THESIS

ERGONOMIC EVALUATION OF TWO ALTERNATIVE HANDLES FOR SHOVELS AND RAKES DESIGNED TO PREVENT LOW BACK PAIN

Submitted to

The Engineering Honors Committee
119 Hitchcock Hall
College of Engineering
The Ohio State University
Columbus, Ohio 43210

> by
> Kelly McAuley

Advisor: Dr. Steven Lavender

Abstract

Two handle attachments that are designed to decrease the bending and twisting encountered while shoveling and raking have become commercially available: the BackSaver Grip and the Backsaving Handle ${ }^{\mathrm{TM}}$. This study aimed to investigate the effects that the two aids have on the lower back in these activities. Fourteen subjects performed raking and shoveling tasks. MotionMonitor ${ }^{\mathrm{TM}}$ (Innovative Sports Training, Inc.) hardware and software, and force-plates were employed to record the continuous motion of subjects performing these tasks. Lateral bending, flexion, and twisting angular displacements and moments were calculated for each subject. The effects of the aids were evaluated using SAS software (SAS Institute, Inc.). The study found that both handles significantly reduce twisting moment, twist angle, and flexion angle during the shoveling task. When using the handles during raking task, only flexion was significantly reduced. In conclusion, the products present a possible way to decrease the risk factors associated with raking and shoveling.

TABLE OF CONTENTS

ABSTRACT i
TABLE OF CONTENTS ii
LIST OF TABLES AND FIGURES iii

1. INTRODUCTION 1
2. METHODS 3
2.1 Experimental Design 3
2.2 Subject 3
2.3 Measurement/Instrumentation 3
2.4 Detailed Study Procedures 4
2.5 Statistical Analysis 6
3. RESULTS 7
3.1 Shoveling Results 7
4.2 Raking Results 7
4. DISCUSSION 9
4.1 Shoveling 9
4.2 Raking 10
4.3 Limitations 10
4.4 Further Research 10
5. CONCLUSION 12
TABLE AND FIGURES 13
BIBLIOGRAPHY 23
APPENDIX A. FLYER TO RECRUIT SUBJECTS 24
APPENDIX B. INFORMED CONSENT DOCUMENT 26
APPENDIX C. SAMPLE DATA COLLECTION FORM 31
APPENDIX D. SAS SOFTWARE CODE FOR SHOVELING 33
APPENDIX E. SAS SOFTWARE CODE FOR RAKING 40

LIST OF TABLES AND FIGURES

TABLE 1. Anthropometric data of subjects 14
TABLE 2. Summary of Results 15
FIGURE 1. Shovels with Handles Attached 16
FIGURE 2. Raking Apparatus 17
FIGURE 3. Shoveling Apparatus 18
FIGURE 4. Graph of the moments measured when shoveling 19
FIGURE 5. Graph of the angles measured when shoveling 20
FIGURE 6. Graph of the moments measured when raking 21
FIGURE 7. Graph of the angles measured when raking 22

1. INTRODUCTION

Low back pain is a common complaint for many people at some point in their life, with $15-45 \%$ of adults suffering from low back pain annually (Frymoyer, 1997). Causes of low back pain are varied and difficult to assign, but researchers have been able to pinpoint many risk factors, such as bent and twisted postures, load moments, and trunk lateral and twisting velocities (Punnett et al, 1991; Marras et al, 1995). These risk factors can be found in a variety of manual tasks, such as shoveling.

Shoveling has been well studied, beginning with work on shoveling productivity and since then the productivity and efficiency of shoveling of various materials has been well documented (Frievalds 1986a). Frievalds considered the ergonomic effects of shovel design and shoveling and devised a list of recommendations, such as suggested lift angle and blade shape, for different shoveling tasks (1986b). Since then more work has been done on handle design. One study looked at a bent-shaft design and found that this design decreased trunk flexion while shoveling (McGorry et al., 2003). Another design tested was a shovel with an additional handle attached to the socket of the shovel, and the findings were varied, due to usability issues, but it was determined that the additional handle did decrease bending in users (Frievalds, 1986b; Bridger et al., 1998). Raking, on
the other hand, has not been extensively studied.
In this study, two products that seek to prevent low back pain by reducing the amount of bending and twisting are the BackSaver Grip and the Backsaving Handle ${ }^{\mathrm{TM}}$. Both of these handles attach to the center of the shaft rather than at the socket, as opposed to the handles evaluated in other studies. This study aimed to assess the BackSaver Grip and the Backsaving Handle ${ }^{\mathrm{TM}}$ in their ergonomic capability. Both the BackSaver Grip and the Backsaving Handle ${ }^{\mathrm{TM}}$ are products that attach to long-handled tools, such as garden rakes, leaf rakes, mops, and shovels. These handles facilitate an improved posture while using long-handled tools by re-orienting the position of the lower hand such that bending and twisting is reduced. The handles' application in shoveling and raking was investigated in this study.

The objectives of this study were to determine the bending (lateral and forward flexion) and twisting angles and moments about the lower back for each handle attachment and the control condition (no attachment) during a shoveling task and a raking task and determine whether subject anthropometrics impact the results. It was hypothesized that both handles would significantly decrease the bending and twisting angular displacements and moments about the lower back when shoveling and when raking.

2. METHODS

2.1 Experimental Design

Both portions of the study had a repeated measures design, which decreases the chances of differences in raking and shoveling styles between participants. In this design, the independent variable was the handle for which there were three conditions comprised of the two different add-on handles and a control (no handle) condition. The dependent variables were the flexion, lateral bending, and twist angles and the flexion, lateral bending, and twist moments. The amount of force required was controlled by keeping the weight lifted by the shovel constant for each trial. The weight for shoveling was set to five percent of the subject's body weight. Similarly, in the raking study, the pulling force remained constant for each trial at four percent of the subject's body weight.

2.2 Subject

For the study, fourteen subjects were tested, seven male and seven female. To be a subject, one must have been between the ages of eighteen and forty at the time of participation, in good health, and have no prior back problems. Subjects were recruited from the Ohio State campus population. The subjects ranged in age from twenty-one to twenty-five. The average height of the subjects was 175 cm (range 157 to 185 cm). The average weight of the subjects was 76 kg , (range 56 to 104 kg). More detailed information on the subjects can be seen in Table 1.

2.3 Measurement/Instrumentation

The two handles added to the tools were the BackSaver Grip and the Backsaving Handle ${ }^{\text {TM }}$. The two handles differ in their design, and the BackSaver Grip is made of
plastic, while the BackSaving Handle ${ }^{\mathrm{TM}}$ is made from aluminum. A common placement of each handle on each tool was used for each subject. Figure 1 shows the two handles and where they were placed on the tools.

For the raking trials, a garden rake was attached to the weight using two pulleys, one attached to the ground and the other attached to the ceiling. The weight was suspended from the ceiling to keep the force constant. A force scale was used to indicate when the subject had started pulling.

For the shoveling trials, the participants used a snow shovel to scoop, lift, and dispose a weight from one area to another. A force scale was used to indicate when the subject had lifted the weight, and another force scale was used to indicate when the subject had disposed the weight.

Kinematic data were obtained using electromagnetic sensors (Accension ${ }^{\mathrm{TM}}$) attached at the sacrum, right shank, left shank, right thigh, left thigh, right arm, left arm, thorax, and head using Velcro straps. The subjects stood on two force plates, which measured the ground reaction forces under each foot. All data was acquired by the computer and read by The MotionMonitor ${ }^{\mathrm{TM}}$ (Innovative Sports Training, Inc.) software, which recorded the subjects' movements and calculated bending and twisting angles and spinal moments at 120 Hz .

2.4 Detailed Study Procedures

Upon entering the Orthopaedic Ergonomics Laboratory the procedure was described and each subject was presented with an informed consent document. Anthropometric data including height, shoulder height, elbow height, index finger height, hip width, knee width, ankle breadth, and the shoulder breadth were obtained. The
subject was instrumented with the electromagnetic sensors and instructed to stand on the two force plates, one foot on each, for the duration of the study.

The sequence of raking and shoveling was counterbalanced by changing the order of which was done first by each subject in order to decrease learning effects and fatigue. For each subject, the sequence of the handle conditions was be randomized, and for each condition, there was eight trials. Between raking and shoveling, the subjects were given a break that lasted about five minutes.

For the raking portion, the subjects were instructed to pull the rake from a starting point to another ending point (See figure 2). Once the subjects had pulled the rake to the ending point, the investigator took the weight that the subject had lifted from the force scale and set it back on the force scale while the subject set the rake in the original position. This allowed the rake to be returned to the starting point without additional load. Subjects were allowed to choose a comfortable location to place their feet anywhere on each respective force plate, but were instructed to keep their feet in their original positions on the force plates for each set of trials. Each subject was allowed to practice the motion as many times as needed to feel comfortable with the motion. Once the subject felt comfortable, he/she repeated the motion eight times in succession and the data were recorded by the computer. This was done for each handle condition. The subjects received break lasting about one minute between each handle condition.

For the shoveling portion, the subjects were instructed to use the snow shovel to lift a weight off the force scale and turn and toss the weight onto the other force scale. Once the weight was on the second force scale, the investigator replaced the weight on its original position on the first force scale. Subjects were allowed to choose a comfortable
location to place their feet anywhere on each respective force plate, but were instructed to keep their feet in their original positions on the force plates for each trial. See figure 3 for the set-up. The subjects did this eight times for each handle condition. Between each handle condition, the subjects were given a break lasting about one minute and also had a short break between each trial to allow the researcher to replace the weight on the first force scale.

After the trials were completed, the subject was asked to stand in a normal position, and the computer recorded the subject's angles and moments. This provided baseline data for the statistical analysis.

2.5 Statistical Analysis

For the analysis, only the last five trials for each handle condition and tool were used to ensure that the subject had found a comfortable pattern of motion for each handle condition and tool. The maximum and minimum of the flexion, lateral bending, and twist angles and flexion, lateral bending, and twisting moments were recorded for each trial. Then the baseline data was subtracted off the maximums and minimums. For the lateral bending and twisting motions and moments from each trial, the absolute value of whichever peak, the maximum and minimum, was larger was selected for analysis. These peak values were averaged across the five trails defining a single handle condition for each subject.

The remaining data was prepared as an input for SAS software (SAS Institute Inc.). The data was analyzed using the GLM procedure and the Ryan-Einot-GabrielWelsch Multiple Range Test for each angle and moment for both tools. An alpha level of 0.05 was used.

3. RESULTS

3.1 Shoveling Results

ANOVA analysis of the shoveling data showed that both handles significantly decreased the flexion angle, twist angle, and twisting moment of the lower back compared to the control. This can be seen in Table 2 and figures 4 and 5.The lateral bending angle, flexion moment, and lateral bending moment were not significantly changed with the use of either handle. Post-hoc tests showed that both handles had similar effects when shoveling.

The effects of arm length were also investigated. The subjects were divided into two groups based on arm length for analysis. Analysis showed that neither handle attachment had a significant effect on the short arm group, but the handles were close to making a significant change ($\mathrm{p}=0.0568$) for twist angle. In the analysis of subjects with longer arms, the handles showed a significant decrease in the flexion and twist angles and the twist moment. The handles did not significantly affect the lateral bending angle and the flexion and lateral bending moments.

3.2 Raking Results

Due to limitations in the data only 4 subjects could be analyzed for the raking task. The analysis showed that while raking with the additional handles, only the flexion angle had a significant change from raking with no additional handle (Table 2). The lateral bending moment was close to having a significant change ($\mathrm{p}=0.0655$). When raking with the additional handles, there were no significant changes in the lateral
bending angle, twist angle, flexion moment, and twisting moment. This can be seen in figures 6 and 7. Both handles had similar effects when raking.

4. DISCUSSION

4.1 Shoveling

The data shows that both additional handles could aid in preventing low back pain by decreasing twist and flexion angles and twisting moment. These factors have been shown to affect the risk of developing lower back pain and musculoskeletal disorders (Punnett et al, 1991; Marras et al, 1995). The data do not show that either handle will significantly decrease the lateral bending angle, the flexion moment, and the lateral bending moment and may not prevent low back pain due to these factors. These findings correspond with other similar studies done on shovel and spade design results. One study on another two-handled spade concluded that the additional handle could reduce the risk of back injury (Bridger et al, 1998). The study on the bent shaft design found that using the new design significantly decreased trunk flexion (McGorry et al, 2003). The results of this study, along with the other studies, further verify the possible positive effects of using modified shovels.

Arm length was also an important factor when using the handles. When stratified by arm length, subjects with shorter arms do not appear to gain the same benefits as those with longer arms. This may be affected by using a common placement for all subjects. Perhaps if the handles would have been adjusted for each individual subject, these results may be the_same. Overall, both handles had similar effects; therefore, if a handle were employed, the choice of handle may be based on other factors such as personal preference.

4.2 Raking

From the data, it is seen that the additional handles significantly decrease flexion angle and could possibly decrease the lateral bending moment. These factors have been shown to impact the risk of low back pain (Punnett et al, 1991; Marras et al, 1995). A majority of the data from the raking study was found to be unreliable due to problems with The MotionMonitor ${ }^{\text {TM }}$ software. Only data from four subjects were found to be reliable. Yet, since significance was found for one factor, it is reasonable to suggest that the roles of the handles while raking should be further studied. From the data, both handles had similar effects when raking, and if a handle were employed, the choice should be based on other factors, such as personal preference, because one handle was not shown to be better than the other.

4.3 Limitations

There are several limitations to the study. Results may differ if the subjects were allowed to move their feet during the trial; subjects could have moved their feet instead of bending or twisting to finish the motion. Also, the weight was kept constant, whereas in many practical applications, the weight could vary, and this could affect the outcome. In addition, while shoveling was investigated, other common tasks with a shovel, such as digging, were not studied. Therefore, the effects of using the handles are only applicable to the specific scenario tested.

4.4 Further Research

One topic for further research would be to analyze the handles over a variety of tasks, such as mopping rather than only shoveling and raking. Another potential idea for research would be to develop a better design for an add-on handle, such as a handle that's
position is easily adjustable along the axis of the shaft and about the shaft. Both handles significantly decreased some of the variables shown to be risk factors for low back pain but not all. Research into designing a product that decreased more of the risk factors could result in improved safety. An additional suggestion for further study would be finding the ideal placement on the tool for different tasks. Our experience shows that optimum handle placement may vary depending upon the shovel load and task, and user anthropometrics. Another possible area for research would be studying the effects of various attributes, such as age, height, etc. while using handle attachments. An additional topic for research could be the effect the handles have on productivity. Add-on handles open up many new possibilities for further research because of their range of uses.

5. CONCLUSION

Both handle attachments have been shown to decrease some of the factors associated with low back pain while shoveling. More research is suggested to develop attachments that further decrease risk factors for low back pain and injury, determine optimal placement and usage of the auxiliary handles, and to determine their interaction task and user attributes. Both handles produced similar results in both the shoveling and the raking tasks, thereby suggesting the choice of which handle to use during these tasks should be based on personal preference.

TABLES AND FIGURES

TABLE 1.
Anthropometric Data of Subjects.

Subject	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Gender	F	M	M	M	M	F	M	F	F	F	M	F	F	
Age	20	21	22	22	22	21	25	20	22	21	22	20	20	
Height	160.9	182.4	180.9	176.1	182.1	174.9	184.4	157	169.6	174.2	185.1	159.1	174.1	183.5
Weight	165	185	170	196	120	230	215	125	125	150	175	150	145	182
Shoulder Height	130.9	151.8	149.1	145.7	148.2	145.1	150.1	128.9	145	146.1	150.7	133.7	141	154.5
Elbow Height	103.1	118.6	117.5	116.4	119.3	115.5	117.9	102.1	112.3	114.1	120.7	105.8	110.6	118.2
Index Finger Height	65.8	74.4	72.9	69.7	74.6	72.1	71.3	63.2	67.4	68.2	76.1	66.8	70.4	70.9
Arm Length	65.1	77.4	76.2	76	73.6	73	78.8	65.7	77.6	77.9	74.6	66.9	70.6	83.6

TABLE 2.
Summary of Results

Tool	Dependent Variable	F Value	Degrees of Freedom	p-value
Shovel	Flexion Angle	6.19	2	0.0063
	Lateral Bending Angle	1.02	2	0.3748
	Twist Angle	10.06	2	0.0006
	Flexion Moment	0.06	2	0.9398
	Lateral Bending Moment	2.23	2	0.1275
	Twisting Moment	9.00	2	0.0011
Rake	Flexion Angle	18.36	2	0.0028
	Lateral Bending Angle	1.33	2	0.3319
	Twist Angle	1.8	2	0.2447
	Flexion Moment	0.18	2	0.8376
	Lateral Bending Moment	4.44	2	0.0655
	Twisting Moment	3.14	2	0.1166

Fig. 1 Shovels with Handles Attached.

Fig. 2. Raking Apparatus

Fig. 3. Shoveling Apparatus

Fig. 4. Graph of the moments measured whilr shoveling.

Fig. 5. Graph of the angles measured while shoveling.

Fig. 6. Graph of the moments measured while raking.

Fig. 7. Graph of the different angles measured while raking.

BIBLIOGRAPHY

Andersson, G.B.J., 1997. The Epidemiology of Spinal Disorders, in Frymoyer, J.W. (Ed.), The Adult Spine: Principles and Practice. Lippincott-Raven Publishers, Philadelphia, pp.93-141.

Bridger, R. S., Cabion, N., Goedecke, J., Rickard, S., Schabort, E., Westgarth-Taylor, C., Lambert, M.I., 1997. Physiological and subjective measures of workload when shovelling with a convention and two-handled ('levered') shovel. Ergonomics 40, 1212-1219.

Bridger, Robert S., Sparto, P., Marras, W.S., 1998. Spade Design, Lumbar Motion, Risk of Low-back Injury and Digging Posture. Occupational Ergonomics 1, 157-172.

Bridger, R.S, 2003. Introduction to Ergonomics, $2{ }^{\text {nd }}$ ed. Taylor and Francis, New York.
Frievalds, A., 1986a. The ergonomics of shoveling and shovel design - a review of the literature. Ergonomics 29, 3-18.

Frievalds, A., 1986b. The ergonomics of shoveling and shovel design - an experimental study. Ergonomics 29, 19-30.

Frievalds, A., Kim, Y.J., 1990. Blade size and weight effects in shovel design. Applied Ergonomics 21, 39-42.

Kelsey, Jennifer L., et al., 1984. An Epidemiologic Study of Lifting and Twisting on the Job and Risk for Acute Prolapsed Lumbar Intervertebral Disc. Journal of Orthopaedic Research 2, 61-66.

Marras, W.S., Lavender, S.A., Leurgans, S.E., Fathallah, F.A., Ferguson, S.A., Allread, W.G., and Rajulu, S.L., 1995. Biomechanical risk factors for occupationally related low back disorders. Ergonomics 38, 377-410.

McGorry, R.W., Dempsey, P.G., Leamon, T.B., 2003. The effect of technique and shaft configuration in snow shoveling on physiologic, kinematic, kinetic, and productivity variables. Applied Ergonomics 34, 225231.

Punnett, L., Fine, L.J., Keyersling, W.M., Herrin, G.D, Chaffin, D.B, 1991. Back disorders and nonneutral trunk postures of automobile assembly workers. Scandavian Journal of Work, Environment, and Health 17, 337-346.

APPENDIX A

FLYER TO RECRUIT SUBJECTS

INTERESTED IN EARNING A \$20 TARGET GIFT CARD??

We are looking for participants for research in ergonomics studying the effects of using two new handle configurations when raking and shoveling.

Participants must be between the ages of 18 and 40 years old and must not have any health problems or back problems. In this study you will be asked to perform raking and shoveling tasks while hooked up to motion measurement sensors. The study will take 1-2 hours.

If you are interested in participating, please email mcauley.12@osu.edu.

APPENDIX B

INFORMED CONSENT DOCUMENT

The Ohio State University Consent to Participate in Research

Study Thie: ERGONOMIC EVALUATION OF TưO ALTERNATIVE HANDLES FOR SHOVELS AND RAKES DESIGNED TO PREVBNT LON' BACK PANN

Principal Inverigator: steven Lavender, Pi.D.
Spansar: Osu interialsipport

- This is a consent fommforresemchpantidianion. It cantairs impontant information about this stady ard nehat to expect ifyou decide to participate. Please corsiler the infomation carefilly. Feel free to disouss the study withyour friends nudfamily and to ask questions before makingyour decisionwhether ornot toparticipate.
- Your partiajationis wormary. Youmay refise toparticipate in this study. Ifyou decile to take pait in the study, youmay leave the study at myy time. No mater what decision you make, there will be ro panky to you and you will rot bse ayy of your uan benefits. Yourdecision will rot affect yourf finme reltionskị wifl The Okio State Unimesty. If you are a stadert or employee at this State, your decisionwill rot affect your grades or emplogment status.
- Youmay ormay not benfitas areult of paridipafing in tics study. Also, as exphined below, your paticiquionmayresult in unintended or hammill effects for you that may be minor or may be serious depandig onthe name of the research.
- You will beproxided wifh ang newinfomanion that develops dumig the stuly that may ffectyour decision whefler ornot to ondinue to partidisate. fiyou decile to participate, you will be askedto sign this fom and will receive a copy of the signed fom. You are being asedto cassiderparticipatig inthis sony for the resans explined below.

1. Why is tis study being done?

This stody is to detemmine if using an altematione handle will decrease low back pain whenraking and shoveling.
2. Howmany perple uil take pant in this stuity?

There will be 14 subjects.
3. What willhappenif I take pantin this study?

If you choose to pantipite inthis study, you willbathrake and shooelwith ond willuat two altematiochardles. The onder of either rabing or shoveling is rowdomiwed. Therefore, if youdo rikingfinst, youwill rakewith both atemative hardles and witwo ane (the handle condions will also be in radom onder', md thenyou willshovel wihbathhnoles and wifhout the hardle canditiaswill akobe innadom onder). This orderwill be resersed if
 succesin trice. The first set of eiftt will be a protice so that yourall be comfortable

 minate breit, ardbewe
4. Howlones will Ibe in the study?

The stady will takebereen l-2 hanie.

5. Can I stap buingin the shity?

Youmay lenve the study at iny time. If you deride to stap paticinatic it the stady, thare will be ro panly to you ard yournill rut bese ary buafits to whidiyou are
 State Triinersisy.

6. What risks, side efferts of disconiforts can I eqpert frombeng in the sturify?

 the sondroill bestopped immediately.
7. What bendfits an I expectifombeing in the study?

8. What other chuices do Ihave if I do not take pait in the stury?
 otherwise ertiles.

9. Whillmy study-related in omation be kept comidential?

Fforts will be mide to heq your sudy-related iffomation cafidertixl. Howeotr, there maybe cinomstaries wherethis infomation mut be relesed. For enmple, persanal

 resemath:
 regulaticy terucie;

 FesenchPratices;

 nothoniminifom.
10. What are the costs of taking part in his sturty?

There are ro cost inolredwilltiticepint inthestudy.

11. Wril Ibepaidfor takine pait in fics study?

12. Whathappers if I amingred beraure Itodepart in his stury?

 The Ohin State Trimerisy Medical Ceriter.

The cost for thistrestmerit will be billedto youryon medical orluepital ifencue. The
 this staty.

13. What are my ripht if Itale pant in this shity?

 you we oftherwise ertiled.

 rigte nulwelfire of paticipute inmesirit.

14. Who can ander my questions ahout the shity?

 800-678-6251.
 relitel ingiry, youmay coritat In. Stever Lavender 292-9960.

15. Sifping the corsent form

 sizielform.

	shrir

Hustigatinheremdh Staff

		sirir

	Wrorirl Eramb	sramy
	Lrir	
Trmadmerrama	5rarirl Erame	J[rmp
	Lint	

APPENDIX C

SAMPLE DATA COLLECTION FORM

Subject XX

Name:

Subject ID:

Weight:

Age: \qquad

Height:

Shoulder Height: \qquad

Elbow Height:

Index Finger Height: \qquad

Hip Width:

Knee Width:

Ankle Breadth:

Shoulder Relocate: \qquad

Shoveling

BackSaver Grip
No Handle
BackSaving Handle

Raking

No Handle
BackSaver Grip
BackSaving Handle

APPENDIX D

SAS SOFTWARE CODE FOR SHOVELING

**OPTIONS LINESIZE=72;

DATA DATA1;
INPUT SUBJECT\$ TRIAL\$ TOOL\$ HANDLE\$ FLEX LAT TWIST FLEXMOM LATMOM TWISTMOM;
*** code the treatment combinations 01111,01112,...14523;
TC = trim(SUBJECT)||trim(TRIAL)||trim(TOOL)||trim(HANDLE); Drop tool;
LINES;

1	1	0	0	44.31	19.01	26.63	57.44	91.60	35.92
1	2	0	0	43.87	24.24	28.28	74.59	102.07	29.89
1	3	0	0	42.10	20.56	25.97	75.35	87.77	37.03
1	4	0	0	41.32	27.20	31.60	77.19	96.08	29.32
1	5	0	0	44.78	23.18	27.45	82.20	84.32	33.20
1	1	0	1	34.38	17.31	27.42	76.07	98.92	32.74
1	2	0	1	38.90	15.86	19.38	78.40	105.46	26.12
1	3	0	1	34.19	21.27	22.08	81.21	92.64	38.35
1	4	0	1	37.67	16.60	21.89	96.04	99.64	36.96
1	5	0	1	36.79	15.78	23.91	83.66	96.14	31.38
1	1	0	2	38.95	21.33	22.57	97.61	99.14	28.15
1	2	0	2	37.09	16.54	25.69	83.51	82.46	29.75
1	3	0	2	38.51	14.89	20.76	75.21	88.00	23.91
1	4	0	2	35.46	9.52	22.02	75.51	93.05	25.37
1	5	0	2	36.34	15.42	23.69	89.03	94.44	25.58
2	1	0	0	24.14	12.74	36.40	51.31	227.87	82.11
2	2	0	0	30.22	14.53	32.16	69.53	235.91	82.74
2	3	0	0	28.79	12.76	29.63	78.13	234.27	72.27
2	4	0	0	27.80	17.02	32.19	107.46	207.06	81.85
2	5	0	0	27.74	16.06	28.76	111.35	227.03	87.19
2	1	0	1	20.59	14.40	28.73	100.96	165.53	44.43
2	2	0	1	22.03	9.23	26.25	106.12	156.50	43.17
2	3	0	1	23.09	10.26	26.50	65.41	151.16	45.51
2	4	0	1	33.45	19.98	23.42	77.93	134.43	41.74
2	5	0	1	19.96	13.13	26.83	58.82	180.68	74.56
2	1	0	2	51.84	15.37	30.20	94.59	126.04	16.64
2	2	0	2	11.66	14.95	25.56	38.77	161.21	68.19
2	3	0	2	14.48	16.66	28.86	39.73	145.38	55.92
2	4	0	2	6.45	20.71	32.55	45.76	140.63	51.60
2	5	0	2	32.12	18.80	25.22	70.92	129.23	30.36
3	1	0	0	70.88	25.06	32.52	88.34	204.7836 .87	
3	2	0	0	71.60	21.72	32.57	63.44	203.65	55.44
3	3	0	0	70.66	22.40	33.69	74.31	185.07	41.40
3	4	0	0	72.77	18.95	27.44	70.18	172.97	31.00

3	5	0	0	68.85	21.51	28.16	93.65	195.42	35.50
3	1	0	1	55.19	21.40	30.28	83.58	151.27	13.42
3	2	0	1	56.51	18.01	33.24	83.31	156.17	17.92
3	3	0	1	55.46	22.43	28.32	106.20	141.45	21.26
3	4	0	1	56.75	23.58	28.24	82.88	146.90	21.63
3	5	0	1	64.64	20.76	26.22	100.15	178.90	22.21
3	1	0	2	65.06	21.56	30.65	82.58	165.14	16.15
3	2	0	2	62.69	23.82	24.67	78.36	169.53	23.20
3	3	0	2	54.26	21.05	28.07	101.18	170.82	21.42
3	4	0	2	66.67	23.67	27.68	105.01	198.76	16.11
3	5	0	2	65.25	22.40	25.61	98.44	182.02	13.53
4	1	0	0	62.04	30.77	20.66	118.51	230.76	80.25
4	2	0	0	64.12	37.06	20.18	116.35	260.24	59.33
4	3	0	0	61.91	27.12	18.39	141.28	250.37	87.33
4	4	0	0	64.24	36.96	20.30	109.15	292.69	92.50
4	5	0	0	66.79	35.90	22.94	104.01	275.28	78.42
4	1	0	1	65.76	28.96	19.10	130.39	241.66	48.70
4	2	0	1	64.91	25.59	20.25	99.73	206.85	38.16
4	3	0	1	57.69	24.70	25.11	105.49	214.34	48.46
4	4	0	1	56.09	23.50	20.71	100.30	211.07	54.99
4	5	0	1	55.13	29.65	16.29	117.55	194.34	52.96
4	1	0	2	64.05	24.50	13.50	135.35	202.38	52.72
4	2	0	2	52.75	24.70	14.74	125.12	228.59	48.26
4	3	0	2	61.08	23.89	18.35	125.91	190.85	68.87
4	4	0	2	56.25	22.33	15.63	118.23	203.79	48.59
4	5	0	2	60.79	24.13	29.68	88.79	211.25	43.60
5	1	0	0	57.39	16.99	32.14	73.13	102.79	46.65
5	2	0	0	65.50	17.90	27.06	84.27	96.53	50.68
5	3	0	0	63.71	20.37	22.88	89.25	102.28	50.06
5	4	0	0	62.43	21.44	27.04	74.01	121.46	47.54
5	5	0	0	65.01	13.70	26.80	97.85	115.10	51.24
5	1	0	1	56.15	23.39	35.16	63.65	100.20	28.60
5	2	0	1	62.00	31.35	34.71	57.25	106.55	27.48
5	3	0	1	57.03	24.08	37.84	80.10	108.81	19.20
5	4	0	1	57.49	29.63	37.82	58.06	94.26	26.89
5	5	0	1	54.32	20.46	35.26	81.78	88.03	26.31
5	1	0	2	61.59	22.71	30.94	50.61	101.07	25.51
5	2	0	2	61.69	14.90	27.71	69.47	95.79	21.60
5	3	0	2	60.96	24.44	28.76	77.70	97.05	24.54
5	4	0	2	61.34	19.37	24.80	58.71	79.42	22.98
5	5	0	2	61.52	24.64	30.87	73.75	91.88	19.67
6	1	0	0	40.65	25.34	30.86	107.51	115.711116 .62	
6	2	0	0	42.17	16.22	31.50	101.37	133.90	107.27
6	3	0	0	20.96	13.43	21.08	86.36	143.54	102.57
6	4	0	0	20.97	13.75	20.89	106.75	139.03	124.18
3									

6	5	0	0	22.30	16.56	22.53	96.67	141.79101 .60
6	1	0	1	37.70	26.16	23.76	101.11	246.11109 .89
6	2	0	1	38.80	21.92	23.76	107.66	177.64105 .17
6	3	0	1	41.15	19.81	23.16	104.71	142.89109 .29
6	4	0	1	60.40	37.45	15.36	68.66	370.0967 .84
6	5	0	1	59.45	43.60	18.56	107.65	353.3645 .16
6	1	0	2	35.46	14.47	18.69	121.78	161.3597 .76
6	2	0	2	37.17	18.82	20.30	128.02	152.74100 .83
6	3	0	2	38.83	18.17	22.12	120.22	149.21106 .57
6	4	0	2	36.20	19.15	19.46	118.14	154.64124 .88
6	5	0	2	35.25	12.71	19.09	111.46	139.43116 .70
7	1	0	0	50.73	20.34	26.72	80.47	220.26119 .95
7	2	0	0	49.81	19.69	25.59	233.27	227.04122 .35
7	3	0	0	48.54	20.76	28.04	68.99	199.12122 .03
7	4	0	0	49.73	20.72	27.56	88.40	189.06123 .23
7	5	0	0	49.43	16.89	26.51	80.54	216.27124 .58
7	1	0	1	45.76	20.48	32.04	112.18	242.6153 .83
7	2	0	1	49.27	23.45	30.93	99.87	242.12101 .69
7	3	0	1	51.51	23.36	27.29	116.21	253.8867 .83
7	4	0	1	50.81	30.61	26.77	155.05	264.44101 .34
7	5	0	1	47.87	25.61	28.74	101.44	225.0493 .64
7	1	0	2	45.30	23.27	18.60	86.01	225.4090 .52
7	2	0	2	45.79	22.52	22.52	84.94	224.2199 .91
7	3	0	2	44.47	27.64	27.11	93.28	218.0793 .24
7	4	0	2	49.64	24.86	22.40	84.15	240.6099 .17
7	5	0	2	45.74	24.30	26.79	85.50	213.10111 .60
8	1	0	0	42.28	13.82	28.70	57.58	93.3825 .93
8	2	0	0	40.91	17.93	26.47	62.04	91.9927 .22
8	3	0	0	44.15	14.80	22.01	61.85	102.8427 .00
8	4	0	0	41.44	18.84	24.16	91.03	$91.02 \quad 28.48$
8	5	0	0	43.06	14.45	26.33	82.37	92.8231 .90
8	1	0	1	43.35	17.46	16.69	109.00	106.3737 .47
8	2	0	1	31.79	10.75	19.56	94.45	105.0442 .34
8	3	0	1	29.25	13.91	16.87	70.78	$98.41 \quad 28.80$
8	4	0	1	28.45	14.42	10.09	62.22	89.0839 .88
8	5	0	1	32.28	14.42	12.78	75.69	103.9427 .49
8	1	0	2	29.72	10.54	12.34	69.56	$98.41 \quad 29.13$
8	2	0	2	31.66	15.78	19.23	89.75	87.1923 .01
8	3	0	2	35.03	11.84	18.42	74.99	108.9025 .37
8	4	0	2	32.01	13.38	18.48	78.70	102.1220 .94
8	5	0	2	34.98	14.80	18.94	75.51	97.5735 .16
9	1	0	0	45.47	23.03	31.27	90.55	103.6830 .14
9	2	0	0	43.23	10.32	32.89	65.80	99.7232 .73
9	3	0	0	53.19	15.77	27.82	61.97	80.9134 .02
9	4	0	0	55.06	16.07	28.34	70.26	86.0419 .32

9	5	0	0	51.29	18.92	33.91	86.41	118.96	30.02
9	1	0	1	39.95	11.70	23.67	64.32	80.89	21.09
9	2	0	1	39.17	12.83	24.84	86.06	83.27	30.76
9	3	0	1	43.32	8.59	24.28	77.43	85.12	24.18
9	4	0	1	42.01	7.73	22.77	76.09	84.05	25.45
9	5	0	1	41.93	6.01	24.45	71.99	85.02	29.03
9	1	0	2	44.39	10.65	26.11	69.31	88.76	30.43
9	2	0	2	44.79	11.84	20.98	69.94	92.33	27.05
9	3	0	2	40.03	10.84	19.72	67.73	86.54	30.10
9	4	0	2	41.68	9.44	24.68	64.28	87.93	26.52
9	5	0	2	39.92	7.51	22.54	61.77	77.67	27.17
10	1	0	0	52.96	17.03	29.67	124.40	148.71	33.62
10	2	0	0	59.34	25.30	31.92	119.40	155.42	41.74
10	3	0	0	55.99	29.82	27.72	123.28	152.70	32.71
10	4	0	0	56.28	33.88	27.74	125.83	153.41	42.23
10	5	0	0	49.98	37.06	37.65	102.85	123.55	33.22
10	1	0	1	48.58	20.24	27.67	86.94	139.69	26.52
10	2	0	1	52.91	22.23	23.89	94.74	137.50	27.21
10	3	0	1	51.87	23.47	24.45	106.69	137.86	28.39
10	4	0	1	49.87	17.36	29.65	99.35	132.63	29.52
10	5	0	1	54.60	23.25	25.04	104.13	130.32	31.12
10	1	0	2	51.35	30.76	23.09	90.01	116.54	21.57
10	2	0	2	51.10	24.15	26.66	113.60	122.36	19.94
10	3	0	2	51.06	29.11	23.41	145.24	114.44	26.82
10	4	0	2	52.10	28.08	25.74	120.47	106.01	16.85
10	5	0	2	47.91	26.71	30.52	116.80	118.24	28.24
11	1	0	0	78.95	34.73	24.43	105.39	185.41	28.29
11	2	0	0	82.16	60.17	30.81	91.70	185.62	23.54
11	3	0	0	63.70	43.33	23.04	82.17	143.07	24.49
11	4	0	0	84.42	60.52	31.15	100.11	204.06	30.98
11	5	0	0	81.33	65.68	34.95	96.67	190.88	28.31
11	1	0	1	60.90	43.56	29.37	78.73	160.00	20.79
11	2	0	1	58.88	37.75	28.08	81.99	174.54	34.41
11	3	0	1	61.63	35.51	24.56	75.23	157.61	23.55
11	4	0	1	53.58	27.54	24.59	79.78	130.54	24.14
11	5	0	1	58.20	35.74	21.12	95.48	157.32	27.70
11	1	0	2	61.44	38.68	25.60	85.82	163.91	33.25
11	2	0	2	62.99	35.11	22.77	92.10	135.68	26.29
11	3	0	2	53.29	21.98	24.60	143.36	115.07	33.07
11	4	0	2	58.94	34.86	21.63	84.46	151.16	29.93
11	5	0	2	47.42	22.63	21.26	92.55	139.68	19.27
12	1	0	0	70.53	30.64	33.82	71.99	161.77	26.94
12	2	0	0	67.09	34.44	31.43	81.86	162.71	30.77
12	3	0	0	65.14	31.70	31.55	82.26	176.11	29.42
12	4	0	0	67.91	24.82	31.63	67.84	151.97	17.22
						37			

12	5	0	0	65.09	30.84	35.83	81.99	179.36	21.27
12	1	0	1	58.65	31.00	18.56	113.38	162.74	26.56
12	2	0	1	48.54	28.08	20.51	93.11	174.48	25.87
12	3	0	1	44.09	35.75	30.42	110.59	161.61	29.62
12	4	0	1	54.92	31.86	25.11	83.97	149.19	27.73
12	5	0	1	50.29	38.22	24.97	103.52	154.17	29.93
12	1	0	2	63.44	38.64	30.78	93.72	156.40	18.27
12	2	0	2	48.99	34.52	25.96	94.35	143.50	24.70
12	3	0	2	41.91	36.01	24.16	91.49	146.22	36.39
12	4	0	2	50.69	32.17	28.34	114.53	137.96	28.35
12	5	0	2	43.88	36.13	34.89	115.51	130.85	31.34
13	1	0	0	43.11	16.59	25.79	46.04	178.61	38.95
13	2	0	0	41.08	10.70	26.59	50.44	185.76	23.21
13	3	0	0	39.03	18.06	24.14	59.64	178.41	31.29
13	4	0	0	42.58	14.96	26.74	47.65	179.25	29.11
13	5	0	0	42.70	14.00	25.84	49.30	198.96	30.48
13	1	0	1	46.51	24.51	17.10	118.14	185.01	26.15
13	2	0	1	34.86	9.97	21.56	62.68	183.68	31.49
13	3	0	1	38.93	6.82	22.09	57.78	163.42	27.94
13	4	0	1	40.41	10.26	22.96	74.21	154.71	22.49
13	5	0	1	38.34	9.46	26.27	59.54	166.44	32.40
13	1	0	2	36.67	10.27	22.25	38.57	175.67	34.58
13	2	0	2	38.60	13.39	21.48	41.40	170.15	33.55
13	3	0	2	38.03	10.69	21.68	54.90	161.51	28.94
13	4	0	2	35.81	10.68	22.58	49.99	161.60	34.96
13	5	0	2	36.09	10.68	25.93	53.71	168.50	36.29
14	1	0	0	34.17	21.39	33.29	65.45	162.14	49.41
14	2	0	0	38.49	22.23	25.85	81.32	168.81	43.61
14	3	0	0	28.64	9.62	27.43	71.62	164.65	51.89
14	4	0	0	31.85	15.95	28.75	87.04	161.69	33.20
14	5	0	0	33.85	20.51	26.71	84.90	163.46	49.88
14	1	0	1	35.04	25.92	27.09	65.12	171.1736 .78	
14	2	0	1	32.92	29.03	28.21	60.23	165.30	42.21
14	3	0	1	35.68	23.61	30.21	53.73	152.75	33.89
14	4	0	1	37.96	26.18	22.85	58.33	167.50	43.68
14	5	0	1	36.91	28.57	24.22	49.37	150.46	38.24
14	1	0	2	30.72	19.13	19.31	69.15	164.07	39.35
14	2	0	2	34.60	13.14	24.02	54.93	163.39	24.98
14	3	0	2	38.99	18.33	28.34	54.44	151.0935 .65	
14	4	0	2	33.78	25.07	33.64	69.29	159.04	43.32
14	5	0	2	35.26	21.01	26.33	65.95	165.76	41.88
13									

;
proc sort;
by subject handle trial;
run;
proc means noprint;
var flex lat twist flexmom latmom twistmom; by subject handle; output out=avgtrial mean=mflex mlat mtwist mflexmom mlatmom mtwistmom; run;
proc glm;
class subject handle;
model mflex mlat mtwist mflexmom mlatmom mtwistmom = subject handle; means handle/regwq;
title 'analysis of shovel handle conditions';
run;
proc sort;
by handle;
run;
proc means n mean std stderr min max;
by handle;
run;

APPENDIX E

SAS SOFTWARE CODE FOR RAKING

```
**OPTIONS LINESIZE=72;
```

DATA DATA1;

INPUT SUBJECT\$ TRIAL\$ TOOL\$ HANDLE\$ FLEX LAT TWIST FLEXMOM LATMOM TWISTMOM;
*** code the treatment combinations 01111,01112,...14523;
TC = trim(SUBJECT)||trim(TRIAL)||trim(TOOL)||trim(HANDLE);
Drop tool;
LINES;

2	1	1	0	16.69	19.75	7.01	56.40	73.32	44.78
2	2	1	0	21.66	21.60	7.34	53.54	71.82	46.86
2	3	1	0	24.05	21.44	6.25	58.41	73.08	44.14
2	4	1	0	27.55	21.78	6.63	66.18	76.04	45.09
2	5	1	0	25.86	19.12	6.78	65.47	76.82	41.37
2	1	1	1	7.71	20.62	7.91	52.01	74.94	37.47
2	2	1	1	11.36	20.08	8.06	62.65	74.92	44.08
2	3	1	1	11.48	18.31	6.17	62.94	70.73	36.53
2	4	1	1	11.03	19.40	7.06	60.67	76.94	34.73
2	5	1	1	10.21	19.19	8.19	61.72	82.88	37.03
2	1	1	2	9.02	21.73	7.48	64.85	59.61	32.41
2	2	1	2	6.96	22.42	8.54	55.07	58.61	30.25
2	3	1	2	8.45	19.62	9.27	60.25	55.55	31.91
2	4	1	2	12.57	17.64	6.05	68.09	57.01	28.49
2	5	1	2	6.95	21.03	8.52	62.96	56.66	28.73
3	1	1	0	56.81	29.74	8.80	92.18	130.88	14.46
3	2	1	0	59.54	33.57	8.90	94.27	145.27	21.18
3	3	1	0	59.62	32.27	6.05	96.98	146.36	13.80
3	4	1	0	56.80	28.68	6.62	95.56	141.70	11.51
3	5	1	0	55.73	28.86	7.41	84.79	117.47	19.44
3	1	1	1	41.21	21.43	10.43	93.25	99.73	11.13
3	2	1	1	40.47	20.93	11.75	91.46	96.70	9.78
3	3	1	1	38.40	19.60	12.45	85.67	98.24	12.69
3	4	1	1	41.91	18.61	10.26	88.75	101.75	7.52
3	5	1	1	43.26	19.82	17.20	78.64	88.19	9.37
3	1	1	2	41.34	22.72	9.87	77.39	87.05	12.02
3	2	1	2	36.35	23.54	10.36	83.96	83.48	11.11
3	3	1	2	35.53	25.13	11.04	91.72	99.23	16.33
3	4	1	2	38.66	23.07	12.59	84.32	96.16	13.77
3	5	1	2	37.89	23.59	13.18	73.22	82.96	12.18
6	1	1	0	29.10	15.13	4.30	69.42	103.17	27.12
6	2	1	0	28.73	17.08	5.41	80.37	105.85	26.65
6	3	1	0	30.69	16.60	5.29	78.75	106.98	32.19
6	4	1	0	31.08	20.09	4.63	84.81	107.16	39.66
6	5	1	0	33.64	20.28	3.97	82.16	162.64	40.69
6	1	1	1	19.59	7.20	9.24	54.69	77.53	28.03

6	2	1	1	20.06	6.64	10.79	48.91	85.70	27.42
6	3	1	1	20.08	7.80	10.92	58.81	83.33	33.72
6	4	1	1	21.79	5.79	10.45	68.53	75.40	39.39
6	5	1	1	21.95	80.42	11.21	53.47	73.71	27.82
6	1	1	2	22.03	8.35	4.95	44.26	84.50	17.83
6	2	1	2	22.70	9.55	7.17	44.11	86.56	17.73
6	3	1	2	22.28	8.52	5.59	45.25	94.55	17.83
6	4	1	2	21.41	8.38	7.37	43.65	89.07	17.62
6	5	1	2	22.31	11.84	11.04	49.98	97.00	16.85
7	1	1	0	41.47	30.67	5.41	34.29	84.18	55.19
7	2	1	0	42.21	31.28	6.18	47.15	89.59	50.35
7	3	1	0	43.88	31.17	7.41	38.25	84.79	51.82
7	4	1	0	42.88	29.10	7.74	35.32	86.93	50.01
7	5	1	0	41.99	28.73	6.93	37.34	88.12	45.71
7	1	1	1	32.12	20.64	4.84	54.15	68.27	39.93
7	2	1	1	32.41	20.52	4.98	56.57	68.85	37.66
7	3	1	1	32.06	20.01	5.64	49.52	68.14	38.84
7	4	1	1	31.49	19.97	2.96	50.43	67.76	38.56
7	5	1	1	31.00	20.53	4.77	60.02	66.73	44.91
7	1	1	2	38.34	25.92	10.70	57.18	87.30	48.73
7	2	1	2	35.71	26.13	9.93	59.79	85.00	49.76
7	3	1	2	38.35	26.69	12.18	63.86	84.35	48.21
7	4	1	2	35.38	27.81	10.95	65.50	86.19	46.46
7	5	1	2	39.03	27.16	7.31	55.13	78.55	46.62

```
proc sort;
```

 by subject handle trial;
 run;
proc means noprint;
var flex lat twist flexmom latmom twistmom;
by subject handle;
output out=avgtrial mean=mflex mlat mtwist mflexmom mlatmom mtwistmom;
run;
proc glm;
class subject handle;
model mflex mlat mtwist mflexmom mlatmom mtwistmom = subject handle; means handle/regwq;
title 'analysis of rake handle conditions';
run;
proc sort;
by handle;
run;
proc means n mean std stderr min max; by handle;
run;

