Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments are microscopic protein polymers that are abundant in the cytoplasm of nerve cells. They make up an important component of the cytoskeleton, which functions like an internal scaffold to give cells shape and mechanical strength. Neurofilaments are transported along axons and accumulate abnormally in many neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s, and Charcot-Marie-Tooth Disease. Neurofilaments can be very long and we believe that their length influences their accumulation in diseases such as Alzheimer’s, and Charcot-Marie-Tooth Disease.