Malolactic fermentation 2005

R-e-s-p-e-c-t
the bacteria in your wines
and
manage your MLF

BACTERIA IN MUST & WINE

Only a few bacteria are adapted to survive in wine

alcohol acidity Low pH??? 50₂

Nutrient deficiency

Microflora in must and wine

THE CHEMISTRY...

THE CHEMISTRY

- L (-) malic acid converted into L(+) lactic acid (commercial additions of D(+) will remain untouched).
- Not really a 'fermentation' as no energy is produced
- Reduction of acidity by 1-3 g/L
- Addition of diacetyl: good or bad?

Metabolism in heterofermentative Lactic Acid Bacteria

Bacteria found in must and in wine

LACTIC ACID BACTERIA

fermentation:

Oenococcus oeni (ex Leuc. oenos) hetero

Leuconostoc mesenteroides hetero

Lactobacillus plantarum homo

Lactobacillus casei homo

Lactobacillus brevis hetero

Pediococcus damnosus homo

Pediococcus pentosaceus homo

ACETIC BACTERIA

Gluconobacter oxydans sugars

Acetobacter aceti ethanol

Acetobacter pasteurianus ethanol

BACTERIA EVOLUTION UNDER FAVOURABLE CONDITIONS

BACTERIA EVOLUTION UNDER DIFFICULT CONDITIONS

Most important parameters

CHEMICAL/PHYSICAL

SO₂ > pH > temperature > alcohol

NUTRIENTS

(achtung! O. Oeni cannot use ammonia)

MICROBIOLOGICAL

Influence of the wine yeast from AF

STIMULATION OF OENOCOCCUS OENI BY THE YEAST

NO INFLUENCE = INDIFFERENT

IN SOME CASES INHIBITION OF SACCHAROMYCES CEREVISAE BY WILD LACTIC ACID BACTERIA WAS REPORTED

Ha Ha Ha Ha ... stop it, Bdello... heeheehee... EVEL CASE NICH

ITV 99 - Tasting Pinot noir – Qualitative differences

ML Properties based on organoleptic properties

Maintain fruit characterisites

Reduction of vegetal aromas

WHITE WINES

- -tropical fruit,
- -vanilla in barrel fermentation
- -peach and melon characterisitcs

Heightened

MOUTHFEEL: volume and

balance in mouth

RED WINES

Mature fruit and jam

Increase

Uncontrolled Malolactic Fermentation...

THE MASKS...

(MLF Sensory Defects Kit) presented by...
Dr. Sibylle Krieger
Didier Theodore
Dr. Antonio Palacios

Winemakers are concerned with:

- •Limiting chemical inputs (optimizing the SO₂ dosage).
- Limiting health risk concerns and spoilage (low biogenic amines).
- Avoiding heavy curative treatments of clarification, filtration y stabilization.
- Developing and <u>stabilizing positive aromas</u>
 <u>tannin perception</u>.
- Maintaining quality through the winemaking process

Wine bacteria: The drawbacks...

- Volatile Acidity
- Too much Diacetyl
- Undesirable Aromas & Flavors
- Varietal character loss
- Color loss
- Ethyl Carbamate
- Biogenic Amines
- Geranium Aromas

The Usual Suspects: Some Oenococcus Many Lactobacillus Many Pediococcus

Wine Bacteria: The positive side...

- Lowering acidity
- Ethyl Lactate / Diacetyl
- Varietal aroma enhancement
- Reducing Vegetative notes
- Rounding the mouthfeel
- Lowering astringency
- Lowering bitterness
- Increasing complexity
- •Lowering overall SO₂

The Usual
Suspects:
Some
Oenococcus

Ethyl Lactate Aroma

- → Formed mainly during MLF.
- → Low levels contribute mouthfeel volume.
- → High concentrations add milk and yogurt aromas.
- → Above 15 mg/L is usually considered negative in wines.

Acetaldehyde

I EMANI

ACETALDEHYDE

- → Threshold detection ~ 100 mg/L.
- → Odor: overripe apple, fish in vinegar, "oxidation".
- → Sometimes formed during MLF, and other times its levels are reduced.
- → Normaly the levels are reduced by binding with free SO₂.

GERANIUM ODOR

- → Derived from the metabolism of sorbic acid, which hydrogenates to SORBINOL, which isomerizes to 3,5-Hexadien-2-ol, then reacting with the ethanol part of 2-ethoxy-hexa-3,5-dien, resulting in the spoilage odor.
- → Perception threshold is 0,1 µg/L.
- → O. oeni has low a production.
- → Not a problem in beverages without ethanol.

Diacetyl Impact

- 5-14 mg/L
Butter
- 2- 4 mg/L
nutty
caramel
yeasty
honey
(threshold > reds)

The final concentration depends on the bacteria strain used for the MLF & on its citric acid metabolism

Metabolism of citrate by Oenococcus oeni and the transformation of diacetyl by yeasts

Biogenic Amines

MECHANISM OF BIOGENIC AMINE FORMATION

Biogenic Amines ← Decarboxylation ← Amino ← Proteins Acids

Decarboxylation of amino acids, Ex.: histidine decarboxylase for histamine

Biogenic amines are unhealthy (histamine) and also contribute negative sensory compounds (putrescine & cadaverine)

BIOGENIC AMINE FORMATION: examples

Amino acids - Biogenic Amines

Histidine

Tyrosine

Lysine

Arginine

Arginine

Arginine

Histamine

Tyramine

Cadaverine

Putrescine

Espermine

Epermidine

Ethanolamine

Phenylethylamine

Isopentylamine

Lactic Acid Bacteria Strain Influence on Concentration of Biogenic Amines after MLF

Putrescine, a putrid "dirty sponge" aroma, is the highest contributor to Biogenic Amines in this trial.

Lactobacillus can produce volatile phenols

Activity of Lactobacillus plantarum

Brettanomyces Contamination...

The Problem

 Contaminant yeast, responsible for the formation in wine of volatile phenols resulting in very negative aromas

Ethylphenols 4-ethyl phenol
4-ethyl guaiacol
Vinylphenols 4-vinyl phenol
4-vinyl guaiacol

•4- ethyl phenol results in the descriptors ("poorly cured leather", "horse sweat", "used socks", "horse stables").

Threshold perception.

Ethyl phenol: 600µg/L

Sum of ethyl phenols: 430

μg/L

Mousy Off-Flavour

Causal compounds of Mousy off-flavour

N-heterocyclic bases: 2-ethyltetrahydropyridine, 2-acetyltetrahydropyridine & 2-acetyl-1-pyrroline

2-ethyltetrahydropyridine (ETPY)

Taste threshold (wine): 150 µg/L (Craig & Heresztyn 1984)

Conc'n reported in wines exhibiting mousy off-flavour: 2.7-18.7 µg/L

2-acetyltetrahydropyridine (ACTPY)

Odour threshold (water): 1.6 µg/L (Teranishi et al. 1975)

Conc'n reported in wines exhibiting mousy off-flavour: 4.8-106 µg/L

2-acetyl-1-pyrroline (ACPY)

Odour threshold (water): 0.1 µg/L (Buttery et al. 1983)

Conc'n reported in wines exhibiting mousy off-flavour: Tr-7.8 µg/L

Grbin, P.R.; Costello, P.J.; Herderich. M.; Markides, A.J.; Henschke, P.A.; Lee, T.H. (1996) Proceedings 9th Aust. Wine Industry Technical Conference, Adelaide, Australia, (Winetitles: Adelaide) pp.57-61.

Possible formation pathways of ACTPY & ACPY from *L. hilgardii DSM 20176*

Costello, P.J.; Henschke, P.A. (2002) J. Agric.Food Chem. 50: 7079-7087.

To avoid these "Masking" components...

- Limit the duration of lactic bacteria in the wine.
- Control the winery cleanliness to limit spoilage organisms (Pediococcus, Lactobacillus...)
- Use selected ML bacteria to control the MLF and avoid wine spoilage including biogenic amines.

For more info please contact Sigrid@lallemand.com

Nitrogen requirements of yeasts

Different demand depending on the strains fermentation temperature and pH

Jiranek *et al.*, 1991, Manginot *et al.*, 1998, Julien *et al.*, 2000

71B / QA23 / DV10 / BC / EC8 / D47 / EC1118

EC7 / K1 / D254 / CAW / L2056 / R2 / RC212 / S6U


```
BDX / C5M /
CY3079 / BM45 /
K1 marque /
L2226 / L2323 /
VL1 / CEG
```

Nutrient requirements for O.oeni

Oenococcus oeni (Leuconostoc oenos) does not grow on malic acid only it needs complex nutrients

Improved nutrient formulations for Oenococcus oeni

Negative effects of the yeast on the bacteria (inhibition) could be caused by:

- Competition on nutrient level
- Production of inhibitory metabolites
 - **50**₂
 - CO2
 - Medium chain fatty acids
 - Antibacterial compounds

LALVIN MBR in difficult wine

- **■** Spont. MLF
- □ MBR 1
- **MBR 31**
- □ MBR 2
- □ MBR 3
- MBR EQ54
- **STRAIN X**
- □ MBR 4
- OSU
- **EQ54 1 STEP**
- MT01 STD

LALVIN MBR pH tolerance:

ITV Beaune, SOFRALAB '98

MBR®: Tolerance at low temperatures

ITV Beaune 1998, Pinot noir pH 3.35, alc. 13.20 %

