Questions

- Will adults with cochlear implants benefit from a modified frequency allocation of their implant electrodes?
- Does increased resolution of formant information improve speech recognition in adults with cochlear implants?
- Do adults with CIs benefit from increased resolution of information about time varying formant structure across word boundaries?

Background

- Cochlear Implants (CIs) are devices used by individuals with hearing loss to improve communication through the use of an electrode array that directly stimulates the auditory nerve.
- Average open-set speech recognition for CI users is well below that of normal-hearing adults.
- Most of the information about vowel identification is represented by spectral peaks (formants) below 2.5 kHz (1).
- Existing signal processing strategies utilize a logarithmic frequency-to-electrode allocation, mimicking the representation of frequencies along the basilar membrane in the cochlea (high frequencies at the base and low frequencies at the apex) (2), but this allocation may not optimally represent the formants that underlie vowel perception.
- This study examined a different frequency-to-electrode allocation which assigned more electrodes to lower frequencies, where essential information exists to support vowel identification.

Method

- Participants (N = 12)

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Program Frequency Allocation</th>
<th>Standard Program Frequency Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>250-550 Hz</td>
<td>250-722 Hz</td>
</tr>
<tr>
<td>16</td>
<td>550-936 Hz</td>
<td>722-1528 Hz</td>
</tr>
<tr>
<td>12</td>
<td>936-1528 Hz</td>
<td>1528-3066 Hz</td>
</tr>
<tr>
<td>8</td>
<td>1528-2440 Hz</td>
<td>3066-6000 Hz</td>
</tr>
<tr>
<td>4</td>
<td>2440-7938 Hz</td>
<td>6000-7938 Hz</td>
</tr>
</tbody>
</table>

- All were fit with a Cochlear Freedom processor using an ACE processing strategy.
- Out of the 22 electrodes, only electrodes 4, 8, 12, 16, and 20 were used.
- Two programs were developed and used for this study:
 - The speech program used 4 electrodes to represent vowel frequencies: 20 and 16 divided the F1 space in half, and 12 and 8 divided the F2 space in half.
 - The standard program, which had a logarithmic frequency allocation similar to a typical clinical map, used only 3 electrodes (20, 16, and 12) to represent the formant frequencies.

Table 1.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Meaningful</th>
<th>Meaningful</th>
<th>Meaningful</th>
<th>Words</th>
<th>Words</th>
<th>Words</th>
<th>Speech</th>
<th>Speech</th>
<th>Speech</th>
</tr>
</thead>
<tbody>
<tr>
<td>100001</td>
<td>99</td>
<td>94</td>
<td>48</td>
<td>48</td>
<td>72.2</td>
<td>66.7</td>
<td>60</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>100002</td>
<td>41</td>
<td>40</td>
<td>22</td>
<td>5.6</td>
<td>40</td>
<td>15.56</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100003</td>
<td>75</td>
<td>28</td>
<td>13</td>
<td>6.7</td>
<td>47.8</td>
<td>56.7</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100004</td>
<td>52</td>
<td>62</td>
<td>10</td>
<td>17</td>
<td>43.3</td>
<td>56.7</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100005</td>
<td>79</td>
<td>77</td>
<td>16</td>
<td>17</td>
<td>27.8</td>
<td>28</td>
<td>28</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>100006</td>
<td>92</td>
<td>90</td>
<td>27</td>
<td>36</td>
<td>30</td>
<td>35.6</td>
<td>33</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>100007</td>
<td>86</td>
<td>65</td>
<td>37</td>
<td>20</td>
<td>25.56</td>
<td>23.3</td>
<td>27</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>100008</td>
<td>84</td>
<td>88</td>
<td>13</td>
<td>34</td>
<td>35.5</td>
<td>30</td>
<td>21</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>100009</td>
<td>15</td>
<td>8</td>
<td>0</td>
<td>3.3</td>
<td>48.9</td>
<td>35.6</td>
<td>24</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>100010</td>
<td>62</td>
<td>46</td>
<td>22</td>
<td>8.9</td>
<td>56.7</td>
<td>58.9</td>
<td>15</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>100011</td>
<td>90</td>
<td>88</td>
<td>27</td>
<td>33</td>
<td>14.4</td>
<td>14.4</td>
<td>33</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>100012</td>
<td>56</td>
<td>67</td>
<td>22</td>
<td>6.7</td>
<td>50</td>
<td>50</td>
<td>7.6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Frequency allocation for the speech program and the standard program

- Tasks
 - Participants were asked to listen to and repeat three types of stimuli:
 - Highly meaningful five-word sentences (3)
 - Words in isolation (4)
 - Non-meaningful but syntactically correct four-word sentences (5)
 - The stimuli were presented in three blocks, with one type of stimuli per block. Half of each block was heard while using the speech program, and half was heard while using the standard program, in a random order.

- Analyses
 - Responses were scored as percent words correct for the syntax-only and meaningful sentences.
 - For word lists, responses were scored as percent words, consonants, and vowels correct.
 - Arc sine transforms of data were used for statistical analyses.
 - Paired t-tests were performed to compare scores for individuals while using the speech and standard programs.
 - Linear regression analyses were performed to examine whether differences in any scores between the speech and standard programs predicted overall benefit to recognition of whole words or sentences.

Results

- The mean score was higher for the speech program than the standard program for both the meaningful sentences and vowels within words; however, our paired-samples t-test revealed that differences were not significant, and standard deviations were large.
- The only significant differences were that mean score for words and first consonant were greater for the standard program than the speech program, t = 3.09, p = .01, t = 2.44, p = .03, respectively.
- Linear regressions showed that improvements in vowel scores strongly predicted improvements in meaningful sentence scores, β = .84, F = 23.38, p = .001, and improvements in syntax-only sentence scores, β = .67, F = 7.85, p = .026.

Conclusions

- There was a substantial amount of variability in program performance for adults with CIs.
- Approximately one-third of the participants benefited from the speech program over the standard program.
- Improved representation of vowel information benefited adults with CIs when listening to meaningful and nonsense sentences, suggesting that improved access to formant information might support better recognition of the time varying formant structure of running speech.
- These results suggest that CI users might benefit from having more electrodes allocated to the lower formant frequencies, but more research needs to be done on this topic before it is used clinically.

Although we can specify the frequencies in the electrodes, there is no way of knowing how frequency was represented along the basilar membrane or auditory nerve. Future goals include developing a method to determine representation as a first step, so that vowel formant frequencies can be allocated meaningfully.

References

Acknowledgements

The authors wish to thank Audiologists Brenda Hall and Melissa Schnitzspahn for their assistance in device programming.