring to the time variable in the equations of motion dasgithe dynamical behavior

Geometric Reference Systems 4-3 Jekeli, August 2016



of the massive bodies of our solar system. Rigorously (with respdbe theory of general
relativity), the dynamic time scale can refer to a coordisgstem (coordinate time) that is, for
example barycentric(origin at the center of mass of the solar systengeocentri¢ and is thus
designated barycentric coordinate tinT€C8) or geocentric coordinate tim&CG); or, it refers

to aproper time associated with the frame of the observer (terrestrialmiyname (TDT ), or
barycentric dynamic timeTBD)); see Section 5.3 on further discussions of the different
dynamical time scales. The dynamic time scale, basedopemptime, is the most uniform that
can be defined theoretically, meaning that the time scalaritocal experience, as contained in
our best theories that describe the universe, is constant.

Dynamic time is measured in unitskflian dayswhich are close to our usual days based on
Earth rotation, but they amifornt whereas, solar days (based on Earth rotation) are not, for the
simple reason that Earth rotation is not uniform. The origin ohulyo time, designated by the
Julian date JO0.0, is defined to be Greenwich noon, 1 January 4713 B.C. Julian days, by
definition, start and end when it is noon (dynamical time) in GredmvEngland. Furthermore,
by definition, there are exactly 365.25 Julian days Jalan year or exactly 36525 Julian days
in aJulian century With the origin as given above, the Julian date, J1900.0, corresponds to the
Julian day number, JD2,415,021.0, being Greenwich noon, 1 January 1900; and the tiylian da
J2000.0, corresponds to the Julian day number, JD2,451,545.0, being Greenwich noon, 1 January
2000 (see Figure 4.1). We note that Greenwich noon represents mid-dayr usual
designation of days starting and ending at midnight, and so JD2,451,545.0 isSallanuary
2000. Continuing with this scheme, 0.5 January 2000 is really Greenwich nooec8mier
1999 (or 31.5 December 1999).

36525 Julian days

A
~ IR
JD2,433,282.0 JD2,451,545.0 JD2,469,807.0

| | |

| | | | | | | | |
Jan 0.5 Jan 1.5 Jan 1.5 Dec 30.5 Jan 0.5
1950 1950 " 2000 o 2049 2050
= noon = noon
Dec 31 Dec 31
1949 2049

Figure 4.1: One Julian century.

For practical reasons,maodifiedJulian day number,
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MJD = JD-2400000.}, (4.1)

is also defined relative to a new origin, which counts days as starting at imininigreenwich.
An epochis an instant in time (as opposed ttnae intervalwhich is the difference between
two epochs). We may define three epochs, as follows:

t,: the fundamental or basic epoch for which the values of certain ntsted parameters are

defined that are associated with the dynamical theories dfahsformation (previously,
the reference system).

t: theepoch of datebeing the current or some other time at which the dynarhmsld be
realized (e.g., the time of observation).

t-: an epoch that is fixed and arbitrary, representing another epdeirespect to which the
theory could be developed.

The distinction between, and t. is a matter of convenience, whetg always refers to the
epoch for which the constants are defined.

41.1 Precession

The gravitational interaction of the Earth with the other bodies obther system, including
primarily the moon and the sun, but also the planets, causes Eartliéd orbiion to deviate
from the simple Keplerian model of motion of two point masses inesp#dso, because the
Earth is not a perfect homogeneous sphere, its rotation is dffda®ise by the gravitational
action of the bodies in the solar system. If there were no otaeretgl (only the Earth/moon
system) then the orbit of the Earth/moon system around the sun woekkéstially a plane
fixed in space. This plane defines the ecliptic (see alsoo8e213.2). But the gravitational
actions of the planets cause this ecliptic plane to behave in andymay, calledplanetary
precession

If the obliquity of the ecliptic (the tilt angle between equatwdl ecliptic, Section 2.3.2) were
zero or the Earth were not flattened at its poles, then therel\weuho gravitational torques due
to the sun, moon, and planets acting on the Earth. But si#d@ and f #0, the sun, moon,
and planets do cause a precession of the equator (and, hence, thtbghakeknown asuni-
solar precessiorand nutation depending on the period of the motion. That is, the equatorial
bulge of the Earth and its tilt with respect to the eclipliovathe Earth to be torqued by the
gravitational forces of the sun, moon, and planets, since they all lie apptelyio@the ecliptic.
Planetary precession together with luni-solar precession is knogenagal precession
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The complex dynamics of the precession and nutation is a supemagitmany periodic
motions originating from the myriad of periods associated withottiétal dynamics of the
corresponding bodies. Smooth, long-period motion is termed luni-solar giegesnd short-
periodic (up to 18.6 years) is termed nutation. The periods of nutimend primarily on the
orbital motion of the moon relative to the orbital period of the Eaftie most recent models for
nutation also contain short-periodic effects due to the relative motions of the planets

We distinguish between precession and nutation even though to sometleayenave the
same sources. In fact, the modern approach mentioned earlier cothieite®s into one model
(as seen later in Section 4.1.3). Since precession is asdogitttevery long-term motions of
the Earth’s reference axes in space, we divide the total mationrmeanmotion, or average
motion, that is due to precession and the effect of short-period mdtiertp nutation, that at a
particular epoch describes the residual motion, so to speak, withtresplee mean. First, we
discuss precession over an interval of time. The theory forndieieag the motions of the
reference directions was developed by Simon Newcomb at the turae 20th century. Its basis
lies in celestial mechanics and involves thieody problem for planetary motion, for which no
analytical solution has been found (or exists). Instead, iterativeermaahprocedures have been
developed and formulated. We cannot give the details of this (gee\wwolard 1953), but can
only sketch some of the results.

In the first place, planetary precession may be describeddwrigles,z, and /7,, where
the subscriptA, refers to the “accumulated” angle from some fixed epochtsap some other

epoch, sayt. Figure 4.2 shows the geometry of the motion of the ecliptic dydanetary
precession front, tot, as described by the angles, and /7,. The pictured ecliptics and

equator are fictitious in the sense that they are affectedognpyecession and not nutation, and
as such are called “mean ecliptic’ and “mean equator”. mbkear, , is the angle between the

mean ecliptics at, andt; while /7, is the ecliptic longitude of the axis of rotation of the ecliptic
due to planetary precession. The vernal equinadx &stdenoted byyj.

mean ecliptic at,

mean equator df

Figure 4.2: Planetary precession.
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The anglesj7, and/7,, can be expressed as time series where the coefficierias®ee on
the celestial dynamics of the planets. Usually, the series are givenforin:

sinz, sin/7, =s(t-t)+s(t-t) + s(t t)°+-

2 3 (4.2)
sinz, cos7 , =c(t—t,) + ¢ (t—t) + o, (t=t,) +--

The epoch about which the series is expanded @aistdbet, , but then the coefficients would

obviously have different values. For example, 8@whnn (1992, p.104) gives the following
series based on 1976 theory and associated ca)staatalso Woolard, 1953, p.44):

m,sin/l, =(4.1976- 0.7525D+ 0.000481)7
+(0.19447+ 0.000697)7*~ 0.000179 [arcs

(4.3)
m,cos/1, =(-46.8156 0.00117+ 0.005489)7
+(0.05059- 0.00371R)7*+ 0.00034% [arcs
where the time variable$,and 7, are fractions of a Julian century, given by
_te -t _t-t (4.2)

- ’ r= 1
36525 3652!

and the epochst,, t-, andt, are Julian dates given in units of Julian daysecgically,
t, =2,451,545.(). The coefficients in the series have appropriatiés so that each term is in

units of arcsecond. It is noted that this two-épapproach to formulating precession has been
largely abandoned in modern theories with no diffiee in accuracy.

The luni-solar precession depends on the geopdysarameters of the Earth. No analytic
formula based on theory was used for this duedatimplicated nature of the Earth’s shape and
internal constitution. Instead, Newcomb gave ampigoal parameter, (now) callddewcomb’s
precessional constan®, , based on observed rates of precession. Intfast,constant” rate is

not strictly constant, as it depends slightly endiaccording to
P.=R+PR(t-1t), (4.5)

where B, =-0.00369 arcsec/centu (per century) is due to changes in eccentricityEafth’s

orbit (Lieske et al. 1977, p.10). Newcomb’s pra@sal constant depends on Earth’s moments
of inertia and enters in the dynamical equationsiofion for the equator due to the gravitational
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torques of the sun and moon. It is not accuratetgrmined on the basis of geophysical theory,
rather it is derived from observed general preoesgtes. It describes the motion of the mean
equator along the ecliptic according to thee:

Y =B, cosg, - P,, (4.6)

where &, is the obliquity of the ecliptic at,, and F, is a general relativistic term called the
geodesic precessionThe accumulated angle in luni-solar precessioth® equator along the
ecliptic is given byy, .

Figure 4.3 shows the accumulated angles of planetad luni-solar precession, as well as
general precession (in longitude). The precesaimgles, as given in this figure, describe the
motion of the mean vernal equinox as either aldrgy rhean ecliptic (the angley,, due to
motion of the mean equator, that is, luni-solaccpssion), or along the mean equator (the angle,
Xa, due to motion of the mean ecliptic, that is, ptamny precession). The accumulated general
precession in longitude is the angle, as indicdtetveen the mean vernal equinox at epagch,
and the mean vernal equinox at epdchEven though (for relatively short intervals efveral
years) these accumulated angles are small, wehaethe accumulated general precession is not
simply an angle in longitude, but motion due t@epounded set of rotations.

mean ecliptic at,

mean ecliptic at

mean equator dj

s

mean equator dt

Figure 4.3: General precession = planetary premessiuni-solar precession.

It is easier to formulate the relationships betwedbe various types of precession by
considering the limits of the accumulated angleshastime interval goes to zero, that is, by
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considering theates Following conventional notation, we denote rdigsthe corresponding
un-subscripted angles:

= 94X

=W
dt v

dp,
, p =_"
t=t, dt

: (4.7)
t=t dt

X

t=t,

From Figure 4.3, we thus have the following relasioip between the precession rates (viewing
the geometry of the accumulated motions in thesckfiitial sense):

p=¢ — ycoss,, (4.8)

where the second term is merely the projectionhef planetary precession onto the ecliptic.
Now, applying the law of sines to the sphericalrigle MPY" in Figure 4.3, we find

siny, sin( 180-¢) = sim, siif7 , 4.9)
= XASINE = sinm, sin7, '

Substituting the first of equation (4.2) and takihg time derivative according to equation (4.7),
we have for the rate in planetary precession

Y=— (4.10)
sing,

where second-order terms (e.g., due to variatiortha obliquity) are neglected. Putting
equations (4.10) and (4.6) into equation (4.8), e of general precession (in longitude) is
given by

p =R, cosg, - P, - scot,,. (4.11)

More rigorous differential equations are given hgdke et al. (1977, p.10).
Equation (4.11) shows that Newcomb’s precessiooaktant,R, , is related to the general

precession rate; and, this is how it is determifienin the observed rate of general precession at
epoch,t,. This observed rate was one of the adopted autsstiaat constituted the definition of

the celestial reference system when it was deftyaémically. The other constants includéd
(the time dependence of Newcomb'’s constai), (the geodesic precession terng), (the
obliquity at epocht,), and any other constants needed to compute #féaients, s, s, ¢ ¢, on

the basis of planetary dynamics. Once these cuisst@re adopted, all other precessional
parameters can be derived.
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The rate of general precession of the vernal equin longitude can also be decomposed
into rates (and accumulated angles) in right asoens), and declinationn. From Figure 4.4,
we have the accumulated general precessiolf,oin declination,n,, and in right ascension,

m,:

Ny, = ,Sing,,
(4.12)

My, =/, COSEY — X as
and, in terms of rates:

n=ysing,,
(4.13)
M={/ COSE, — X .
Finally, the rate of general precession in longgtiglthen also given by:

P = MCOSE, + NsSing,. (4.14)

Again, these formulas hold only fof; ; the precession for general points is given below.

mean ecliptic at,

mean ecliptic at

mean equator a}

mean equator at

Figure 4.4: General precession in right ascensnohdgclination.
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In fact, the raten, (and accumulated angla, ) is one of three precessional elements that are

used to transform coordinates of celestial poimsnfa frame referring to the mean pole and
equinox att, (or some other fundamental epoch) to a frame &#socwith the mean pole and

equinox at another epoch, The accumulated general precession in declimai$o also
designated,d,. For the accumulated angle in right ascension camot usem,, as defined

above, since the polar convergence of the houlesinmust be considered. Instead, two other
precessional elements are used that enable thsfdraration. Referring to Figure 4.5, also

showing the result of general precession, but nowerms of the motions of the pole and

equinox, we define two angleg, and{,, in right ascension. The mean pok, at epoch{,,

moves as a result of general precession to itdiposy, at epochf; and the connecting great
circle arc clearly is the accumulated general msioa in declination. The general precession
rate of ¥ in right ascension can be decomposed formally iates along the mean equator at

epoch,t,, and along the mean equator at a differentiabiment of time later:
m=7+z. (4.15)

We see that the great circle aif,ZQ, intersects the mean equator tgf at right angles
because it is an hour circle with respect to the,pg,; and it intersects the mean equatot af

right angles because it is also an hour circle wetipect to the pol&. Consider a point on the
celestial sphere. Let its coordinates in the maslastial reference frame ¢f be denoted by

(ay,0,) and in the mean frame at epottyy (a,,,d,,). In terms of unit vectors, let

cosa, co, cog, caj,
r, =| sina,cosd, |, r,=| sim, co8, |. (4.16)
sing, sind,,

Then, with the angles as indicated in Figure 4.8 have the following transformation between
the two frames:

(4.17)

where P is called theprecession transformation matridAgain, note that this is a transformation
betweermeanframes, where the nutations have not yet beem take account.

Geometric Reference Systems 4-11 Jekeli, August 2016



ascending node
of the equator

Y o Q \
mean equator at

Figure 4.5: Precessional elements.

Numerical values for the precessional constanted@an adopted and derived constants by
the International Astronomical Union in 1976, areeg by Lieske et al. (1977),

p =5029.0966 arcsec/Julian cent
B, =-0.00369 arcsec/Julian centu
P, =1.92 arcsec/Julian century

£,=23°26'21.448"

(4.18)

and refer to the fundamental epot¢h=J2000.C. Based on these, series expressions could be

developed for the various precessional quantitied @ements, as shown, for example, by
Seidelmann (1992, p.104). These series (and adl@ptestants) constituted the IAU precession
theory of 1976. With space improved measuremevit8( and lunar laser ranging) it was
found that the adopted constants deviated signifigavith respect to the precision of the
measurements (Capitaine et al. 2003). In 2000, I#é¢ recommended a revision of the
precession model, combined with a substantial i@vi®f the nutation model (see below)
derived from a least-squares adjustment to cuivéBi data, based on the work of Mathews et
al. (2002). Principally, this new model corredis tongitude and obliquity precession rates. An
improvement in the dynamical theory for precessi@s developed (Capitaine et al. 2005) and
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adopted by the IAU in 2006 that expresses the pohyal series for the precessional elements
with terms up to fifth order. These are, with grof milli-arcseconds [mas],

7T, =46998.973- 33.4926 - 0.12569%+ 0.000t13  0.00000 (4.19)

1,=629546793.6 867957.58 157.992 0.5874  0.04790.000072°  (4.20)

@, =5038481.507- 1079.0069- 1.14G45 0.132851 000G(° (4.21)
X,=10556.408- 2381.4292- 1.2118# 0.170663  0.06005 (4.22)
p, =5028796.195+ 1105.4348+ 0.07964 0.023857  (038F° (4.23)

{, =2650.545 2306083.227% 298.8439% 18.01628 (02005’ - 0.0003178°(4.24)
z, =—-2650.545 2306077.18% 1092.7348 18.26637 80K ‘- 0.000290#4°(4.25)
6,=2004191.908— 429.4934- 41.82264 0.007089  (lQ0&® (4.26)
£, =84381406.6- 46836.769- 0.183% 200826  0.000576.00@0434°  (4.27)

wherer is given by equations (4.4) with =t,, hence,

ok (4.28)
36525

andt, corresponds to J2000.0, i.&, = 2,451,545.(.

The coefficient ofr in these series represents tlage of the corresponding precessional
element at =t, (i.e., 7 =0). For example,

it//A =5038.481507 arcsec/Julian cent
(o VA FS (4.29)

=50 arcsec/year

which is the rate of luni-solar precession, causirggEarth’s spin axis to precess with respect to
the celestial sphere and around the ecliptic palle & period of about 25,800 years. The luni-
solar effect is by far the most dominant sourcpretession. The rate of change in the obliquity
of the ecliptic is given by
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d,
dr *

=-46.836769 arcsec/Julian cent
i (4.30)

=-0.47 arcseclyear

and the rate of the westerly motion of the equintue to planetary precession, is given by

di Xa =10.556403 arcsec/Julian cent
T

=0 (4.31)
=0.11 arcseclyear

4.1.2 Nutation

Up to now we have considered only what the dynamidke pole and equinox are in the mean
over longer periods. The nutations describe theanhycs over the shorter periods, traditionally
limited to the longest period of about 18.6 yeassoaiated with the lunar orbit. Also, for

precession we determined the motion of the meag @odl mean equinox over an interval, from
t, to t. The transformation due to precession was fromrmaan frame to another mean frame.

But for nutation, we determine the difference be&mwéhe mean position and the true position for
a particular (usually the current) epot¢h(also known as thepoch of date The transformation
due to nutation is one from a mean frame to afrarae at the same epoch. Since true axes now
come into the picture, rather than mean axes,imrtant to define exactly the polar axis with
respect to which the nutations are computed (asusé®d later, one may consider the spin axis,
the angular momentum axis, the “figure” axis, oraais defined in terms of the character of its
motions in the frequency domain). Without givingspecific definition at this point (see,
however, Section 4.3.2), the currently defined &xsalled theCelestial Intermediate PolgCIP)
that corresponds closely to the spin axis and sgots the Earth’s axis for which nutations are
computed (2003 IERS Conventions, see Section 4.1A3previous designation, the Celestial
Ephemeris Pole (CEP), is also discussed in sonad desection 4.3.2.

Recall that nutations are due primarily to tha-kwlar attractions and hence can be modeled
on the basis of a geophysical model of the Earthisnmotions in space relative to the sun and
moon. The nutations that we thus define are alalbed astronomic nutations The
transformation for the effect of nutation is accdistged with two anglesde and 4y, that
respectively describe (1) the change (from mearui) in the tilt of the equator with respect to
the mean ecliptic, and (2) the change (again, fnogan to true) of the equinox along the mean
ecliptic (see Figure 4.6). There is no need todi@m from the mean ecliptic to the true

Geometric Reference Systems 4-14 Jekeli, August 2016



ecliptic, since the interest is only in the dynasnit the true equator (and by implication the true
pole). The true vernal equinoX; , is always defined to be on the mean ecliptic.

1-axis ’\

mean ecliptic at

mean equator at

true equator at
Figure 4.6: Nutational elements.

With respect to Figure 4.6, it is seen tRy is thenutation in longitude It is due mainly to

the orbital ellipticities of the Earth and the moarausing non-uniformity in the luni-solar

precessional effects. Thmutation in obliquity 4¢, is caused primarily by the moon’s orbital

plane being out of the ecliptic (by about 5.145rdeg). Early models for the nutation angles
were given in the form (Seidelmann 1992, p.112-114)

Ap=) SsinA,  de= CcosA, (4.32)
i=1 i=1
where the angle,
A=n;l+nl+n, F+g, D+ n, 2, (4.33)

represents a linear combinationfohdamental argumentbeing Delaunay variables (angles, or
ecliptic coordinates; Vinti 1998) of the sun, maard their orbital planes on the celestial sphere
(Table 4.1). The integer multipliers, ;,...,n,;, correspond to different linear combinations of

the fundamental arguments a@d and S are the amplitudes of the periodic terms.
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Table 4.1: Fundamental arguments for the nutatmtes (Petit and Luzum 2010, Sect. 5.7)
0 =134.96340251+ 1717915923.2178" 31.875 Q685"7° - 0.00024470r
/' =357.52910918+ 129596581.048F 0.5582%  0.@®T°-0.00001149*

F =93.27209062+ 1739527262.8478" 12.75#2*  OXWEY'r’+ 0.00000417*
D =297.85019547+ 1602961601.2090* 6.3706*  0F@H7T°-0.00003169*
Q2 =125.04455501- 6962890.5431% 7.4722%  0.0077020.00005939%*

¢ = the mean anomaly of the Moon;

¢'= the mean anomaly of the Sun;

F = the mean longitude of the Moon minus the meanitodg of the Moon’s node;

D = the mean elongation of the Moon from the Sun;

2 = the mean longitude of the ascending node of thermo

The theory and series developed by Woolard (1953uded n=69 terms for 4¢y and

n=40 terms forde. The subsequent theory and series (Kinoshita)1&da@pted by the IAU in
1980, which included modifications for a non-rigidrth model (Wahr 1985) hatu=106 terms.
The IAU1980 nutation model was replaced in 2003h&ynew nutation model of Mathews et al.
(2002), designated IAU2000A (2000B is an abbredatess precise version). This model
accounts for the mantle anelasticity, the effedtsocean tides, electromagnetic couplings
between the mantle, the fluid outer core, and thel snner core, as well as various non-linear
terms not previously considered. A slight reviswinthe model due to the new IAU 2006
precession model is designated the IAU20QRQAutation model, which has =1320 terms for
Ay and n=1037 terms for Ae (Petit and Luzum 2018) This current model is a refined

version of equations (4.32),
Aw:Z(q sinA + g cosA), Ag:Z(q cosA + I sinA), (4.34)
=1 i=1

where, the angled , includes Delaunay variables for the planets; tthes anglesAdy , Aes, for

now include alsoplanetary nutations The combined IAU 2006/2000A precession-nutation
model is accurate to about 0.3 milliarcsec (mas).

Table 4.2 summarizes the largest of the nutatioplitudes and associated variables and
parameters according to the model given by equaii#r32). Other terms as in equations (4.34)
and contributions from the planets are generalsuélly much) less than these. The listed
periods of the nutations may be computed fromitieal coefficients of the resulting polynomial
expressions for the anglé,. The frame bias (Sect. 4.1.3) is already incaafsat in Table 4.1.

! Tables 5.3a,b in the electronic supplement, hé&p:1/61.69.131/iers/conv2010/conv2010_c5.html
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Table 4.2: Some terms of the series for nutatilomgitude and obliquity, referred to the mean
ecliptic of date (IAU2000A¢s nutation model). The time variable,, is defined by equation
(4.28). The indexi, does not correspond to the index used by the JIERS

i | period a [107° arcse] bt [10° arcse] n, Ny, N Np, N,
[days]
1| 6798.4| —17206424.18 — 17418.82 | 9205233.10 + 883.03 0 0 0 0 1
2| 182.6 —1317091.22 — 1369.60 573033.60 — 458.70 0 0 2 -2 2
3| 13.7 —227641.81 + 279.60 97846.10 + 137.40 0 0 2 0 2
4| 3399.2 207455.40 — 69.80 —89749.20 — 29.10 0 0 0 0 2
5| 365.3 147587.70 + 1181.70 7387.10 —192.49 0 1 0 0 0
6| 27.6 71115.90 — 87.20 —675.00 + 35.80 1 0 0 0 0
7| 121.7 -51682.10 — 52.40 22438.60 — 17.40 0 1 2 -2 2
8| 13.6 —38730.20 + 38.00 20073.00 + 31.8P 0 0 2 0 1
9] 9.1 —-30146.40 + 81.60 12902.60 + 36.70 1 0 2 0 2

The predominant terms in the nutation series Ip@reods of 18.6 years, 0.5 years, and 0.5
months as seen in Table 4.2. Figure 4.7 depietsnbtion of the pole due to the combined luni-
solar precession and the largest of the nutationge This diagram also shows the so-called
nutational ellipsewhich describes the extent of the true motion wétspect to the mean motion.
The “semi-axis” of the ellipse, that is orthogot@khe mean motion, is the principal term in the
nutation in obliquity and is also known as tanstant of nutatian The values for it and for the
other “axis”, given by4dy sine (Figure 4.6), can be inferred from Table 4.2. Tdtal motion
of the pole (mean plus true) on the celestial spheir course, is due to the superposition of the
general precession and all the nutations.
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- luni-solar precession

mean motion of CIP

Ag, constant of nutation = 9.2"
mean
ecliptic
pole

AYsine

= 6.86" nutational ellipse

true motion of CIP

18.6 yr=6.2"

Figure 4.7: Luni-solar precession and nutation.

The transformation at the current epoch (epoclkdaté) from the mean frame to the true
frame accounts for the nutation of the CIP. Reigrrto Figure 4.6, we see that this
transformation is accomplished with the followirggations:

r =R, (-£-4¢)R,(-4¢)R, (&),

4.35
Nr (4.35)
where € is the mean obliquity at epoch, and
cosa Co®
r =| sina coso (4.36)
sind

is the vector of coordinates in the true framehatdurrent epoch. The combined transformation
due to precession and nutation from the mean egg¢ho the current epoch, is given by the

combination of equations (4.17) and (4.35):
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r =NPr,. (4.37)

Approximate expressions for the nutation matfik, can be formulated, for reduced accuracy,
since 4¢ and Ay are small angles (Seidelmann, 1992, p.120); iticuéar, they may be
limited to just the principal (largest amplitudeg¢rihs. The new convention for the
transformation, analogous to equation (4.37), velped in 2003 by the IERS and is discussed
in Section 4.1.3.

Finally, it is noted that previous and currentatioin models are supplemented for those
seeking the highest accuracy and temporal resalliyosmall corrections (called “celestial pole
offsets”) obtained from continuing VLBI observatgnFor example, the most recent models do
not contain the diurnal motion called free-coreatioh caused by the interaction of the mantle
and the rotating fluid outer core (Petit and Luz2@i0). IERS publishes differential elements in
longitude, oy, and obliquity,ds (previously also denoted4y and dA4¢) that can be added to
the elements implied by the nutation series (see efjuations (4.56) and (4.57) under the new
conventions):

Ay = Ay (mode)) + oy
(4.38)
Ae = As(mode)) + %

4.1.3 New Conventions

The method of describing the motion of the CIP lom ¢elestial sphere according to precession
and nutation, as given by the matrices in equatféris’) and (4.35), has been critically analyzed
by astronomers, in particular by N. Capitaine (€ape et al. 1986, Capitaine 1990) at the Paris
Observatory. Several deficiencies in the convestizvere indicated especially in light of new
and more accurate observations and because oéth&inematical way of defining theelestial
Reference Syste(@RS). Specifically, the separation of motiong dol precession and nutation
was considered somewhat artificial since no cléstimttion can be made between them. Also,
with the kinematical definition of the Celestial fReence System, there is no longer any reason
to use the mean vernal equinox on the mean eclstian origin of right ascensions. In fact,
doing so imparts additional rotations to right assten due to the rotation of the ecliptic that then
must be corrected when considering the rotatiorthef Earth with respect to inertial space
(Greenwich Sidereal Time, or the hour angle at @meh of the vernal equinox, see Section
2.3.4; see also Section 5.2.1). Similar “imperted” were noted when considering the
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relationship between the CIP and the terrestridreace system, which will be addressed in
Section 4.3.1.1.

In 2000 the International Astronomical Union (IAlddopted a set of resolutions that
precisely adhered to a new, more accurate, andiadpvay of dealing with the transformation
between the celestial and terrestrial referenceesys The IERS, in 2003, similarly adopted the
new methods based on these resolutions (McCartthyatit 2003). These were reinforced with
IAU resolutions in 2006 and adopted as part of RS Conventions 2010. In addition to
revising the definitions of the Celestial EphemeRsle (CEP), now called the Celestial
Intermediate Pole (CIP), the new conventions relifee origins for right ascensions and
terrestrial longitude in the intermediate framesoagted with the transformations between the
Celestial and Terrestrial Reference Systems. Ewedefinitions were designed so as to ensure
continuity with the previously defined quantitiesdato eliminate extraneous residual rotations
from their realization. These profoundly differentethods and definitions simplify the
transformations and solidify the paradigmkaiematics(rather than dynamics) upon which the
celestial reference system is based. On the b#ed the new transformation formulas tend to
hide some of the dynamics that lead up to theieligpment.

In essence, the position of the (instantaneous), fb, on the celestial sphere at the epoch of
date, t, relative to the position at some fundamental Bpdg, can be described by two

coordinates (very much like polar motion coordisatee Section 4.3.1) in the celestial system
defined by the reference polB,, and by the reference origin of right ascensidp, as shown in

Figure 4.8. In this figure, the poleé?, is displaced from the poleR,, and has celestial

coordinates,d (co-declination) ancE (right ascension). The true (instantaneous) equ#te
plane perpendicular to the axis through at time, t, intersects the reference equator (associated
with R)) at two nodes that arsB80° apart. The hour circle of the nodd,, is orthogonal to the

great circle arc|5;|\3; therefore, the right ascension of the ascendougrof the equator i90°

plus the right ascension of the instantaneous gole;The origin for right ascension at the epoch
of date, t, is defined kinematically under the condition thlére is no rotatiomate in the
instantaneous coordinate systeabout the pole due to precession and nutationis iBhthe
concept of the so-calledon-rotating origin (NRO) that is now also used to define the
instantaneous origin for terrestrial longitudese(s®ection 4.3.1.1). This origin for right
ascensions on the instantaneous equator is noedcdeéCelestial Intermediate Origi(CIO),
denotedo in Figure 4.8 (it has also been called the CeleEjphemeris Origin, CEO).

Rather than successive transformations involvieggssional elements and nutation angles,
the transformation is more direct in terms of tlcnerdinates,(d, E) (reformulated in terms of

Cartesian-like elements{ andY ; see below), and the additional parameiethat defines the
instantaneous origin of right ascensions. Thesftamation from the celestial reference frame
to the instantaneous celestial frame is

r=Q'r, (4.39)
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where
Q" =Ry (-s)Rs(-E)R,(d)R;( B, (4.40)

which is easily derived by considering the sucaessotations as the origin point transforms
from the CRS origin,2,, to the instantaneous origing (Figure 4.8). Equation (4.39)

essentially replaces equation (4.37), but alsorpaates the new conventions for defining the
origin in right ascension. The exact relationstopthe previously defined transformation is
given later in Section 5.2.1. We adhere to thextnmt used in the IERS Conventions 2003,
which definesQ as the transformatiofiom the system of the instantaneous pole and ot@in
the CRS.

P, (reference pole)

true equator dt

Figure 4.8: Coordinates of instantaneous poleearctiestial reference system.

It remains to determine the parametsr, The total rotation rate of the pol®,, in inertial
space is due to changes in the Coordine(lrdasE), and in the parametes,. Defining three non-

co-linear unit vectorsn,, m, n, essentially associated with these quantitieshas/n in Figure
4.8, we may express the total rotation rate asvid|
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@=nOE+md—n(E+§, (4.41)

where the dots denote time-derivatives. N@ws chosen so that the total rotation raie, has

no component along. That is,s defines the origin pointy, on the instantaneous equator that
has no rotation rate about the corresponding @otar (ron-rotating origir). This condition is
formulated as@ [h =0, meaning that there is no component of the tatition rate along the
instantaneous polar axis. Therefore,

0=nm,E+niind-(E+3; (4.42)
and, sinceni =0, n[h, =cosd, we have

$=(cosd- 1 E. (4.43)

For convenience, we define coordinabes Y, andZ

X sind coskE
Y |=| sindsinE|. (4.44)
Z cosd

Then, it is easily shown that
XY - YX=-Hco¢ ¢ 1; (4.45)

and, substituting this together with=cosd into equation (4.43) and integrating yields

t

JXY—YX
Ss=§—]—

dt, 4.46
1+Z7 ( )

tU
where s, = §( 1) is chosen so as to ensure continuity with the iptesvdefinition of the origin

point at the epoch 1 January 2003.
The transformation matrixQ , equation (4.40), is given more explicitly by:
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1-coSE(+ cosl) - sifE coE( 1 caf sth ¢
Q =| =sinE cosE( + cosl) t shE( 4 cod sth  sH|R,( $. (4.47)
—-sind coskE - sird sire cosl

With the coordinates(X,Y, Z) , defined by equation (4.44), ari- cosd = a sirf d, where
a=1/(1+ cosd), it is easy to derive that

1-ax® -aXY X
Q=| -axy 1-a¥ Y Ry( 3 (4.48)
-X Y 1-d X+ Y)

Expressions forX andY can be obtained directly from precession and rmutaquations with
respect to the celestial system; see referenceianed in Section 4 of (Capitaine, 1990). For
the latest IAU 2006/2000A precession-nutation mgdétetit and Luzum (2010) give the

following:

X =-0.01661% 2004.191898- 0.4297829
-0.19861834°+ 0.000007578+ 0.0000059285

+Z ((as,o)j Sin(ARGUMENT) + ( at,o)j COS( ARGUMENT)) (4.49)

I

+Z((%’l)j TSin(ARGUMENT) +(ac,1)j r COS(ARGUMENT))

J

+Z((as,2)j r? Sin(ARGUMENT) +(a°r2)j r’ COS(ARGUMENT)) +... [arcec]

J

Y =-0.00695% 0.025896- 22.40727#7
+0.00190059° + 0.001112526+ 0.0000001858
+Z((b&0)j sin(ARGUMENT) +(bc’0)j COE(ARGUMENT)) (4.50)
i
+Z((b&1)j TSin(ARGUMENT)'*'(bC’l)j r COS(ARGUMENT))
i
+Z((b&2)j r’ Sin(ARGUMENT)+(bC’2)j r’ COS(ARGUMENT))+--- [arcsdc

i
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wherer = (t -t,)/3652E with t andt, the Julian day numbers for the epoch of date 206Q10,

respectively; and, the coefficier(tasyk)j, (ac,k)j (bs,k)j’ (bc,k)j are availabl®in tabulated form
for each of the corresponding fundamental argumewntsivent, of the nutation model. These
arguments are the same as given in equation (4.83jull description is given by Petit and

Luzum (ibid., Section 5.7).
Also, for the parametels, the following includes all terms larger th@b iz arcse, as well

as the constang;:

s= 1 XY+94+ 3808.65 — 122.68 - 72574.11

2
: _ _ (4.51)
+ZCK sina, +Zk: D, S|n,[>’k+zk: Er cosyk+zk Fr° si®, @ arcse

where the coefficientsC,, D,, E ., F , and the argument®y,, 5., V.. 6., are elaborated by
Petit and Luzum (ibid., Chapter 5, p.59).

We note that the newly adopted IAU 2006/2000A nhdde precession and nutation (on
which expressions (4.49), (4.50), and (4.51) arsetpreplace the IAU 2000 model (and, of
course, the old IAU 1976 precession and IAU 198@tmn models). The new models are
described in detail in (ibid.) and yield accuradyabout 0.3 mas in the position of the pole.
Furthermore, these transformation equations reigriio the kinematic pole of the ICRS

incorporate the “frame bias” described below.
To see how the coordinated, E, are related to the traditional precession andtiort

angles, it is necessary to consider how the CaleReference System was defined prior to the
new, current kinematic definition. The dynamicidgion was based on the mean equator and
mean equinox at a certain fundamental epaogh,Recall that the precession and nutation of the

equator relative to the mean ecliptic tgtis due to the accumulated luni-solar precessions i
longitude, ¢, , and in the obliquity of the ecliptiay, (which differs frome&, by the rotation of
the mean ecliptic; see Figure 4.4), as well anthations,4¢, and A¢,, in longitude and in the
obliquity at t, (again, differing from corresponding quantitiestit Let d, E be coordinates,
similar to d, E, of the instantaneous pole in the dynamic meatesys Then, definingX,Y, Z
similar to X,Y, Z, it is easy to derive the following identity frothe laws of sines and cosines
applied to the spherical triangl&, ¥;N , in Figure 4.9:

X\ (sind cosE siffw, +4¢,) sify,+Ay,)
Y |=| sindsinE|=| sifw, +4¢,) cofy,+Ay,) cos,— chw,+de,) sm|. (4.52)
z cosd sifw, +4¢,) cofy,+Ay,) sig,+ cdsu,+4e,) ceg

2 ftp://tai.bipm.org/iers/conv2010/chapter5/
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Further expansions oK andY as series derivable from series expansions foqttamtities,
Y, w,, AY,, and A, may be found in Capitaine (1990).

m

P, (mean pole at,

P

true pole at

mean
ecliptic
att,

Figure 4.9: Coordinates of the true polé it the dynamic system df .

The dynamic reference pol®,, of the previous realization (FK5 catalogue) ifsef from
the kinematic pole of the ICRS, as shown in Figut®, by small angles, in X andz, in Y.
Also, a small rotationda,, separates the dynamic reference equinox fromotign of the

ICRS. These offsets, calléchme bias are defined for the mean dynamic system in tHeIC
so that the transformation betwe@?,\?, 2) and(X,Y, Z) is given by

X X
Y: =R(77) R(&) R( @o)| Y
Z Z

(4.53)

1
I
[oF
S
[EEN
I
]
S
<
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where the approximation, equation (1.9), was us@d, settingZ =1, and neglecting second-
order terms,

X =X+¢& - da,Y
(4.54)
Y =Y+7,+ dr, X

McCarthy and Petit (2003, Ch.5, p.9,12) give thHeWwing values for these offsets based on the
IAU 2000 nutation model (they have not changedtierlAU 2006/2000A model);

&, =—16.6170: 0.01 me
7, =—6.8192+ 0.01 mas (4.55)
da, =-14.60+ 0.05 ma:

The rotation,da,, refers to the offset of the mean dynamic equioban ecliptic interpreted as

being inertial (i.e., not rotating). In the pasie rotating ecliptic was used to define the dyrami
equinox. The difference (due to a Coriolis ternefvieen the two equinoxes is about 93.7
milliarcsec (Standish, 1981), so care in definitioust be exercised when applying the
transformation, equations (4.54), with values gibsnequations (4.55). Note that Figure 4.10
only serves tadefine the offsets according to equation (4.54), but does show the actual
numerical relationships (equations (4.55)) betwten ICRS and the CEP(J2000.0) since the
offsets are negative. Again, these offsets areadlr included in the expressions (4.49) and
(4.50) for X andY.

Pole (ICRF) Y

&
.............. i CIP(32000.0)
To
X
| da, |
a=0 (ICRF) ¥1(J2000.0

Figure 4.10: Definition of offset parameters of dgmic mean system in the ICRS.
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In summary, the differences between the formecgs®on/nutation transformation matrix,
NP, equations (4.17) and (4.35), and the new tramsition matrix,Q", equation (4.40), is
twofold: 1) NP refers to the equinox, whil®' refers to the non-rotating origin, which is used
to defined the unadulterated Earth rotation an@ection 5.2.1); and, 2NP refers to the
dynamic reference pole, whil@' refers to the kinematic reference pole, which gjisise to the
frame bias.

The celestial pole offsets in longitude and ofitigu (dy,de), that correct the 1AU

2006/2000A precession-nutation model on the baki¥Ldl observations are not included,
however, and must be added. The corrections dkshad by IERS in terms of corrections to
X andY. The coordinates of the CEP thus are (Petit armliin, 2010, Ch.5, p.57)

X = X(IAU 2006/2000A + 5 X, Y= Y( IAU 2006/2000)+ 3 Y, (4.56)

where

OX =y sing, +(, coss,— x ) O

_ (4.57)
OY =0 — (Y, CcOSEL— X ) OY SirE
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414 Problems

1. a) Make a rough estimate of the present deaimaand right ascension of the vernal
equinox in 120 B.C., the date when precession ws®dered.

b) Determine the mean coordinates at J1950.0eoWvénal equinox of the celestial frame
defined at J2000.0. Then determine the mean auates at J2000.0 of the vernal equinox of the
celestial frame defined at J1950.0. In both casesthe precession expressions derived for the
constants defined at the fundamental epoch J20@odnpare the precessional elements in each
case and compare the resulting coordinates. UskgitQorecision in your computations.

2. The coordinates of a star at J2000.0 @re:16 hr 56 min 12.892 s, 0 =82°12'39.03.
Determine the accumulated precession of the staglm ascension during the year 2001 using
the precession transformation formula.

3. Give a procedure (flow chart with clearly idé&et input, processing, and output) that
transforms coordinates of a celestial object givetne celestial reference system of 1900 (1900
constants of precession) to its preden¢ coordinates. Be explicit in describing the epofdrs
each component of the transformation and give doessary equations.

4. Derive the following: equation (4.46) startingtwequation (4.43); equation (4.48) starting
with equation (4.40); and equation (4.52).

5. Show that
R
a_§+§(x +Y)+--~, (4.58)

wherea is defined after equation (4.47).

6. Derive equations (4.57).
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4.2 Observational Systematic Effects

The following sections deal with effects that ndedbe corrected in order to determine true

coordinates of celestial objects from observedapmparent coordinates. These effects are due
more to the kinematics of the observer and theotdbjbeing observed than the dynamics of

Earth’s motion.

4.2.1 Proper Motion

Proper motionrefers to the actual motion of celestial objecithwespect to inertial space. As
such their coordinates will be different at the dimof observation than what they are in some
fundamental reference frame that refers to an epgchWe consider only the motion of stars

and not of planets, since the former were usedaiistly to determine coordinates of points on
the Earth (Section 2.3.5) and still today to orisatellite systems to the inertial frame via on-
board star cameras. Proper motion, also knowspase motiorand stellar motion can be
decomposed into motion on the celestial sphereggéatial motion) and radial motion. Radial
stellar motion would be irrelevant if the Earth hemlorbital motion (see the effect of parallax in
Section 4.2.3).

Accounting for proper motion is relatively simp@d requires only that rates be given in
right ascension, in declination, and in the radiatction (with respect to a particular celestial
reference frame). If (to) is the vector of coordinates of a star in a cgiado(celestial reference

frame) for fundamental epocty,, then the coordinate vector at the current epogls, given by
r(t)=r(t)+(t=t,)r(t,), (4.59)

where this linearization is sufficiently accuratechuse the proper motion, is very small (by
astronomic standards). With

r coso cosr
r =| rcoso siny |, (4.60)
rsind

wherea andd are right ascension and declination, as usual,ran|d| , we have
FCosd cosr—ra cod sim-rd s cas

F=| fcosd sim+rg co® cogs—-rd s sin|. (4.61)
Fsind+rod cod
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The units of proper motion in right ascension aretlidation, ¢ and &, typically are
rad/century and for the radial velocity,, the units are AU/century, where 1 AU is one
astronomical unit, the mean radius of Earth’s orbit

1 AU =1.4959787068 10 m; 1km#s 21.095 AU/aey . (4.62)
The radial distance is given as (see Figure 4.hkrewg =r)

r=1AY (4.63)
SN/t

where 77 is called theparallax angle(see Section 4.2.3). This is the angle subteraddtie
object by the semi-major axis of Earth’s orbit. this angle is unknown or insignificant (e.qg.,
because the star is at too great a distance), ttteemadial velocity is not important. Also, if
linear approximation is sufficient then one mayreot the coordinates of the star for proper
motion according to

a(t)=a(t)+(t-t,)a(t,)
(4.64)
5(0)= 8(t) +(t-1,)8(t,)

For further implementation of proper motion coriecs, see Section 4.3.3.
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celestial sphere

ecliptic plane
Figure 4.11: Geometry of star with respect to sagstem. See also Figure 4.13 for the
geometry on the celestial sphere.

422 Aberration

Aberrationis a displacement of the apparent object frontrits position on the celestial sphere
due to the velocity of the observer and the firgpeed of light. The classic analog is the
apparent slanted direction of vertically fallingrras viewed from a moving vehicle; the faster
the vehicle, the more slanted is the apparenttitieof the falling rain. Likewise, the direction
of incoming light from a star is distorted if théserver is moving at a non-zero angle with
respect to the true direction (see Figure 4.1R)gdneral, the apparent coordinates of a celestial
object deviate from the true coordinates as a fanatf the observer’s velocity with respect to
the direction of the celestial object.
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true direction
of light source

. apparent direction
of light source

velocity of observer

v
Figure 4.12: The effect of aberration.

Diurnal aberrationis due to the observer’s velocity associated \i#nth's rotation; and,
annual aberrations due to the observer’s velocity associated \E#inth’s orbital motion (there
is alsosecular aberratiordue to the velocity of the solar system, but thisot observable—it is a
constant). These aberrations are groupedstabar aberrations as opposed t@lanetary
aberrations where the motions of both the observer and thestal body are considered. We
do not consider planetary aberration. Furthermabeyration differs from theght-time effect
that accounts for the distance the light must frénaen the time it is emitted to the time it is
actually observed (thus, again, the apparent coatels of the object are not the same as the true
coordinates). This effect must be considered fangts, and it is familiar to those who process
GPS data, but for stars this makes little senseesiost stars are hundreds and thousands of
light-years distant.

We treat stellar aberration using Newtonian plsyssamd only mention the special relativistic
effect. Accordingly, the direction of the sourc#l &ppear to be displaced in the direction of the

velocity of the observer (Figure 4.12). That igpgose in a stationary frame the light is coming
from the direction given by the unit vectgp,. Then, in the frame moving with velocity,, the

light appears to originate from the direction defirby the unit vectorp', which is proportional
to the vector sum of the two velocities,and cp:

,_ V+Cp

g (4.65)

wherec is the speed of light (in vacuum). Taking thessrproduct on both sides with and
extracting the magnitudes, we obtain, wjiix p|=sin46, |pxv|=vsind, and|px p|=0, the
following:
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gnAH:XEEQ
v+cp|
vsing

JWV2 + 2 + 2vecosd

(4.66)

V.
=—sin@+---
c

wherev is the magnitude of the observer’s velocity, amghér powers ofv/c are neglected.

Accounting for the effects of special relativitygi®elmann (1992, p.129) gives the second-order
formula:

2
sinAH:XsinH—l(xj SinB+--. (4.67)
C 4\ c

Realizing that the aberration angle is relativahall, we use the approximate formula:

Aez\—clsinﬁ. (4.68)

With respect to Figure 4.13, |& denote the true position of the star on the celesphere with
true coordinates(é's,as), and letS' denote the apparent position of the star due ¢éoration

with corresponding aberration errold9 and 4a , in declination and right ascension. Note that

S' is on the great circle arcé_r:, where F denotes the point on the celestial sphere in the
direction of the observer’s velocity (that is, thleerration angle is in the plane defined by the
velocity vectors of the observer and the incomight). By definition:

O0g =05 — A0
(4.69)
as=ags—-A4a
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celestial celestial
sphere equator

Figure 4.13: Geometry on the celestial sphere barration and parallax. For aberration,
u =v =velocity of the observer; for parallay,= e, =direction of barycenter.

We have from the small triangl&S S

Aa cosog
cogyy =——=, 4.70
sy 20 (4.70)
and
. A0
siny =———. 471
Y 6 (4.71)

From triangleS— NCP- F, by the law of sines, we have
sing cogy = co®;. sifa; —-ay), (4.72)

where the coordinates &f are (5F ,aF). Substituting equation (4.70) into equation (4.68d

using equation (4.72) yields
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Aa cosog :% sing cog
=Xc055 sina,. —a (4.73)
c F F S

v : .
=—cosd; ( sinr. cosmg— cos. simg)
c

Now, the velocity,v, of the observer, in the directioR on the celestial sphere, can be
expressed as

X VCOSO. COSr,
v=|y|=| vcosd. sina, |, (4.74)
z vsinod:

Wherev:|v|. Hence, using equation (4.74) in equation (4.%#8),effect of aberration on right

ascension is given by

Ada = (%cosas —%( simsj seo.. (4.75)

For the declination, we find, again from the triengS— NCP- F, now by the law of cosines,
that:

sind: = sindg co¥— codg si@ si. (4.76)
Also, with the unit vector defining the positiontbe star on the celestial sphere,

COSOg CO% ¢
p=| cosds Sig |, (4.77)
Sindg

we have the scalar product, using equation (4.74):

p¥ =vcosd

: . 4.78
= XCO0SOg COSr+ Y COBg Six o+ 2z si, (4.78)

We solve equation (4.78) farosd and substitute this into equation (4.76), whicthisn solved
for sind siny to get
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sin@sing =~ sing, comr+2 sid, sia -~ cdb. (4.79)
\ \'% \'

From equations (4.71) and (4.68), we finally have

A0 = —%sindS cosns—%/ Sid ¢ simr S+_z cos .. (4.80)

For diurnal aberration, the observer (assumedostaty on the Earth’s surface) has only
eastward velocity with respect to the celestialesptdue to Earth’s rotation rate),; it is given

by (see Figure 4.14):

v=a,(N+ h)cosg, (4.81)

where N is the ellipsoid radius of curvature in the prinertical and((p, h) are the geodetic
latitude and ellipsoid height of the observer (Seetion 2.1.3.1). In this case (see Figure 4.15):

X = vcos(ag + ts— 270)
y = vsin(as +ts— 270) (4.82)

z=0

where tg is the hour angle of the star. Substituting eiquat (4.82) into equations (4.75) and

(4.80), we find the diurnal aberration effects pedively, in right ascension and declination to
be:

Ada = %costS Sedq
(4.83)

A0 = XsintS sedyq
c

In order to appreciate the magnitude of the eftéatiurnal aberration, consider, using equation
(4.81), that

v_am N+ hcos¢= O.BZOGI\Lh cop [arcse, (4.84)
c ¢ a a
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which is also called the “constant of diurnal abgon”. Diurnal aberration, thus, is always less
than about0.32 arcse.

latitude
circle on
Earth

Figure 4.14: Velocity of terrestrial observer faunmhal aberration.

celestial
equator 90° - (360 - (as +1))

=ag+t,—270°

Figure 4.15: Celestial geometry for diurnal abeorat

Annual aberration, on the other hand, is two ardd@rmagnitude larger! In this case, the
velocity of the observer is due to Earth’s orbitadtion and the velocity vector is in the ecliptic
plane. The "constant of annual aberration” is gibg

v 2 2m AUlyr =10* = 20 arcse. (4.85)
c 3x10 mi/s
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From this, one can determine (left to the readevwy hccurately Earth’s velocity must be known
in order to compute the annual aberration to argagcuracy. Accurate velocity components are
given in the Astronomical Almanac (Section B, p.&#units of10° AU/day in the barycentric

system. Note that the second-order effect, gimegguation (4.67), amounts to no more than:

2
%(Xj =0.25x 10° = 5 10" arcse. (4.86)
C

We further note that, aside from the approximatiamsequations (4.75) and (4.80), other
approximations could be considered in deriving #mmual aberration formulas, e.g., taking
Earth’s orbit to be circular. In this case, coti@mts may be necessary to account for the actual
non-constant speed along the elliptical orbit. cAlg the velocity coordinates are given in a
heliocentric system, then the motion of the surhwéspect to the barycentric system must be
determined, as must the effect of the planets whusteon causes the heliocentric velocity of the
Earth to differ from its barycentric velocity.

4.2.3 Parallax

Parallax is a displacement of the apparent object on thestal sphere from its true position
due to the shift in position of the observéiurnal parallaxis due to the observer’'s change in
position associated with Earth’s rotaticamnual parallaxis due to the observer’s change in
position associated with Earth’s orbital motionor Bbjects outside the solar system, the diurnal
parallax can be neglected since the Earth’s radimsuch smaller than the distance even to the
nearest stars. Therefore, we consider only theanparallax. For quasars, which are the most
distant objects in the universe, the parallax re ze

Returning to Figure 4.11, the coordinates Bf denoted by the vectox,, Vg, Z) , are

given in the barycentric frame. The parallax angte of a star is the maximum angle that the
radius, o, of Earth’s orbit (with respect to the barycentsuptends at the star (usually, is

taken as the semi-major axis of Earth’s elliptimddit, or with sufficient accuracy, 1 AU). From
the law of sines applied to the trianglEeBS, according to the figure:

sinA4é _Pe

. =, (4.87)
sind 14

wherer, is the distance to the star. The effect of paxalis therefore, approximately

A0 =r1sing. (4.88)
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Clearly, this formula has a strong similarity teetaberration effect, equation (4.68); and,
indeed, we can use the same Figure 4.13 as bdfoteyow identify the pointF , with the
direction from the observer to the barycenter efa¢hlestial coordinate frame. Also, from Figure
4.11, the angle betweeh and S in Figure 4.13 i+ A48 in the parallax case. But this is of no
consequence since this angle enters only as amiedigate quantity in the derivations, not in the
final result (moreover, equation (4.88) is approxiento first order in46); we will ignore this
difference. The unit vector defininig is, therefore,

%
Pe COSO. CO%Y,
p=| - |= cosd. sina, |, (4.89)
Pe sind,
-5
Pk

(note the negative signs ip are due to the geocentric view). From equatidn&)) and (4.88),
Aa = msing cosy seds. (4.90)

Substituting equations (4.72) and (4.89), we obthie effect of annual parallax on right
ascension:

Aa = /7(ﬁsina'S ~Ys cosnsj sed. (4.91)
Pe Pe

Similarly, from equations (4.71) and (4.88),

A0 =-A0sin@ siny . (4.92)

Using equation (4.79) with appropriate substitutiéor the unit vector components, we find

45 = 28 cosa, sing +8 simr sid ~—2 coésj. (4.93)
Pk Pe Pe

In using equations (4.91) and (4.93), we can apprate p. =1 AU and then the coordinate
vector, (X, Y, Z) » should have units of AU.
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424 Refraction

As light (or any electromagnetic radiation) pasgesugh the atmosphere, being a medium of
non-zero mass density, its path deviates fromaagsir line due to the effect oéfraction thus
causing the apparent direction of a visible objeaepart from its true direction. We distinguish
betweenatmospheric refractiohat refers to light reflected from objects withire atmosphere,
and astronomic refractionthat refers to light coming from objects outside tatmosphere.
Atmospheric refraction is important in terrestsarveying applications, where targets within the
atmosphere (e.g., on the ground) are sighted. Wheern ourselves only with astronomic
refraction of light. In either case, modeling tlght path is difficult because refraction depends
on the temperature, pressure, and water contentidity) along the path.

For a spherically symmetric (i.e., sphericallydegd) atmosphere, Snell's law of refraction
leads to (Smart, 1960, p.63):

nrsinz = constan, (4.94)

wheren is theindex of refraction assumed to depend only on the radial distamgefrom
Earth’s center, and is the angle, at any poinE, along the actual path, of the tangent to the
light path with respect to (Figure 4.16). It is assumed that the light ragioates at infinity,
which is reasonable for all celestial objects iis #pplication. With reference to Figure 4.14,

is the truetopocentriczenith distance of the object, topocentric mearimag it refers to the
location of the terrestrial observer. The topogeratpparent zenith distance is given y and,

as the pointP , moves along the actual light path from the siahé observer, we have

0<z< 7. (4.95)
We define auxiliary angles, and z,, in Figure 4.16, and note that
Z, =%+ 2 (4.96)

The angle,Z,, is the apparent zenith angle of the poiRt, as it travels along the path.
Therefore, the totadrror in the observed zenith angle due of refractiofingd by A4z= z - z,
IS

fz= j dz, (4.97)
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Figure 4.16: Geometry for astronomic refraction.

From equation (4.96), there is

dz, = dz + d. (4.98)
Taking differentials of equation (4.94), we have

d(nr)sinz+ nrcoszdz (, (4.99)

which leads to

dz=-tan z@ : (4.100)

From Figure 4.17, which represents the differemigplacement of the poinE, along the light
path, we also have
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tanz:rOIZP = dzpzﬂtanz.
dr r

zenith z

dr

rdz,

dz,

geocenter

Figure 4.17: Differential change Bfalong light path.

Substituting equations (4.100) and (4.101) intoagtipn (4.98), we find:

nr r

i =-nf 28

This can be simplified using (nr) = rdn+ ndr, yielding
dz, = —@tan z.

n

Substituting equation (4.100) now gives
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rdn (4.104)

A
Az= I _adr_g, (4.105)
0

where the limits of integration are obtained byimptthat whenP - o« (Z,=12z), z=0, and
whenP is at the observerz= z. Again, note that equation (4.105) yields theaetion error;
the correction is the negative of this.

To implement formula (4.105) requires a model tfee index of refraction, and numerical
methods to calculate it are indicated by Seidelméi92, p.141-143). Therrors in the
observed coordinates are obtained as follows. Fguation (2.180), we have

Sindg = COSAg CO® silz g+ SiP CaB, (4.106)
where A is the azimuth of the star. Under the assumptididg =0 and 4® =0, this leads to

Az . )
Ad = COSA. COSP cog.— SiP sim.). 4.107
COSJ( AS S S) ( )

S

Again, from equation (2.180), it can be shown gabiat

tant, =— SInAs . (4.108)
Sin@ cosA; — co® cotg

With 4A; =0 and 4¢ =0, and noting thatdty =-4ag, one readily can derive (left to the
reader — use equation (2.180)!) that:
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sintg cosp
-—S3 " Az.
Sinzg coDg

Aar = (4.109)
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4.25 Problems
1. Derive equations (4.94) and (4.109).

2. In VLBI (Very Long Baseline Interferometry), wanalyze signals of a quasar (celestial
object at an extremely large distance from thelgat two points on the Earth to determine the
directions of the quasar at these two points, dng to determine theerrestrial coordinate
differences 4x,4y,A4z. The coordinates of the quasar are given in@H. State which of the
following effects would have to be considered foeximum accuracy in our coordinate
determination in the ITRF (note that we are coneéronly with coordinatdifferencek

precession, nutation, polar motion, proper motiannual parallax, diurnal parallax, annual
aberration, diurnal aberration, refraction. Jysgibur answer foeacheffect.
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4.3 Relationship to the Terrestrial Frame

Previous Sections provided an understanding ofdfaionship between catalogued coordinates
of celestial objects (i.e., in a celestial refeeeframe) and the coordinates as might be observed
with respect to instantaneous celestial axess iiow required to apply Earth rotation to obtain
corresponding terrestrial coordinates. But thesakat define the terrestrial reference system
differ from the axes described casually in Secfa®h In fact, the spin axis and various other
“natural” axes associated with Earth’s rotationibithmotion with respect to the Earth’s crust
due to the natural dynamics of the rotation; wheréae axes of the terrestrial reference system
are fixed to Earth’s crust. Euler’'s equations déscthe motion of the natural axes for a rigid
body, but because the Earth is partially fluid aldstic, the motion of these axes is not
accurately predictable. The reader is referreMaoitz and Mueller (1987) for theoretical and
mathematical developments of the dynamics equatfonsrotating bodies; we restrict the
discussion to a description of the effects on cioates. However, a heuristic discussion of the
different types of motion of the axes is also gihene, leading ultimately to the definition of the
Celestial Intermediate PoleCIP (previously also called th@elestial Ephemeris PqleCEP).
The recent (turn of the century) changes in theldnmental conventions of the transformation
between the celestial reference system and thén&@IP also been extended to the transformation
between the terrestrial reference system and tRe &id these are described in Sections 4.3.1.1
and 4.3.2.1. The last sub-section then summatizsntire transformation from celestial to
terrestrial reference frames.

431 Polar Motion

The motion of an axis, like the instantaneous spis, of the Earth with respect to the body of
the Earth is callecpolar motion also wobble (Dehant and Mathews 2015). In terms of
coordinates, the dynamic location of the axis iscdbed as(x.,y,) with respect to the

terrestrial reference pole (IRP of the Internatloherrestrial Reference System). Figure 4.18
shows the polar motion coordinates for the CIP Seetion 4.3.2); they are functions of time
(note the defined directions of, and y,). Since they are small angles, they can be vieaged

Cartesian coordinates near the reference pole,ingargeriodically around the pole with
magnitude of the order of 6 m; but they are usugilgn as angles in units of arcsec.
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Figure 4.18: Polar motion coordinates,, y,, in relation to precession/nutation coordinates,
X,Y. TRP = terrestrial reference pole; CRP = celestiderence pole, CIP = celestial

intermediate pole.

The principal component of polar motion is tikandler wobble This is basically the free
Eulerian motion which would have a period of ab®d days, based on the moments of inertia
of the Earth, if the Earth were a rigid body. Daoehe elastic yielding of the Earth, resulting in
displacements of the maximum moment of inertigg thotion has a longer period of about 430
days. Around 1890 S.C. Chandler analyzed astromtatitudes and longitudes (that are tied to
Earth’s spin axis after applying precession ancatut) and discovered this actual period.
Shortly afterward Newcomb gave the dynamical exggian for the discrepancy relative to the
Eulerian prediction (Mueller, 1969, p.80). The pdrof the main component of polar motion is
called theChandlerperiod; its amplitude is abo@ 2 arcse. Other components of polar motion
include the approximately annual signal due to thdistribution of masses by way of
meteorological and geophysical processes, with itundel of about0.05- 0.1 arcse, and the
nearly diurnal free wobbledue to the slight misalignments of the rotatigasaof the mantle and
liquid outer core, with an amplitude of the ordérias in the Earth-fixed frame (also known as
free core nutationwith magnitude of about 0.1 mas, when referredh® inertial frame).
Finally, there is the so-callgablar wander which is the secular motion of the pole. During
1900 — 2000, Earth’s spin axis wandered ab@@04 arcse per year in the direction of the
80° W meridian. Figure 4.19 shows the Chandler motibthe pole for the period 2000 to
2010, and also the general drift for the last 148éry.
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Figure 4.19: Polar motion from 2000 to 2010, andapevander since 1900. Polar motion
coordinates were obtained from IER&1d smoothed to obtain the trend.

The transformation of astronomic terrestrial comaites and azimuth from the instantaneous
pole (the CIP) to the terrestrial reference patedion the Earth’s crust (the IRP) is constructed
with the aid of Figures 4.20 and 4.21. |1&t, /A, A denote the apparent (observed) astronomic

latitude, longitude, and azimuth at epothwith respect to the CIP; and lét, N1, A denote the
corresponding angles with respect to the terréstake, such that

AP =@ -Q,
MN=N-A (4.110)
AA=A-A

represent theorrectionsto the apparent angles. In linear approximattbase corrections are
the small angles shown in Figures 4.20 and 4.21.

? https://www.iers.org/IERS/EN/DataProducts/EarthOrieatdabiata/eop.html
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Figure 4.20: Relationship between apparent astrag@rooordinates at current epodh,and
corresponding coordinates with respect to the saiet reference frame.

We introduce the polar coordinatésand 8, so that:

X, = dcosg
_ (4.111)
Y, = dsiné
Then, for the latitude, we have from the triangl¢P — IRP- F:

A® =dcos( 180~/ -6)
=-dcos/| cog+d sim sif (4.112)
=y, Sin/l, — %, cos/,

For the azimuth, using the law of sines on the spdaletriangle, CIP — IRP- Q, we have:

sin(-4A) _sin(180-4 -6)

4,113
sind sin( 90 - @) ( )

With the usual small angle approximations, thisléeto

d . .
AA=—- sin/l cog+ co sifl
cos@ ( A # ) (4.114)

=—(X,sin/, + y, cos/,) se®
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Finally, for the longitude we again apply the lafvsmes to the triangleQRM, Figure 4.21, to
obtain:

sin(-4A) _sin9o

: 4.115
sin(-441)  sin®, ( )
From this and with equation (4.114), we have
AN =sin@, AA
(4.116)

=~(X, sin/, +y, cos/,) tam@

Yo IRP (CIO)

Figure 4.21: Relationship between the apparentitiodg with respect to the CIP and the
longitude with respect to IRP.

Relationships (4.112) and (4.116) can also beveérirom

cos®, cosl cog® cod
cos®, siv} |=R,(Ys)R,(%)| co® sin |, (4.117)
sin@, sin@
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where the vectors on either side represent unibvein the direction of the tangent to the local
plumb line, but in different coordinate systemsg déime rotation matrices are given by equations
(1.4) and (1.5). Indeed, the last element of wveetpation (4.117) easily gived® in equation
(4.112) (neglecting second-order terms); while mplyling the first bysin/A and the second by
cos/l and subtracting yields equation (4.116) (the studdould fill in the details). The
combined rotation matrix, in equation (4.117), feolar motion is also denoted bWy,
representing the transformation from the terrdstaéerence pole to the celestial intermediate
pole:

W =R, (¥p)R,(%). (4.118)

The polar motion coordinates are tabulated by 8BRS as part of the Earth Orientation
Parameters (EOP) on the basis of observations, auftom VLBI and satellite ranging. Thus,
W is a function of time, but there are no analybeariulas for polar motion as there are for
precession and nutation.

4311 New Conventions

As described in Section 4.1.3, the celestial comi@d system associated with the instantaneous
pole (the CIP) possesses a newly defined origintdor right ascensions: a non-rotating origin
(NRO), o, called theCelestial Intermediate OriginCIO (previously also called th&elestial
Ephemeris OriginCEO; and not to be confused with the conventiamaknational origin — the
pre-1980s name for the reference pole). The itet@ous pole can also be associated with an
instantaneous terrestrial coordinate system, whiage/ise, according to resolutions adopted by
the IAU (and IERS), the origin of longitudes is anmrotating origin, called th&errestrial
Intermediate Origin TIO (previously also called th€errestrial Ephemeris OriginTEO). It
should be noted that neither the CIO nor the TI@eagents an origin for coordinates of points in
areferencesystem. They are origin points associated witlnatantaneous coordinate system,
moving with respect to the celestial sphere (th®)CGir with respect to the Earth’s crust (TIO),
whence their previous designation, “ephemeris,” @ simply “intermediate”.

With this new definition of the instantaneous éstrial coordinate system, the polar motion
transformation, completely analogous to the préoessutation matrix,Q", equation (4.40), is
now given as

W =R, (-s)R;(-F)R,(9)R4( F), (4.119)
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where the instantaneous pole (CIP) has coordin(xgasz,), in the terrestrial reference system.
As shown in Figure 4.22g is the co-latitude (with respect to the instantarseequator) andr

is the longitude (with respect to the TI@); and we may write:
sin g cosF
=| =singsinF |, (4.120)

Yo |&
z, cosg

where the adopted polar motion coordinates,y,, are defined as before (Figure 4.20), wyth

Xp

along the 270° meridian.

F
IRP (reference pole)

_ g
instantaneous po P

Qp 90° M

S' + F: g
w 90° reference
equator

true equator dt

Figure 4.22: Coordinates of instantaneous polaerteérrestrial reference system

With a completely analogous derivation as for pinecession-nutation matrixQ , we find

that
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1-ax  dx ¥ ~%
W =R,(-s)| dx % 1- a4y ¥ : (4.121)
Xp ~Ye 1_3'()%'*' %3)

wherea’ =1/(1+ cosg) = 1 er( X + yﬁ,)/ . Also, the parametes , defining the location of the

TIO as a non-rotating origin on the instantaneaypsator, is given (analogous to equation (4.46))
by

t o .
§=¢+ % dt, (4.122)
t, P

again, noting thaty, is positive along the 270° meridian. The coristan may be chosen to
be zero (i.e.s is zero att =t,).

It is easy to show that by neglecting terms ofdtland higher orders, the exact expression
(4.121) is approximately equal to

W= R3(—S')R3(% % ijRl( W)R(%). (4.123)

Furthermore,s is significant only because of the largest comptm@f polar motion and an
approximate model is given by (McCarthy and Pet@30

2
s = —0.0015{%+ agj r [arcseq, (4.124)

where a; and a, are the amplitudes, in arcsec, of the Chandlerbleo® (0.2 arcsef and the

annual WobeeO(0.05 arcse):. Hence, the magnitude ®f is of the order of0.1 mas«. The
IERS Conventions 2003 and 2010 also neglect thenskecrder terms (being of ordé2 y/as)
in equation (4.123) and give:

W =R;(=s)Ri(¥%)R2( %), (4.125)

which is the traditional transformation due to pofeotion, equation (4.118), with the additional
small rotation that exactly realizes the instantarsezero meridian of the instantaneous pole and
equator.
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The polar motion coordinates should now also déorghort-period terms in agreement with
the new definition of the intermediate pole. Thascording to the IERS Conventions 2010
(Petit and Luzum 2010), which describes these iailde

(XP’ yP) = ( % y)IERS + (4I x4 »tides+ (ZI x4 )) libratior’ (4.126)

where (x,y)_.. are the polar motion coordinates published by IERS, (4x 4y). _ are

tides

modeled tidal components in polar motion derivemhirtide models (mostly diurnal and sub-
diurnal variations), and4x,A4y) are long-period polar motion effects corresponding

libration

short-period (less than 2 days) nutations. Therlathould be added according to the new
definition of the intermediate pole that should team no nutations with periods shorter than 2
days.
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4.3.1.2 Problems
1. Derive equations (4.121) and (4.123).

2. a) From the web site:

https://www.iers.org/IERS/EN/DataProducts/EarthOrientatiga2ap.html

extract the polar motion coordinates (Earth oriemtaparameters (EOP)) from 1846 to 2010 at
0.05 year (0.1 year) intervals.

b) Plot the polar motion for the intervals 1900.01905.95 and 2000.0 — 2005.95.
Determine the period of the motion for each intervdDescribe the method you used to
determine the period (graphical, Fourier transfdeast-squares, etc.).

c) Using the period determined (use an averageotwo) in b) divide the whole series
from 1846 to 2010 into intervals of one period eadhor each such interval determine the
average position of the CIP. Plot these mean ipasitand verify the polar wander of 0.004
arcsec per year in the direction of —80° longitude.

3.(advanced) From the data obtained in 1a) determhie Fourier spectrum in each coordinate
and identify the Chandler and annual componentsigéoa Fourier transform algorithm, such as
FFT, interpolate the data to a resolution of 0.8&rywhere necessary). For each polar motion
coordinate, plot these components separately iritte domain, as well as the residual of the
motion (i.e., the difference between the actual iomotand the Chandler plus annual
components). Discuss your results in terms oftiv’damagnitudes. What beat-frequency is
recognizable in a plot of the total motion in thred domain?
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4.3.2 Celestial EphemerisPole

This section describes the previously defined Geledsphemeris Pole (CEP), as the precursor to
the newly defined Celestial Intermediate Pole (CiIBoth are the same at a certain level of
precision, where the CIP is a refinement on the G®&hg to the increased resolution afforded
by new VLBI observations. In order to understand/fthe CEP was chosen as the defining axis
for which nutation (and precession and polar mQteme computed, it is nhecessary to consider
briefly the dynamics and kinematics of Earth ratati The development here refers to the theory
given in much greater detail by Moritz and Muelle®§T). We consider the following axes for
the Earth:

1. Instantaneous rotation axi®R. It is the direction of the instantaneous rotatiector, a, .

2. Figure axis F . It is theprincipal axis of inertiathat corresponds to thmoment of inertia
with the maximum value. These terms are explaametbllows. Every body has an associated
inertia tensor,l , which is the analogue of (inertial) mass. tehsoris a generalization of a
vector, in our case, to second order; that is,aovas really a first-order tensor.) The tensor
may be represented as3x3 matrix of elements|, , that are related to the second-order

moments of the mass distribution of a body wittpees to the coordinate axes. Specifically, the

moments of inertial ; , occupy the diagonal of the matrix and are givgn b

)

| = I (rz_sz)dm, i=1,2,3, (4.127)

mass

wherer® =x/ +x; + x;; and theproducts of inertial, , are the off-diagonal elements expressed
as

» =—j xxdm % k. (4.128)
Thus, the inertia tensor is given by

=1, 1, |, (4.129)

The products of inertia vanish if the coordinatesaxoincide with th@rincipal axes of inertia
for the body. This happens with a suitable rotatad the coordinate system (with origin
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assumed to be at the center of mass) dmagonalizesthe inertia tensor (this can always be
assumed possible). Heuristically, these princgpads represent the axes of symmetry in the
mass distribution of the body.

3. Angular momentum axidd . It is defined by the direction of the angularmentum vector,
H , as a result of rotation. We have, by definition,

H=la. (4.130)

This shows that the angular momentum vectdr, and the angular velocity vectom,,
generally are not parallel. Equation (4.130) is #nalogue to linear momentunp,, being
proportional (hence always parallel) to linear eélg v (p=mv, wherem is the total mass of

the body).

For rigid bodiesEuler’s equatiordescribes the dynamics of the angular momenturiovet
abody-fixed framécoordinate axes fixed to the body):

L’ =H"+a@,xH", (4.131)

where L° is the vector of external torques applied to tleyb(in our case, e.g., luni-solar
gravitational attraction acting on the Earth). Huperscriptb, in equation (4.131) designates
that the coordinates of each vector are in a boddfframe. In the inertial frame (which does
not rotate), equation (4.131) specializes to

U=H (4.132)

Again, the superscript,, designates that the coordinates of the vectoinates inertial frame. |If
L' =0, then no torques are applied, and this expressesatv of conservation of angular
momentumthe angular momentum of a body is constant iratieence of applied torques. That
is, H' =0 clearly implies thatd remains fixed in inertial space.

In general, equation (4.131) is a differential @ipn for H® with respect to time. lIts
solution shows that boti® and a, (through equation (4.130)) exhibit motion with pest to

the body, even il.° =0. This ispolar motion Also, if L” # 0, then H® changes direction with
respect to an inertial frame. Indeed, in the preseof external torques, all axes change with
respect to the inertial frame — we have alreadydistl this asprecession and nutation
Comprehensively, we define the following:

Polar Motion the motion of the Earth’s axisR(, F, or H) with respect to the body of the
Earth.
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Nutation the motion of the Earth’s axigR(, F, or H) with respect to the inertial frame.

Both polar motion and nutation can be viewed dseeimotion in the absence of torquéed
motion) or motion in the presence of torquesdedmotion). Thus, there are four possible types
of motion for each of the three axes. Howeveroioe axis we can rule out one type of motion.
For a rotating body not influenced by external tes| (L =0), the angular momentum axibl,
has no nutation (as shown above, it maintains astaah direction in the inertial frame).
Therefore,H has no free nutationOn the other hand, the direction of the angolamentum
axis in space is influenced by external torqued,ssoniH exhibits forced nutations.

We thus have the following types of motion:

i) forced polar motion oR, F, or H;
i) free polar motion ofR, F, or H;
iii) forced nutation ofR, F, or H;

iv) free nutation ofR or F .

We also note that for a rigid bod¥, has no polar motion (free or forced) since it msaxis
defined by the mass distribution of the body, aretdfore, fixed within the body. On the other
hand, the Earth is not a rigid body, which implieat F is not fixed to the crust of the Earth — it
follows the principal axis of symmetry of the malstribution as the latter changes in time (e.qg.,
due to tidal forces). In summary, the consideratibnutation and polar motion involves:

a) three axesR, F, andH (and one more fixed to the Earth, the IRP; weitdll);
b) rigid and non-rigid Earth models;
c) free and forced motions.

From a study of the mechanics of body motion &oblo the Earth, it can be shown that (for
an elastic Earth model; see Figure 4.23):
a) the axesR,, F,, and H,, corresponding tdree polar motion all lie in the same plane;
similarly the axesR, F, and H, corresponding to the (actual) forced motion aiacst lie
in one plane;
b) forced polar motion exhibits nearly diurnal (@4-period) motion, with amplitudes of
~60 cmfor R, ~40 cn for H, and~ 60 meters for F ;
c) free nutation exhibits primarily nearly diurmabtion.

On the other hand (again, see Figure 4.23):
d) free polar motion is mostly long-periodic (Chhardperiod, ~ 430 day:), with dominant

amplitudes of~ 6 m for R, andH,, and~ 2 m for F,;
e) forced nutation is mostly long-periodit8(6 yr, semi-annual, semi-monthly, etc.).
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F

Figure 4.23: Free (zero-subscripted) and forcedrpaiotions of axes for an elastic Earth.
(Not to scale; indicated amplitudes are approximate

Free motion(polar motion and nutation) cannot be modeled ibypke dynamics, and can
only be determined empirically on the basis of obesgons. It is rather irregular.Forced
motion being due to torques from well known externalrses, can be predicted quite accurately
from luni-solar (and planetary) ephemerides.

If the Earth were aigid body, then theF -axis would be fixed to the EarthF(=F, =0 in
this case) and could serve as the reference far pobtion of theH - and R-axes. However,
for a non-rigid Earth, in particular, for an elasfiarth, theF -axis deviates substantially from a
fixed point on the Earth with daily polar motion of amplitude- 60 m. Thus,F cannot serve
as reference axis either for polar motion or faiation.

In Figure 4.23, the poinD is a fixed point on the Earth’'s surface, reprasgnthe mean
polar motion (for the elastic Earth), and formas#iycalled thanean Tisserand figure axidt can
be shown that free polar motion affects the nutetiof theO- and R-axes, while the nutation
of the H -axis is unaffected by free polar motion. Thisbecause the motion of the angular
momentum axis in the inertial frame is determingghasically from the luni-solar torques
(equation (4.132)) and not by the internal constituof the Earth. This makeBl a good
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candidate for the reference axis for nutationsgesiits (forced) nutation is unaffected by
difficult-to-model free polar motion, and it has fiee nutation.

However, it still has forced polar motion (diurraaid erratic). Therefore, the IAU in 1979
adoptedH, as the CEP (the celestial ephemeris pole), shigdras ndorced polar motion (by
definition); and it, like H, has no free nutation. Thud, has no nearly diurnal motions

according to b) and c) above — it is rather stabth respect to the Earth and space. Note that
H, still has free polar motion and forced nutatidDn the other hand, as mentioned above, the
(forced) nutation ofH, does not depend on free polar motion. And siheeQ-axis (being
fixed to the Earth’s crust) also has no polar mofjice., by definition), its forced nutation, like
that of H,, does not depend on free polar motion. Theretoot) theO-axis and theH -axis
have the same forced nutations. All these praggedi H, make it the most suitable candidate

for the CEP.

However, In particular, higher frequency compdaei polar motion (periods shorter than a
two days) could be observed with higher resoluttitBl and nutation models expanded to
included improved models of the Earth’s interiofFhe definition of the CEP evolved from a
physical quantity or model such as illustrated @&tw one defined strictly on the basis of
frequency content, as elaborated in the sect sectio

4.3.2.1 Celestial Intermediate Pole

The purpose of the CEP was to serve as the inteaeggole in the transformation between the
celestial and terrestrial reference systems. Téathe motion of the CEP relative to the
terrestrial reference pole is described by polationg while precession and nutation refer to its
motion relative to the celestial reference poles stich, the realization of the CEP depends on
the models developed for precession and nutatidnitamlso depends on observations of polar
motion. However, modern observation techniquesh @1s VLBI (for an introduction to VLBI,
see Seeber 2003), are now able to determine motibtise instantaneous pole with temporal
resolution as high as a few hours. Also, the modeeories of nutation and polar motion now
include diurnal and shorter-period motions (patidy the variations due to tidal components).
Therefore, the conceptual definition of the CERndpdimited in frequency content, proved to be
inadequate (Capitaine 2002). These developmende rhanecessary to revise the intermediate
pole. Rather than defining the intermediate paléerms of some particular physical model,
such as the angular momentum axis, it is definextipely in terms of realized frequency
components of motion.

The new intermediate pole is called, to furthepkasize its specific function, tl@elestial
Intermediate PoléCIP). It separates the transformation betweertehrestrial reference system
and the celestial reference system into two paptecéssion/nutation and polar motion)
according to frequency content. With a resolutedopted by the IAU, the motions of
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precession and nutation of the CIP with respec¢héocelestial sphere are defined to have only
periods greater than 2 days (frequencies withinbied, (—0.5 cpsd,0.5 cps)(, where cpsd =

cycles per sidereal day, and where a sidereal olagsponds to one rotation of the Earth relative
to the celestial sphere; see Section 5.1); seagd-j@4. These are the motions produced mainly
by external torques on the Earth. Also includesl @olar motions in the so-calledtrograde
diurnal band(negative frequencies in the bar(d-,1.5 cpsdyr 0.5 cpé(), since it can be shown

that they are equivalent to nutations with peritadger than 2 days. The terrestrial motions of
the CIP, on the other hand, are defined to be thvitbefrequencies outside the retrograde diurnal
band. Note that the retrograde diurnal band i#ezhfrom the celestial-motion frequencies by
the effect of Earth rotation (1 cpsd). Thus, patastion includes both long-period and short-
period motions (outside this diurnal band) in thedstrial system, as well as all short-period
motions in the celestial system, as illustrate&igure 4.24. In that sense, the CIP is merely an
extension of the CEP in allowing higher frequenayation components to be included, but as
equivalent polar motions. These higher-frequenoyians have minimal impact for most users,
having at most a few tens of micro-arcsec in amgét (for the nutations) and up to a few
hundred micro-arcsec for tidally induced diurnatl a@mi-diurnal polar motions. The reader is
referred to the IERS Conventions 2qP@tit and Luzum 2010) and the IERS Technical Ne&te
(Capitaine 2002) for further summaries, detailsl mferences.

frequency band
of CEP in TRF

-25 -20 -15 -10 -05 00 05 10 1.3

frequency
short-period long-period short-period in TRF [cpsd]
polar motion polar motion polar motion
+1 cpsd I H j
due t.cn Earth frequency bands of CIP motions in TRF
rotation
precession & nutation
e ) B B 5
in CRF [cpsd]
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frequency band
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Figure 4.24: Spectral domains of the CEP and CIRiom® in the terrestrial and celestial

reference frames (after Dehant and Mathews 201%).p.8
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4.3.3 Transformations

We are interested in transforming the coordinatiea oelestial object as given in a Celestial
Reference Frame to the terrestrial reference sysfme transformation, of course, is reversible;
but this direction of the transformation is mosplagable in geodesy, since we want to use the
given coordinates of celestial objects in our obsgon models (e.g., to determine the
coordinates for terrestrial stations). The givetestial frame coordinates are mean coordinates
referring to some fundamental epoch and the coatéitransformations account for precession
up to the epoch of date, nutation at the epochaté,dEarth rotation, and polar motion. In
addition, various systematic effects due to prapetion of the object, aberration, parallax, and
refraction must be applied as needed. The newertdions are similar with slight variations that
account for differences in the origin for right ession and formulation of the
precession/nutation model. The transformationoisnfilated in terms of an algorithm for
geocentric observers either “equinox-based”, rafgrto the traditional methods, or “ClO-
based”, referring to the new conventions.

43.3.1 Apparent Place Algorithm

The object of this procedure is to formulate adfarmation to compute the apparent geocentric
coordinates of a star, given its mean positionsdsed in a catalogue. Apparent coordinates are
those that would be observed in a geocentric, nmgdrate (instantaneous) celestial frame with
annual aberration and parallax effects removed.ditAwhal corrections for diurnal aberration
(and diurnal parallax for objects in the solar egst are applied to obtain coordinates in a
topocentric, intermediate celestial frame (Secdo®.3.2). Applying polar motion and Earth
rotation then brings the coordinates into the stri@ reference frame. Finally, refraction needs
to be considered when modeling observed coordinates

The Apparent Place Algorithm follows the proceduwtescribed in the Astronomical
Almanaé. The coordinates of a star are given in somelagua that is a realization of the
Celestial Reference System and includes also irdbom on the velocity of the star (among
other parameters). The coordinates and veloc#iywguthe notation of the Hipparcos Catalogue,
are valid at an epochy':

i) a, O, . catalogue celestial coordinates and parall@keanf the star;

i) d=p,./cosd, , & =us, f,=v: velocities of proper motion. (4.133)

* The Astronomical Almanac, issued annually by the NauticalAlms Office of the U.S. Naval Observatory,
Washington, D.C.
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It is noted thatt]' for the Hipparcos catalogue t§ =1991.25, but the coordinates are in the

ICRS (the Hipparcos catalogue in most cases doegive radial velocity, as it is considered of
no consequence If it is available, e.g., from Doppler shift nsmements, then it should be
used). The algorithm proceeds by first determirthig geocentric coordinates of the star at the
epoch of the observation, still referred to the catalogue system. Usuallg, have some time
system in which we operate, e.g., Universal Timeafiler 5). The star catalogues and celestial
reference systems are established with respect doycBntric Dynamic Time (TDB).
Technically, one should distinguish between Tenas{Dynamic) Time (TT) and TDB, but
practically the difference is less than 2 ms ard lsa ignored. We will define the relationship
between TT and Universal Time, and among other soaes in Chapter 5. For now, assume
that the time of observation, is in the scale of dynamic time, TT, in termsJofian day
numbers, e.g.t=2455984.5 JI, which corresponds t®" (midnight, civil time in UT) at
Greenwich at the start of 27 February 2012. Tmeldmental epoch,, for the precession and

nutation series is, as usual, J2000.0t,6r 2451545.0 JI. The Julian day number fdrcan be

obtained from the Julian calendar (Astronomical ahac, Section K); then we compute the
appropriate fractions of a Julian century using

_ t-t, _t-2451545.C _, _ t-t, t}-2000.0

r= = , = (4.134)
36525 36525 36525 100

To continue with the determination of geocentraordinates of the star at the time of
observation, we require the location and velocityhe Earth at the time of observation in the
barycentric system of reference. We may also nieedarycentric coordinates of the sun for
light-deflection corrections. The Jet Propulsicabbratory publishes the standard ephemerides
for bodies of the solar system, called DE%40%he Astronomical Almanac, Section B, lists some
of these coordinates, as well, specifically, thetoes:

E, (t): barycentric coordinates of Earth at tintejn the ICRS.
E, (t): barycentric velocity of Earth at time, in the ICRS.

We need only 3 and 5 digits of accuracy, respelgtive obtain milliarcsec accuracy in the star’'s
coordinates. The barycentric coordinates of threisuhe ICRS,S; (t) , are provided by DE405,

and the heliocentric coordinates of the Earth laea t

E, (t)=Eg(t)-Ss(t); (4.135)

® https://en.wikipedia.org/wiki/Hipparcos
® http://ssd.jpl.nasa.gov/?ephemerides#planets
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Both S;(t) and E,(t) are needed to compute the general relativistibt-itpflection

correction.
The catalogued position of the star may be reptedeby the vector in the barycentric
system in units of A.U.:

T

g (t(',*):ro(cosd0 cosr, Cco§, s, si) , (4.136)
with corresponding unit vector (direction),
Ps (tg‘ ) =1 (tg‘ )/rO : (4.137)

From equation (4.59), the coordinate vector ofdtae at timet, due to proper motion is given
by

ro (t) =1 (1 )+ 775 (t0'). (4.138)
where from equations (4.61), (4.63), and (4.133)
V7TCOSO, CORY,— U, Simr,— s Sid, Cas,

Iy (tg‘ ) =r1,| VITCOSO, Sina,+ L,. CO®,— [i; SiB, sia,|= rJn(t'g), (4.139)
v77sing, + Uy COS),

which defines the vectom(toH ) Note that

; (t”) - .. sina, — l; Sing, COos,
m(t(',*): - ro =WT|OB(t§ )+ U,.COSa, — s SiNd, s, |. (4.140)
i 45 COSS,

It is important to ensure that all terms in equaif$.139) have the same units ([rad/cent] in this
case, sinca", equation (4.134), is a fraction of a century)lsdA note that the correction for

proper motion is performed in the celestial refeeesystem (the ICRS); that is, the vector,
s (t) does not indicate mean coordinates at the epbdate, because precession has not yet

been applied. If the radial distance and velokéye no effect in a linear approximation of the
angular proper motion, then the unit vectqs, (t) =ry(t)/r,, can be approximated using

equation (4.64),
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COS(JO +7" 50) coia0 + r”do)
P (t) = COS(5O +7" 50) Sir(ao +7" do) , (4.141)
sin(J, +1"4,)

where d, may need to be derived from the catalogue datayéin through equation (4.133).

The corrections of the other effects continue ¢éoblased on information described in the
reference coordinate system (ICRS). We proceettansforming from the barycentric to the
geocentric system, which corrects for parallax @Ggere 4.11):

o (t) =re(t) - Eg(t). (4.142)

r.0 r.0
—(L. sinay — 115 Sind, cost, (4.143)
= (1+ r“vn) Ps (t(',* )+ | i, cosay — Uy sing, sim, |- mEg(t)
M5 COSA,

where the components &, (t) are given in terms of AU. We define

Us (1)

Us (1)

to be the unit vector corresponding U}s(t) These coordinates still refer to the celestial

s (1) = (4.144)

reference system, but now with the effects of ahpaeallax and proper motion applied. Using
just the angles, we can augment equation (4.14d¢tta first-order approximation,

005(50 +74, +A5) coga,+71d,+4a)
ps (t) = cos(cfo+r50+A5) sifa,+7d,+4a) |, (4.145)
sin(50 +750+A5)

where Aa and 49 account for annual parallax and are given, respaygf by equations (4.91)
and (4.93).
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One can now apply corrections for gravitationghtideflection and aberration according to
specific models. The light-deflection model utiizE,, (t) and S (t) and the reader is referred

to (Seidelmann, 1992, p.149). We neglect this gaurit only affects stars viewed near the sun.
The annual aberration can be included using vectmsording to equation (4.65), where the
aberrated coordinates are given in the form ofiauattor by

Ps (t) + Eq(t)/c (4.146)

oo (0 Eo(t)/d]

P (t)

L d

and, if Eg(t) is given in units of [AU/day], then the speed afht should be expressed
accordingly: c=173.1446 AU/da. The formula given in the Astronomical Almana@¢son
B) includes special relativistic effects,

v (o (1)l 14 POV (1)
1-V (1) ps (1) +] 1 1+m V(t)

1+ pg (t) AY (t)

P (t) =

, (4.147)

where V (t) = E4 (t)/c, V(t)=’\/(t)‘. Alternatively, to first-order approximation, organ

simply augment the angular coordinates in equaidob45) with the changes due to aberration
given by equations (4.75) and (4.80). In any ctse result yields coordinates at the epoch of
date that are geocentric and aberrated by Eartbscity, but still referring to the celestial
reference system (ICRS).

Finally, we apply precession and nutation to brihg coordinates from the ICRS to the
apparent coordinates in the intermediate (inst@was) celestial frame. One may apply the
traditional transformations, as in equation (4.8%8lled theequinox methgd However, the
small offset (frame bias) between the dynamicatesysand the new definition of the celestial
reference system should then be included. Thus,

Pue (1) =N(t) P(t.t) B p5(t). (4.148)

where P and N are given, respectively, by equations (4.17) ah@5), and from equation
(4.53),

B=R,(~17,)R,(&)Rs(day). (4.149)
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Since pg (t) is a unit vector, so iy, (t); and, its components contain the apparent cocesina

T

of the star, Withp(t):(px P, pz).

a=tan'Y, J=tani—Pr__ (4.150)

Here a refer to the right ascension with origin at theiagx.

Using the new conventions (Section 4.1.3), theraditive transformation procedure (called
the CIO methodl substitutes equation (4.39) for equation (4.148)ereQ is given by equation
(4.48) withX, Y, s, anda shown in equations (4.49), (4.50), (4.51), an88%.respectively:

Po (1) =Q7 P (t). (4.151)

The two methods (equinox and CIO methods)nadb give the same result (even if the same
precession/nutation model is used) since one réferaght ascension to the equinox of date and
the other to the non-rotating origin, the CIO. Tdheclination in the intermediate system,
however, is the same with both methods. The cporeding apparent celestial coordinates are
given by equation (4.150).

To bring the coordinates of the star to the Tenads Reference Frame requires a
transformation that accounts for Earth’s rotatiaterand for polar motion. We have for the
equinox method,

pr (£) =W (1) R, (GAST(}) pue (3, (4.152)

where GAST( I) Is Greenwich Apparent Sidereal Time (Section 2.8lgb Section 5.1, equation
5.32), andW s the polar motion matrix, given by equation (8L The coordinatesp;, (t)

are the apparent coordinates of the star at tima the Terrestrial Reference Frame. With the
new conventions, th&AST in the transformation (4.152) is replaced by aetmmgle that refers
to the CIO,

pr (1) =W (t) Ry (8(t)) po (1) - (4.153)

The angle @, is the Earth rotation angle, defined in Sectich®® The polar motion matrixy ,
is the same as before, but the extra rotat®nmay be included for higher accuracy (equation
(4.125)).
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433.2 Topocentric Place Algorithm

Topocentric coordinates of stars are obtained Ipyyap diurnal aberration using the terrestrial

position coordinates of the observer. Diurnal fi@xacan be ignored for stars, as noted earlier.
Furthermore, the topocentric coordinates and thiecitg of the observer need only be

approximate without consideration of polar motioiwVe first find the observer’'s geocentric

position in the inertial frame:

g(t) =R, (-GAST)r, (4.154)

wherer is the terrestrial position vector of the (statiny) observer (Earth-fixed frame)g(t)
gives “true” coordinates at the time of observatidie find the velocityg(t), according to

0 -w O
g(t)=R,(-GAST)|w, 0 O]r, (4.155)
0 0 O

since GAST=a, ( t- ), wheret, is the time when the terrestrial and celestianaice systems

are parallel, and apply nutation and precessionbtain the geocentric velocity in the mean
coordinate system of the fundamental epdgh,

G(t)=P"(t,t,)NT(t) g(t). (4.156)

This neglects a small Coriolis term which occurewlaking time-derivatives in a rotating (true)
system. Now the velocity of the observer, due #wotlEs rotation and orbital velocity, in the
barycentric reference system is given by

Og(t) = E4(t)+G(t), (4.157)

which would be used in equation (4.146) or (4.1#Btead of E,(t). The result, equation

(4.148) or (4.151), is then thepocentricplace of the star. A similar procedure may be iagpl
using the new conventions.

A complete set of computational tools is availatoten the U.S. Naval Observatory on its
internet site:http://aa.usno.navy.mil/software/novas/novas_info.phphese are FORTRAN, C, or
Python programs that compute the various transfibomsa discussed above with the older, as
well as the new conventions. Details may be foangl, in (Kaplan et al. 2011).
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4333 Problems

1. Given the mean celestial coordinates of a star195°, 6 =23° in the ICRS (assume that
the coordinates refer ty = J2000.0), determine the apparent coordinates of the standon, 4

July 2020, in Greenwich. Apply the IAU2006 preeéessmodel and 2000 nutation model (18.6
year, semi-annual, and fortnightly terms, only)rallax, aberration, and space motion. Also

apply the frame bias. Use the Julian day caleadaitable in the Astronomical Almanac and the
following information:

a, =-0.003598723 rad/ce,

9, =+0.000337430 rad/ce,
f, =—22.2 kml/s,

7=3.6458% 10° ray,

a (1)

E
Eq (1)

(0.200776901 - 0.911150265- 0.394806)69
(16551216 3183909 13801F%& 10 AU/
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Chapter 5

Time

A system of time is aystemnjust like any other reference system (see Section 1.2)ptetk it
is one-dimensional. The definition of a time system involves som & theory associated
with changing phenomena. If the universe in its entirety werelabety static, there would be
no time as we understand it, and the only reason we can peiogvis that things change. We
have relatively easy accessunits of time because many of the changes that we observe are
periodic. If the changing phenomenon varies uniformly, then the assbdiate scale is
uniform. Clearly, if we wish to define a time system thieshould have a uniform time scale;
however, very few observed dynamical systems have rigorouslyromifime units. In the past,
Earth’s rotation provided the most suitable and evident phenomenon ésaepthe time scale,
with the unit being a (solar) day. It has been recognized fongatime, however, that Earth’s
rotation is not uniform (it is varying at many different scales (dailyydekly, monthly, etc., and
even slowing down over geologic time scales (Lambeck 1988, p.607gddltion to scale or
units, we need to define an origin for our time system; thataeyo-point, or an epoch, at which
a value of time is specified. Finally, whatever systemnoé twe define, it should be accessible
and, thereby, realizable, giving us a tifreeme

Prior to 1960, a second of time wa@afinedas 1/8640C of a mean solar day. Today (since
1960), the time scale is defined by the natural oscillation of the cesiumaatball time systems
can be referred or transformed to this scale. Specifically$ki@ystéme Internationasecond
is defined as:

1 Slsec= 9,192,631,770 oscillations of the cesli®® atom between two
hyperfine levels of the ground state of thisrato (5.1)

This definition has been refined to specify that #tom should be at re€)°(K ) and at mean sea
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level, thus independent of ambient radiation effeahd relativistic gravitational changes.
Corrections are applied to actual measurementsrtply with these requirements. The value of
the Sl second was set to the previously (in 198@)pted value of a second ephemeris time
(Section 5.3), defined a31556925.974 of a mean tropical (solar) year, being computed fo
the epoch, 1 January 1900, on the basis of NewothBory of motion of the Earth around the
Sun (Seidelmann 1992).

Although the Sl second now defines the fundametitaé unit @tomic time, one still
distinguishes between systems of time that havkerdiit origins and even different scales
depending on the applicatiorDynamic timeis the independent variable in the most complete
theory of the dynamics of the solar system. lungform by definition. Mean solar time or
universal timeis the time scale based on Earth’s rotation wapect to the Sun and is used for
general civilian time keeping. Finallgidereal timds defined by Earth’s rotation with respect to
the celestial sphere. We already encountered estldéime when discussing astronomic
coordinates (Section 2.3) and dynamic time whepudising precession and nutation (Section
4.1). These are presented again with a view towargformation between all time systems.

5.1 Sidereal Time

Sidereal timggenerally, is the hour angle of the vernal egiribrepresents the rotation of the
Earth with respect to the celestial sphere aneceflthe actual rotation rate of the Earth, plus
effects due to precession and nutation of the equirBecause of the nutation, we distinguish
betweenapparent sidereal timg€ AST), which is the hour angle of the true current aérn
equinox, andnean sidereal timéMST), which is the hour angle of the mean vernal eguin
(also at the current time).

The fundamental unit in the sidereal time systerthémean sidereal daywhich equals the
interval between two consecutive transits of thameernal equinox across the same meridian
(corrected for polar motion). Also,

1 sidereal day = 24 sidereal hours = 86400 sitlsezands. (5.2)
The apparent sidereal time is not used as a tiale because of its non-uniformity, but it is used

as an epoch in astronomical observations. Th#oeship between mean and apparent sidereal
time derives from nutation. Referring to Figuré,4Ave have

AST= MST+ A4y cose, (5.3)

where the last term is called the “equation of ¢lq@inoxes” and is the right ascension of the
mean equinox with respect to the true equinox ap@®r. Since the maximum-amplitude term
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in the series for the nutation in longitude is ap@mately|4y|=17.2 arcse, the magnitude of
the equation of the equinoxes i7.2cog 23.4%) arcsec 1.0, using the conversion,

15°=1hr.

We specialize our definitions of sidereal timeadmg to the astronomic meridian to which
it refers, as followslocal sidereal time(LST) (mean, LMST, and apparentLAST) and
Greenwich sidereal timgGST) (mean,GMST, and apparentGAST), where

GST= LST-A, (5.4)

and the longitude/\, refers to the CIP, not the IRP. Clearly the ¢iguaof the equinoxes

applies equally taGST and LST. Due to precession (in right ascension), 24 hofisidereal
time do not correspond exactly to one rotationhaf Earth with respect to inertial space. The
rate of general precession if the equinox in right asg@ is approximately (using equation
(4.13) with equations (4.21), (4.22), and (4.27)):

m=4612.16+ 2.788 [arcsec/ce, (5.5)

wherer is in Julian centuries (equation (4.28)). The antdor one day is

m—-_=0.126 arcsec/day 0.0084 s/day &11710 ragl#7.07 10" rad/. (5.6)

36525

It is the reason for introducing the non-rotatimgim (Section 4.1.3).

5.2 Universal Time

Universal time is the time scale used for generalian time keeping and is based (only
approximately, since 1961) on the diurnal motiorth&f sun. However, the sun, as viewed by a
terrestrial observer, moves neither on the celestjaator, nor (exactly) on the ecliptic because
the motion is not uniform due to planetary grauitaél effects on Earth’s orbital motion.
Therefore, the hour angle of the sun is not varyindormly. For these reasons and the need for
a uniform time scale, a so-call@dtitious, ormean suns introduced, and the corresponding time
for the motion of the mean sun is knownnasan solar tim€MT ). The basic unit of universal
time is themean solar daybeing the time interval between two consecutigadits of the mean
sun across the meridian. Analogous to sidered,tequation (5.2),

1 mean solar day = 24 mean solar hours = 86400 s®@ar seconds. (5.7)
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Universal timg(UT ) is defined as mean solar time on the Greenwictdmae.
If t,, is the hour angle of the mean (or fictitious) suith respect to the local meridian, then

in terms of arepoch(an accumulated angle), mean solar time is giyen b

MT =t, +18C°, (5.8)

where we have purposely written the units in teofn@sngles on the celestial equator to denote an
epoch. The angld,8C°, is added because when it is noon (the mean sumtise local meridian
and t,, =0°), the mean solar time epoch is 12 hours, or 18feds. Again, in terms of an

angle, the universal time epoch in Greenwich is
UT =t5 +180. (5.9)

The relationship between the universal time andnstdereal time scales can be established
once the right ascension of the mean say,, is determined. Always in terms of angles

(epochs), we have from equations (2.182) and (5.9),

GMST=a,, +

(5.10)
=a,, +UT -180°

The right ascension of the mean sun is determindtie® basis of an empirical expression (based
on observations), first obtained by Newcomb. Usingpdern adopted constants, the
Astronomical Almanac (2015, p.B8) gives the follagiexpression

GMST=6( ¢, )+0.014506% 4612.156534™+ 1.3915817"

(5.11)
~0.0000004413 - 0.000029956*~ 3.68" T0°

where 7 is the usual fraction of a Julian century, equat{d.28), ande(dUT) is the Earth

rotation angle (see Section 5.2.1), given by

6(d,; ) =360°(0.7790572732640 0.00273781191138448 d,, 1, (5.12)
where d; is the number oUT days since 1.5 January 2000 ahg mod1 is the fraction of a
day’s interval past midday 12" UT), ie., d, modi=UT"/24- 0.L Defining

T, =d,;/3652E as the fraction of a Julian century of mean sdégys, equation (5.12) then is

l9(duT ) =100.46061837504 35999.488822400Q6+UT ; (5.13)
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and equation (5.11) becomes

GMST- UT=100.4606224044844 36000.769976992837
+1.3915817%;, — 0.000000445, — 0.000029956; (5.14)
-3.68%10°1>;

where the distinction betweem and 7,; is neglected (introducing errors less than a

microsecond, as noted in the Astronomic Almanat52(.B8).
The universal time scale relative to the meanrsaletime scale is obtained by taking the
derivative of equation (5.14) with respectrtp . We have

d(GMST- U
( 1 =36000.769976992837 [deg/cent]
dr; (5.15)

+(0.000773104,; - 3% 187} +-) [deglce

Hence, the number of degrees on the celestial egbhatween the epochtSMST andUT after
one mean solar dayl¢,, =1/36525 cen) is

36000.769976992837
d(GMST- UT) = ) 3652E; (5.16)
+(0.000773108,; - 3% I8} +) [de

or, one mean solar day is a sidereal da§X or 86400 sidereal seconds) plus the excess being
the right-hand side, above, in degrees or sidsexainds (see also Figures 5.1 and 5.2):

1°(MT) = 86400 + 236.5553674058( 5.079924 " 90~ >Q.4‘1iﬂ2) . (5.17)

From this we find

19(MT) _ 86636.5553674083 ( 5.079924 g, - 2.47%07)
1 (MsST) 86400 (5.18)
=1.0027379093449686 5.8795 10 - 2.8710°

Neglecting the small secular terms:
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1 mean solar day 24 03 56.55537 in sidetigaé

(5.19)
1 mean sidereal day 2386 04.09053 in stiae

A mean solar day is longer than a sidereal dayusecan order for the sun to return to the
observer’s meridian, the Earth must rotate an smtdit amount since it has advanced in its orbit
and the sun is now in a different position on tekestial sphere (see Figure 5.1).

extra rotation needed to
/ complete 1 solar day

1 sidereal day (1 full rotation of the Earth)
Figure 5.1: Geometry of sidereal and solar days.

It is noted thalUT and ST are not uniform because of irregularities in Eartbtation rate.
The most important effect, however, in determinidd from observations is due to polar
motion; that is, the meridian with respect to whibk transit measurements are made refers to
the IRP (fixed meridian on the Earth’s surface),le&/fUT should refer to the instantaneous
rotation axis. Thus, one distinguishes betweerefiuehs:

UTO: universal time determined from observations wehpect to the fixed meridian (the
IRP);

UT1: universal time determined with respect to theidi@n attached to the CIP.

From Figure 4.21 we have
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N = Nge — AN, (5.20)

where A/ is the polar motion in longitude. Hence, as shawfigure 5.2, the IRP meridian
will pass a point on the celestial sphere befoee @GP meridian (assuming, without loss in
generality, thatdA >0). Therefore, the&GMST epoch with respect to the IRP comes before the
GMST epoch with respect to the CIP:

GMST,, = GMST, +4A. (5.21)

Thus, from equation (5.14),

UT1=GMST,-...= GMSE, + 44~ ...

(5.22)
=UTO+1

% IRP meridian

CIP meridian
>

Figure 5.2: Geometry for the relationship betw&dr0 andUT1.
UT1 is still affected by irregularities in Earth’s abion rate (length of day variations), which
can be removed to some extent (seasonal variatitms) yielding
UT2=UT1+ corrections for seasonal variatit. (5.23)
Presently,UT2 is the best approximation &fT to a uniform time (although it is still affected

by small secular variations). HowevéfT1 is used to define the orientation of the Greenwich
mean astronomical meridian through its relationstoplongitude, andUT1 has principal

Geometric Reference Systems 5-7 Jekeli, August 2016



application when observations are referred to tareepoch since it represents the true rotation
of the Earth.
In terms of the S| second, the mean solar daivendoy

1°(MT) = 86400- 27 [s, (5.24)
n

where 4t , in seconds, is the difference over a period days betweetdT1 and dynamic time
(see Section 5.3):

Ar =UT1-TDT. (5.25)

The time-derivative ofAr is also called thiength-of-day variation From observations over the
centuries it has been found that the secular (geg¢reariation in the length of a day (rate of
Earth rotation) currently is of the order of 1.4 p&s century (Lambeck, 1988, p.607).

521 Earth Rotation Angle

With the definitions of the Celestial Intermedi&@egin (ClIO) and the Terrestrial Intermediate
Origin (TIO), both being non-rotating origins oretlmstantaneous equator, we are able to define
UT1 more succinctly. The angle between the CIO aedTil© (Figure 5.3) is known as the
Earth Rotation Angled. Since neither the CIO nor the TIO, by definitidvave angular rate

along the instantaneous equator due to precessiatibn and polar motion, the time associated
with Earth’s rotation rate, that iElT1, is defined simply as being proportionaldo

0(dyr ) = 27(w, + .0y ), (5.26)
wherey, andy, are constants (with units of [cycle] and [cycle gay], respectively), and

dy; = JulianUT 1 date-t,, (5.27)
and the JuliatJT1 date is the Julian day number interpretetlas(mean solar time) scale. The

fundamental epocht,, is, as usual, the Julian day number, 2451545%8ocated with 1.5
January 2000 in Greenwich. In practice, the Julidd day number is obtained from

UT1=UTC+(UTL- UTQ, (5.28)
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where UTC is Coordinated Universal Time (an atomic time scalee Section 5.4), and the
difference,UT1-UTC, is either observed or provided by the IERS. Gtestants//, andy,,
are derived below theory and models and are giyethd Astronomic Almanac (2015, p.B8; see
also equation (5.12):

6(dy; ) =2m(0.7790572732646 1.00273781191135448. (5.29)
The constant2/@y, = a , is Earth’s mean rotation rate in units of [ragidar in units of [rad/s],
@ =7.29211514670698 10 ra (5.30)

If the new transformation, equation (4.39), withatnx, Q, is used to account for precession
and nutation, then the Earth Rotation Angk, should be used instead of the Greenwich
Apparent Sidereal TimeGAST), in the transformation between the Celestial aedestrial
Reference Systems. The total transformation uniderold conventions from the Celestial
Reference System to the Terrestrial Reference Rystas given by equation (4.37) to account
for precession and nutation, and by equation (4.1862account for polar motion and Earth
rotation, where we omit the observational effeftisthe moment:

Urrs(t) =WT (t)R,(GAST)N( JP( 1 t)Buced t), (5.31)

where u is a unit vector on the celestial sphere, &ds included to account for the frame bias
(Section 4.1.3; see also equation (4.148)). Thwe tmansformation, based on IAU resolutions
adopted in 2000 and the new IERS 2003 Conventisns,

Urrs(t) =W ()R 5(6) QT (t) U e (5.32)

where the polar motion transformatiow , is given by equation (4.125), and the precession-
nutation transformationQ , is given by equation (4.47). The Greenwich Stdeifime GST)
now is no longer explicitly involved in the transfeation, but we can demonstrate the essential
equivalence of the old and new methods of transdition through the relationship between the
Earth Rotation Angled, andGST.
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&
) a(Y) p A \
I T
o / (Greenwich meridian)

(C10) true (instantaneous) equator

Figure 5.3: Relationship betwedBAST and Earth Rotation Angled. All right ascensions,
whether fromY” or o, are positive eastward. Thus, the indicame(d/) is negative in this case.

From Figure 5.3, it is clear that @AST is the hour angle, at the TI@u(), of the true vernal
equinox at the epoch of date,then

GAST=6-a(Y), (5.33)

Wherea(Y) <0 is the right ascension of the true equindk, att relative to the CIO (indeed,

due to precession and nutation since 2000, theé agbension ofY” relative to the CIO has
accumulated to about (¥)=-12.25 by the end of 2015). The angle(Y), is also called the

“equation of origins” (analogous to the equatiorite equinoxes, (5.3)). The old precession and
nutation transformationsP and N (with the frame bias,B), bring the reference 1-axis
(reference equinox) to the true equinox of datéer&fore, a further rotation about the CIP by
~a(Y) brings the 1-axis to the CI@;; and, we have

R,(-a(Y))NPB=Q", (5.34)

since the CIO is the point to which the transfoioatQ", brings the 1-axis due to precession
and nutation. Combining equations (5.33) and (5.34

R,;(6)Q" =R,;(GAST)NPB, (5.35)

showing that equations (5.31) and (5.32) are etgimta
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5.3 Dynamic Time

As already discussed in Chapter 4, tignamic time(DT) scale is represented by the
independent variable in the equations of motiobaxfies in the solar system. In theory it is the
most uniform time scale known since it governsdghiamics of our local universe according to
the best theory (the theory of general relativihgt has been developed to date. Prior to 1977,
the “dynamical” time was calledphemeris timéET). ET was based on the time variable in
the theory of motion of the sun relative to thetkar Newcomb’s ephemeris of the sun. This
theory suffered from the omission of relativistieory, the dependence on adopted astronomical
constants that, in fact, show a time dependencgh(ss the “constant” of aberration). It also
omitted the effects of planets on the motion.

In 1976 and 1979, the IAU adopted a new dynamie tscale based on the time variable in a
relativistic theory of motion of all the bodies tine solar system. The two systeniSI and
DT, were constrained to be consistent at their bayn@aparticular epoch); specifically

DT = ET at 1977 January 1.0003725 (1"00m00 32°1&%actly). (5.36)

The extra fraction in this epoch was included sitide would make the point of continuity
between the systems exactly 1977 January 1.0 miatome, TAl (Section 5.4). This is the
origin point of modern dynamic time. The unit fdynamic time is the SI second, or, also a
Julian day of 86400 S| seconds.

With respect to the theory of general relativitye dynamic time scale refers to a coordinate
system and thus representaordinate time Common choices include the barycentric reference
system (origin at the center of mass of the solstesn) or the geocentric reference system. The
corresponding time scales are thus designated agcdgdric Coordinate TimeTCB) and
Geocentric Coordinate Tim& CG). Note that acronyms for time systems generallipiv the
corresponding French names, e.g., “Temps-coordbangentrique” for Barycentric Coordinate
Time. Dynamic time defined in this way is the fitucoordinate and transforms according to the
theory of general relativity as the fourth coordenxom one point in space-time to another.

On the other hand, dynamic time has also beemetbfas a proper time, the time associated
with the frame of the observer that a uniformly ming clock would keep and that describes
observed motions in that frame. We have:

TDT : Terrestrial dynamic times the dynamic time scale of geocentric ephemsrafebodies
in the solar system. It definedto be uniform and the continuation BT (which made
no distinction between geocentric and barycentoordinate systems). It is also
identical, by resolution, to the time scale oféstrial atomic physics.
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TDB: Barycentric dynamic timés the time scale of barycentric ephemerides afidmin the
solar system. The difference betweHDB and TDT is due to relativistic effects caused
mainly by the eccentricity of Earth’s orbit, prodiug periodic variations.

In 1991, as part of a clarification in the usagethiise time scales in the context of general
relativity, the IAU adopted a change in the namelrbfT to Terrestrial Time TT). TT is a
proper time meaning that it refers to intervals of time cepending to events as measured by an
observer in the same frame (world-line) as occupigedhe event. By definitiom T refers to
proper time at the geoid (approximately mean segal)ieit has the same origin defined by
equation (5.36); and, its scale is defined by theggond. However, in 2000 the IAU further
recommended, due to uncertainties in the realizatib the geoid, thaffT be redefined as
differing from TCG by a constant, specified ratdéts relation to a proper time then more
precisely depends on the location and velocity lné bbserver's clock in the ambient
gravitational field. For mathematical connectiagaghe coordinate timeg,CB and TCG, and

to TDB reader is directed to Seidelmann (1992), McCafi896, Petit and Luzum (2010,
Chapter 10), and the Astronomical Almanac (SecB6h In calculations of Earth orientation
(Chapter 4), the difference betwe&m andTDB is usually neglected.

5.4 Atomic Time

Atomic time refers to the time scale realized bg dscillations in energy states of the cesium-
133 atom, as defined in equation (5.1). The Sbiseécthus, is the unit that defines the scale; this
is also the time standard fowternational Atomic TimgTAl, for the Frenchfemps Atomique
Internationa) which was officially introduced in January 197ZAl is realized by the BIPM
(Bureau International des Poids et Mesures) wharhlines data from over 400 high-precision
atomic clocks around the world in order to maintdia Sl-second scale as closely as possible.
The TAI scale is published and accessible as a correitieach time-center clock. In the U.S.,
the official atomic time clocks are maintained Whe tU.S. Naval Observatory (USNO) in
Washington, D.C., and by the National Instituté&Stdndards and Technology (NIST) in Boulder,
Colorado. Within each such center several cesieambclocks are running simultaneously and
averaged. Other participating centers include mfaseries in Paris, Greenwich, Moscow,
Tokyo, Ottawa, Wettzell, Beijing, and Sydney, amanger 70 others. The comparison and
amalgamation of the clocks of participating centarsund the world are accomplished by
LORAN-C, satellite transfers (GPS playing the majue), and actual clock visits. Worldwide
synchronization is about 100 ns (Leick, 1995, p.38ince atomic time is computed from many
clocks it is also known aspaper clockor astatistical clock

Due to the exquisite precision of the atomic ci&afgeneral relativistic effects due to the
spatially varying gravitational potential must kensidered. Therefore, the Sl second is defined
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on the “geoid in rotation”, meaning also thBAl is defined for an Earth frame and not in a
barycentric system.

Atomic time was not realized until 1955; and, fra®68 through 1968, the BIH maintained
the atomic time scale. The origin, or zero-pofat, atomic time has been chosen officially as
0"0™C°, January 1, 1958. Also, it was determined andsemybently defined that o8 0™ 0",
January 1, 1977TAl), the ephemeris time epoch wa80™32.184, January 1, 1977HT).
Thus, with the evolving definitions of dynamic time

ET-TAI=TDT- TAI= TT- TAE32.184. (5.37)

So far, no difference in scale has been detectedele@ TAl andTT, but their origins are offset
by 32.184.

All civil clocks in the world now are set with ggect to an atomic time standard. Atomic
time is much more uniform than solar time, andwetstill would like civil time to correspond
to solar time. Hence, a new atomic time scale dedsed that keeps up with universal time in
discrete steps. This atomic time scale is calleaversal Coordinated TimgUTC). It is
adjusted recurrently to stay close to universaktimdTC was established in 1961 by the BIH
and is now maintained by the BIPM. Initialy,TC was adjusted so that

UT2-UTC<0.15 (5.38)

which required thaUTC be modeled according to

TAI-UTC= b+  t- ¢), (5.39)

where b is a step adjustment arsl a frequency offset. As of 1972, the requiremenmtthe
correspondence of UTC with universal time was loeseto

UT1-UTC <095, (5.40)

with b=1s ands=0. The step adjustmenl,, is called deap secon@nd is introduced either

1 July or 1 January of any particular year. Tist leap second (as of July 2016) was introduced
on 1 July 2015, and currently (2018)AI —UTC=36.0 <. The next is anticipated for 1 January
2017.

The lengthening of a day by about 1:4 ms per cgrats measured by Earth’s slowing rate of
rotation, due to tidal friction, implies that th#T1 clock continues to run more and more behind
the TAI clock. It has been determined that the mean stdgr today is actually about
86;400:0027 S| seconds long, since the Sl secorsdonginally identified with the ET second
based on the motion of the mean sun at Newcomivie th the nineteenth century. Indeed,
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86400 Sl seconds exactly equaled a mean solande820, or 1.95 centuries ago. This disparity
between the scales of the defined S| second ancutinent mean solar day has an accumulative
effect that adds, on the average, abbdt ms/day/century 1.95 centt, or about 1 s td&JT1

during the course of a year; hence, the introdoaticthe leap seconds. The difference,
DUT1=UT1-UTC, (5.41)

is broadcast along with TC so that users can determid@1. There is current debate (Nelson
et al. 2001) about the need to maintain a smdiémihce betweeyTC and UT1 considering
the technical inconveniences (if not outright difiities) this imposes on the many civilian

telecommunications systems and other networkséiyabn a precise time scale.
GPS time GPST) is also an atomic time scale, consistent Wikl to within 1 ys. Its zero

point is January 6.0, 1989 JD244424., andGPST= UTC at that epoch only, sind8PST is
not adjusted by leap seconds to keep up with usaddéime. Thus, we always have

GPST= TAI-19.0 = (5.42)

Other Global Navigation Satellite Systems (GNS3p¥o their own conventions, though most
are similar to GPS. For example, both Europe’si&a(Zanello et al. 2007, Stehlin et al. 2006)
and China’s BeiDou (Han et al. 2011) global sateliavigation systems are offset by a constant
with respect torAl, with no leap second adjustments,

Galileo System Time TAI - 19.0, (5.43)

BeiDou Time=TAl - 33.0 .

where the origin for the Galileo system time is siaene as folGPST and that of BeiDou Time
is 1.0 January 200680TC. Fixed offsets are also adopted by the Japari@g8%) and Indian
(IRNSS) regional satellite navigation systems. Thmee system for the Russian system,
GLONASS, on the other hand, is tied to the scal®&®C, although in Moscow’s time zone.
That is,

GLONASS System TimeUTC+ 31 (5.44)

Besides incorporating leap seconds, GLONASS Sy&tane is always three hours ahead of
UTC because of the time zone difference betweeervieh and Moscow.

The relationships among the various atomic timsescare illustrated along with dynamic
time in Figure 5.4. It should be realized that tinee differences between the various satellite
systems and Al or UTC, as given by equations (5.42) through (5.44) diesanly the nominal
integer-second offsets, but omit the small fraclooffsets (tens, up to a hundred or more ns)

Geometric Reference Systems 5-14 Jekeli, August 2016



that occur in the actual realization of these tsnales. These small differences are determined
relative to laboratory master atomic clocks andlisbbd, for example, by the BIPM (see also
Lewandowski and Aria 2011).

dynamic time
F
+ ET . TDT >t TT >
32.184 s
I -
0.1 st 19.05s 33.0s
.1 8 sLeps . .
P GPS and Galileo time
leap second steps fUTC
(1.05) BeiDou
UTl y_time
Jan 1.0 Jan 1.0 1967 Jan 1.0 Jan1.0 Jan 6.0 1991 2000 Jan1.0 2015
1958 1961 1972 1977 1980 2006
origin  origin for  atomic TAIT TDT  origin for TDT TT origin for
for TAI UTC second officially adopted GPS and identified  redefined  BeiDou
adopted as  adopted Galileo  as a proper with respect time
SI second time time TT to TCG

Figure 5.4: Relationships between atomic time scafed dynamic time (indicated leap seconds
are schematic only). Until 1960, the second wasmddfby mean Earth rotation. Acronyms are
explained fully in the text.

Note in Figure 5.4 that the time scalesi#l and TDT (or, TT) are the same (1 Sl second
is the same in both), but they are offset by a t@omdhat is fixed for all time. Also, the time
scale forUTC is 1 Sl second, but occasionally it is offset by. 1The time scale fddT1 is very
close to 1 Sl second; that is, the difference behwbeUT1 and theTAl “clocks” is only about
36 s over about 60 years (compare this to therdiffiee between mean solar time and mean
sidereal time of 4 minutes per day!). The histofyTAI —UTC (only schematically shown in
Figure 5.4) can be obtained from the USNQ\ote, however, that this doast mean that the

! ftp://maia.usno.navy.mil/ser7/tai-utc.dat
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Earth has slowed down at thege of 36 s in sixty years. The continual slowingloé UT1 clock
relative to the TAI clock represents taecumulativeeffect of Earth’s decreasing rate of rotation
(a deceleration), which is only about 1.4 msecdagrper century.

541 Determination of Atomic Time

Atomic time is currently the most precise and asit@s of the uniform scales of time. It is
determined usindgrequency standardsor atomic clocks, that are based on atomic energy
oscillations. The standard for comparison is basedhe oscillations of the cesium atom, but
other atomic clocks are used with different chamastics in stability and performance. For any
signal generator, considered as a clock, we assumearly perfect sinusoidal signal voltage,

V(1) =(V, + V(1) sing(1), (5.45)

where oV (t) is the error in amplitude, which is of no consetue andw(t) is the phase of the
signal. The change in phase with respect to tsr@erneasure of time. The phase is given by

o(t) = at +p(t), (5.46)

where w is the ideal (radian) frequency of the generat@.,(w is constant), anddgo(t)
represents the phase error; or, its time derivat&{&(t), is the frequency error. Note that in

terms of cycles per second, the frequency is

f = (5.47)
Thus, let
(t) == (1) = = a1) (5.48)
Y\ = W ot '

be therelative frequency error
Now, the average of the relative frequency ers@rsome intervalr =t,,, —t, , is given by

== [ (1) dt=—=—((1.0) - 90(1)). (5.49)
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The stability of the clock, or its performancecigracterized by the sample variance of the first
N differences of contiguous averagégs, with respect to the intervat,:

a,(7) =izg(7k+l %) (5.50)

This is known as thallan variance and o, represents thiactional frequency stabilitpf the
oscillator. Substituting equation (5.46) into etipra (5.49) yields

Vi :i(¢(tk+1)_¢(tk)_wr)- (5.51)

Putting this into equation (5.50) gives

N

T 1) = o 2o Plea) = 260a) +0(0)) (552

which is a form that can be used to compute thamVlariance from the indicated phaggt),

of the oscillator.
Most atomic clocks exhibit a stability as a funatiof 7, characterized generally txyy(r)

decreasing ag increases from near zero to an interval of theeload a second. Themy(r)

reaches a minimum over some range of averagingstithes is called the “flicker floor” region
and yields the figure of merit in terms of stafilit For longer averaging times, after this
minimum, o, (r) again rises. Table 5.1 is constructed from theeutision by Seidelmann

(1992, p.60-61); and, Figure 5.5 qualitatively d@épihe behavior of the square root of the Allan
variance of different types of clocks as a functodraveraging time (from Vig (1992); see also
Kamas and Howe 1979). Recently, NIST reportedhetisnal frequency stability af0™® for a
ytterbium atomic clock (Hinkley et al. 20£3)

2 see also http://www.nist.gov/pml/div688/clock-0832cfm

Geometric Reference Systems 5-17 Jekeli, August 2016



Table 5.1: Fractional frequency stabilities forigas atomic (and other) clocks.

Clock stability (min g,))
quartz oscillator >10"
cesium beam laboratory 1.5x10™

commercial 2x10"

3x10"

Block Il GPS 0(10™)
rubidium laboratory >107"

GPS 2x10"
hydrogen maser 2x107"

N S
0 \§ NN

% N

-11

-12

-13

Log(a, (7))

-14

Z

-15 2|
Hydrogen Maser

-16 |
-30 -20 -1.0 0.0 1.0 2.0 3.0 4.0 .0 6.0 7.0
Log(7), seconds

1 day 1 month
Figure 5.5: Fractional frequency stability for wars clocks. Transcribed from Vig (1992)
(http://www.oscilent.com/esupport/TechSupport/Resrapers/IntroQuartz/vigcomp.htm)
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