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Abstract 

 

Cisplatin is a commonly used anti-neoplastic medication used to treat a variety of 

cancers.  While effective in treatment of cancer, the use of cisplatin causes a variety of 

side effects including ototoxicity.  As such, research has striven to find otoprotective 

agents in order to prevent these effects.  In this study, a cholesterol medication, 

pravastatin, will be examined for possible otoprotective benefits.  Prior research has 

demonstrated pravastatin’s protective effects in the renal system through a decrease in the 

expression of p53, a protein crucial to process of apoptosis (i.e. cell death).  As p53 is 

also a main component of apoptosis within cochlea during use of cisplatin, pravastatin 

was deemed a logical treatment.  In order to determine the possible benefit of pravastatin, 

a protocol was developed where hearing thresholds were obtained via Auditory 

Brainstem Response (ABR) at .5, 10, 15, 20, 30, and 40 kHz for two groups of six 

Sprague-Dawley rats.  Additionally, the weights of each rat were measured as an 

indicator of general health over the course of the study.  Following initial measures, rats 

were injected intravenously with cisplatin followed by a series of intraperitoneal 

injections of either pravastatin solution (experimental group) or saline solution (control 

group) over the course of a week.  At the end of this week, hearing thresholds and 

weights were measured again for all surviving rats.  Results revealed no significant 

differences on either measure between the two groups in question.  However, definitive 
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conclusions on the possible otoprotective effects of pravastatin cannot be made without 

further, more comprehensive investigation of the medication’s pharmacokinetics. 
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CHAPTER 1: INTRODUCTION 

  

Cisplatin is a platinum-based anti-neoplastic drug commonly used to treat solid 

tumors such as those found in ovarian, testicular, cervical, lung, head and neck, and 

bladder cancers (Rybak, Mukherjea, Jajoo, & Ramkumar, 2009).  While cisplatin is often 

successful in the treatment of cancer, its clinical utility is frequently limited by unwanted 

side effects including ototoxicity, nephrotoxicity, neurotoxicity, and nausea.  The most 

life-threatening of these side effects is nephrotoxicity, which can result in renal failure 

with continued use of cisplatin (Wimmer et al., 2004).  While the negative effects on the 

renal system can be remediated to a certain degree by saline hydration, there are no 

known cures or preventative treatments available to manage ototoxicity.  As such, 

ototoxicity is currently the main dose-limiting side effect of cisplatin (Rybak et al., 2009).  

 Damage to the auditory system caused by cisplatin may become present within 

hours or days of the initial treatment.  Such damage generally becomes more severe with 

cumulative doses of cisplatin (Bertolini et al., 2004).  Further, damage is more 

pronounced with cancers of the head and neck, persons with depleted nutritional status, 

persons on concurrent ototoxic medications, as well as in the pediatric population (Chen 

et al., 2006; Kopelman et al., 1988).  The greater auditory effect seen in children is 

especially relevant due to hearing loss’ effect on the development of language, which is 

necessary for academic success.  Studies of cisplatin have revealed elevation of hearing 
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thresholds in approximately 75-100% of patients undergoing treatment (McKeage, 1995).  

Hearing losses tend to vary with dosage and duration of treatment; however, hearing 

losses generally affect higher frequencies first and are irreversible, bilateral, symmetric, 

and sensorineural in nature (Rybak et al., 2009).  Moreover, hearing loss associated with 

cisplatin is further complicated by cisplatin’s interaction with noise exposure.  On the 

whole, exposure to even moderate levels of noise (80 dB SPL or greater) has been shown 

to potentiate cisplatin ototoxicity.  This is believed be the result of a synergistic 

interaction whereby both cisplatin and noise exposure trigger mechanisms leading to cell 

death (Gratton & Kamen, 1990).  Therefore, during cisplatin treatment, hearing aids, 

which would otherwise be the first form of treatment for hearing loss, may cause 

additional hearing loss and are not an option for the patient.   

In addition to hearing loss, anywhere between 2 and 36% of patients treated with 

cisplatin complain of tinnitus (Reddel, Kefford, Grant, Coates, Fox & Tattersall, 1982).  

Cisplatin treatment regimens are variable, based on the type and stage of cancer, and can 

range anywhere from under 60 mg/m
2 

to as high as 250 mg/m
2
 over the course of a three-

week treatment cycle.  Administration is completed intravenously over the course of 

approximately 30 minutes to 2 hours with 1 mg/minute infusion as the most common rate 

of infusion.  In general, a patient will receive 1-2 liters of saline intravenously prior to 

cisplatin treatment as well as further injections as needed.  The patient is also advised to 

increase water consumption for a day, all in an attempt to prevent nephrotoxicity (Arora 

et al., 2009; National Cancer Institute, 2012). 
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 In examining the cisplatin’s mechanism of action on the auditory system, it is first 

important to acknowledge that the toxic effect of cisplatin is somewhat mediated by 

genetic variations.  More specifically, patients with certain polymorphisms of 

glutathione-S-transferases (GSTs), which are enzymes responsible for detoxifying 

cisplatin, displayed significantly better thresholds post cisplatin-treatment when 

controlling for other variables (Oldenburg, Kraggerud, Cvancarova, Lothe, Fossa, 2007).  

Overall, cisplatin-induced hearing loss is a result of cell death and morphological changes 

to the organ of Corti as well as stria vascularis.  The death of outer hair cells in the organ 

of Corti prevents the creation of the action potential required for the sensation of sound.  

Moreover, morphological changes cause the transduction channels of the outer hair cells 

to become blocked and prevent the restoration of the electrochemical gradient necessary 

for propagation of a neural impulse leading to auditory sensation (Yamamoto, Kakehata, 

Sait, Saito & Akaike, 1994).  Outer hair cell death is generally restricted to the basal and 

middle turns and is often combined with substantial damage to supporting cells (Deiters’ 

and Hensen’s cells) (Cardinaal, De Groot, Huizing, Smoorenburg, & Veldman, 2004).  

An example such damage with complete ablation of the outer hair cells is demonstrated 

in Figure 1.  

Moreover, damage to the microarchitecture of the cochlea in the basal and middle 

turns has been demonstrated in animal studies using higher dosages of cisplatin (1.5-2 

mg/kg/day) as shown by the presence of the tunnel of Corti and Nuel’s space being 

completely obscured by supporting cells.  Further, within the stria vascularis, blebbing  
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Figure 1. Reprinted from Cardinaal et al., 2000.  Microscopic still of a guinea pig cochlea 

after 8 days of treatment with cisplatin at a dose of 1.5 mg/kg.  Image displays a complete 

breakdown of the organ of Corti, including loss of all outer hair cells. 
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(the breaking apart of cell’s as part of apoptosis) and vacuolization of the marginal cells 

as well as atrophy of the intermediate cells has also been demonstrated.  Such damage 

would be expected to have an impact on the maintenance of the electrochemical gradient 

of endolymph within scala media.  Concurrently, however, there is generally no 

discernible damage to the inner hair cells or spiral ganglion (Cardinaal et al., 2000). 

Looking more specifically at the auditory system’s reaction to cisplatin, cisplatin 

is responsible for interacting with the cells of the organ of Corti, stria vascularis, spiral 

ligament and spiral ganglion cells to generate an oxidative stress response.  As a part of 

this oxidative stress response, superoxides are generated.  Superoxides are essentially 

molecular oxygen molecules (O2) with one unpaired electron.  They are always present in 

cells as a result of mitochondrial respiration, but become problematic when they are over 

abundant, as in the case of cisplatin ototoxicity (Clerici, DiMartino, & Prasad, 1995; 

Clerici & Yang, 1996).  Superoxides, in turn, have four main effects on the cells of the 

auditory system.  Once, they interact with nitric oxide to form peroxynitrites, which are 

toxic and inactivate healthy proteins (Lee et al., 2004a, b).  These toxins cannot be 

flushed out because the cochlea is a closed system (Rybak et al., 2009).  Two, they form 

free hydroxyl radicals, which with exposure to iron will interact with the bilipid layer of 

the cell membrane to form aldehyde 4-hydroxynomenal leading to cell death (Lee et al., 

2004a, b).  Three, they reduce the supply of glutathione, a protein used to deactivate free 

radicals (Zhang & Lindup, 1993).  In addition, cisplatin causes a depletion of the 

antioxidant enzyme system, which would normally aid in the rebuilding of the supply of 

glutathione and thereby neutralize the increase in superoxides (Rybak, Husain, Morris, 
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Whitworth, & Somani, 2000).  And four, they cause the release of cytochrome c from the 

mitochondria leading to activation of caspase 3 and 9.  The ensuing chain reaction 

activates deoxyribonuclease, which leads to DNA breakdown and triggers caspase-

mediated apoptosis (Wantanabe, Inai, Jinnouchi, Baba, & Yagi, 2003).  Apoptosis is 

essentially a programmed death of the hair cell whereby the cell actively destroys itself.  

This process involves a condensing of DNA, shrinking of the cell cytoplasm, and 

eventually blebbing of the cells into smaller apoptotic bodies.  As a manner of protecting 

other healthy cells, these apoptotic bodies are self-contained and not toxic to the 

surrounding environment.  Once the cell is broken down into apoptotic bodies, immune 

cells, known as phagocytes, which remove the apoptotic bodies from the inner ear, can 

engulf the remnants (Rybak et al., 2009).  A schematic of this process can be found in 

part b of Figure 2. 

 Past research regarding prevention of ototoxicity has focused largely on 

antioxidant agents.  One of the most researched otoprotective agents is D-Methionine (D-

Met), a protein found naturally in many foods such as cheese and yogurt and considered 

safe for consumption (Campbell et al., 2007).  Studies have revealed that when 

administered prior to treatment with cisplatin, D-Met provides significant protection to 

outer hair cell function as measured by distortion product otoacoustic emissions 

(DPOAEs) (Wimmer et al., 2004), auditory thresholds as measured by ABR (Campbell, 

Rybak, Meech, & Huges, 1996), and damage to outer hair cells and stria vascularis as 

shown by microscopic investigation (Lockwood et al., 2000; Giordano, Lorito, Ciorba, 

Martini, & Hatzopoulos, 2006).  D-Met is thought to provide this protective effect by 
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working as antioxidant scavenging for free radicals produced by cisplatin’s toxic 

interactions with the cochlea (Vogt, 1995).  More specifically, D-Met protects critical 

enzymes such as glutathione (by aiding in the recycling of its reduced form, glutathione 

disulfide back into usable glutathione), which is used to deactivate free radicals, thereby 

up-regulating antioxidant pathways (Campbell, Meech, Rybak, & Huges, 2003).  Further, 

D-Met has been shown to have similar protective effect regarding nephrotoxicity (Jones 

& Basinger, 1989).  Another promising otoprotective agent can be found in the selenium-

containing compound, ebselen.  Like D-met, ebselen functions as a part of the glutathione 

peroxidase pathway (i.e. glutathione peroxidase is an enzyme that catalyzes a reaction in 

which glutathione neutralizes the ROS hydrogen peroxidase by converting it into water 

molecules); however, in this case, ebselen works by mimicking glutathione within the 

cochlea (Lynch, Gu, Pierce, & Kil, 2005).  While use in humans is still in the early 

stages, animal studies have demonstrated significant reductions in cisplatin-related 

ototoxicity without reduction in cisplatin’s anti-neoplastic properties (Rybak & Somani, 

1999; Lynch et al., 2005).  Different agents such as neurotrophic factors and sodium 

thiosulfate have been examined for otoprotective value with little success in protecting 

hair cells from cisplatin.  Neurotrophic factors are proteins that signal cells to grow and 

differentiate, but have shown no positive effect.  Sodium thiosulfate, on the other hand, is 

a compound that reacts with cisplatin to form a complex that can be excreted by the 

kidney.  In doing so, some protective effect was seen.  However, this positive impact was 

outweighed by its negative effect on the potency of chemotherapy medication in treating  
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Figure 2. Reprinted from Henderson, Bielefeld, Harris, & Hu, 2006.  Part B of this 

schematic displays the gradual breakdown of a cell through the process of apoptosis 

described previously.  
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cancerous cells (because the cisplatin was excreted, as stated above) (Wimmer et al., 

2004). 

For the purposes of the current study, the cholesterol-management medication, 

pravastatin, was examined for possible otoprotective effects.  Pravastatin has been shown 

to have some nephro-protective effects as shown by an increase in antioxidant levels and 

more importantly decreases in renal damage, p53 expression, and apoptosis (Fujieda et 

al., 2010).  p53 is a protein that is activated by cisplatin-induced damage to a cell’s DNA.  

Once activated, p53 has been shown to up-regulate another pro-apoptotic molecule 

known as Bax.  The increase of Bax, in turn, leads to the release of caspase proteins, 

which are key to the execution of cell apoptosis (including outer hair cell apoptosis) 

(Fujieda et al., 2010).  Therefore, since p53 activation and a decrease in antioxidant 

activity are both key parts of the cell death process in cisplatin ototoxicity, pravastatin is 

logical candidate to attempt to ameliorate these effects.  Thus, the purpose of this study 

was to investigate for an otoprotective effect of pravastatin mediated by a decrease in p53 

levels.  If pravastatin produces a decline in p53 levels such as those in the kidney, then 

one would expect an otoprotective effect. 
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CHAPTER 2: METHODS 

 

Study Parameters: 

Twelve male Sprague-Dawley rats (253 to 271 g) were randomly divided into two 

groups of six.  Each rat was initially sedated using the inhaled anesthetic, isoflurane (4% 

concentration for induction, 1.5% for maintenance, 1 L/min O2 flow rate). 

Hearing thresholds were obtained via ABR with tone-bursts at 5, 10, 15, 20, 30, and 40 

kHz.  Each burst was approximately 1 msec in duration and was gated through a 

Blackmann window with a 0.5 ms rise/fall time and no plateau.  Stimuli were produced at 

a rate of 21/s.  Stimuli were emitted from a speaker placed at zero degrees azimuth, 17 

cm from the vertex of the rat’s head.  Evoked responses were obtained using TDT BioSig 

software, which averaged two hundred-fifty sweeps at each stimulus level.  Responses 

were amplified with a gain of 50,000, using a TDT Headstage-4 bioamplifier and 

bandpass filtered from 100-3000 Hz.  In order to ascertain threshold, the level of the 

stimulus at each frequency was decreased in 5 dB steps from 90 dB pSPL to 0 dB pSPL.  

Threshold was marked at the lowest level displaying a repeatable response for wave V.  

An example of an ABR threshold series elicited with a 5 kHz tone burst stimulus is 

presented in Figure 3.  ABR was performed using needle electrodes placed at the vertex 

(non-inverting), below the left pinna (inverting), and below the right pinna (ground). 
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Figure 3. An ABR threshold series for 5 kHz as the intensity of the stimulus is decreased 

from 55 to 5 dB SPL.  Note that the last visible, repeatable finding of wave V (the 

threshold) was at 15 dB SPL. 
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Cisplatin Exposure: 

All rats received a single dose of cisplatin dissolved in saline solution at a 

concentration of 1 mg/ml.  Dosage was determined based on rat weight at a ratio of 8 

mg/kg.  This equates to approximately 2-2.5 mg per injection.  The solution was slowly 

infused subcutaneously at a rate of 8 ml per hour (typical duration of 15-20 minutes).  

Rats for anesthetized for infusion using the inhaled anesthetic, isoflurane (4% 

concentration for induction, 1.5% for maintenance, 1 L/min O2 flow rate). 

Rats in the experimental group received injections of pravastatin.  The pravastatin 

was dissolved in saline at a ratio of 1 mg/ml.  Dosage was determined based on rat weight 

at a ratio of 2.3 mg/kg.  This equates to approximately 0.8-1.0 mg per injection.  

Pravastatin was administered via intraperitoneal injection one hour before and after 

cisplatin infusion as well as once in the morning and once in the evening for the four days 

following, resulting in a total of 10 injections.  Rats in the control group received 

equivalent injections of physiologic saline on the same schedule.   

In order to flush cisplatin from the renal system and prevent premature death, all 

rats in the study also received 5 ml subcutaneous injections of physiologic saline at the 

same intervals at which they received pravastatin injections.  To ascertain any effect of 

pravastatin on cisplatin-related weight loss, rat weight was measured pre-administration 

as well as on days 1, 2, 4, and 7 post-administration.  Finally, 7 days post-administration 

of cisplatin, hearing thresholds of all rats were obtained again via anesthetized ABR. 
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Statistical Analysis: 

 Pre-exposure thresholds were analyzed between the control and experimental 

groups using a two-factor ANOVA (group x frequency) to examine for the presence of 

any initial differences between the two groups across frequencies.  Pre-exposure 

differences in weight between the two groups were analyzed using student’s t-tests.  

Following exposure to cisplatin, a second two-factor ANOVA was administered to 

analyze for significant differences regarding the variables of group, frequency, and group 

x frequency for threshold shift (this was only performed using surviving subject data).  A 

repeated-measure two-factor ANOVA was performed following exposure to analyze for 

significant differences in animals’ weights at Days 1, 3, 4, and 7 of the week long study. 
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CHAPTER 3: RESULTS 

 

As seen in Figure 4, pre-exposure thresholds displayed no significant differences 

between control and experimental groups.  Average thresholds for each group never 

varied by more than 5 dB for any of the tested frequencies.  This lack of significant 

difference also held true when analyzing weights of rats in each group.  Mean weights for 

each group were within approximately 3 grams of each other (first two columns of Fig. 

6), and the student’s t-test revealed no significant differences in weights between the two 

experimental groups.  The lack of difference in pre-exposure thresholds and weights 

provides assurance that any differences detected after cisplatin exposure would be the 

result of the experimental treatments.   

Following cisplatin exposure, each group displayed significant elevations in 

hearing thresholds at all frequencies.  Further, as expected, cisplatin caused a 

significantly greater degree of hearing loss in the higher frequencies for both groups in 

question, as detected by a significant main effect of frequency in the two-factor ANOVA 

testing for differences in threshold shift (0.014; p < 0.05).  Tukey A post-hoc testing 

revealed a significant difference between threshold shifts at .5 and 30 kHz (0.048; p < 

0.05) and approaching significant between threshold shifts at .5 and 40 kHz (0.057; p > 

0.05).  However, the treatment group did not differ significantly from the control group in 
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terms of cisplatin-induced threshold shift at any frequency (0.327; p > 0.05), nor was 

there any evidence of a group x frequency interaction.  The experimental group never 

showed greater than a 1 dB decrease in threshold shift by comparison to the control 

group.  Figure 5 displays these results showing similar mean threshold shifts for the 

control and treatment groups at tested frequencies.   

As a measure of general health, weight loss during the course of this study was 

examined.  As evidenced by the results of a two-factor (group x day post exposure) 

ANOVA, both groups displayed significant declines in weight over the course of the 

study, resulting in a significant main effect of day in the analysis (0.000; p < 0.05).  

However, there was no significant difference between groups with both losing 

approximately 17% of their body mass (0.698; p > 0.05).  Figure 6 displays similar mean 

weights both pre and post-exposure to cisplatin.  Moreover, in terms of general health, 

cisplatin-induced mortality was experienced in both experimental and control groups with 

a total loss of 3 subjects over the course of the experiment, two from the pravastatin-

treated group and one from the control group. 
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Figure 4. Initial, pre-exposure mean thresholds in dB SPL.  Error bars are +1 SEM. 
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Figure 5. Mean threshold shift 1 week after exposure to cisplatin.  Error bars are +1 SD. 
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Figure 6. Mean weight (in grams) of the control group and group receiving pravastatin 

across the duration of the study.  Error bars are +1 SEM. 
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CHAPTER 4: DISCUSSION 

 

While common and effective in the treatment of cancer, the use of the medication 

cisplatin is accompanied by a variety of side effects.  At present, the main dose-limiting 

side effect associated with cisplatin is ototoxicity, specifically death of the outer hair cells 

within the cochlea.  This toxic effect on the cochlea is a result of production of 

superoxides and consequential oxidative stress.  The increase in levels of superoxides 

coupled with a decrease in antioxidant levels leads to a series of reactions that degrade 

both the cell membrane and DNA of the outer hair cells.  The result of these reactions is 

apoptosis, the programmed death of a cell (Rybak et al., 2009).  One important factor in 

the process leading to apoptosis is the protein p53, which is activated by cisplatin-

induced damage to the cell’s DNA (Fujieda et al., 2010).  Once activated, p53 has been 

shown to up-regulate another pro-apoptotic molecule known as Bax.  The increase of Bax 

then leads to the release of caspase proteins, which are key to the execution of cell 

apoptosis (Fujieda et al., 2010).   

With p53 being an important piece in the process leading to apoptosis, researchers 

have focused on agents that may be used to decrease this protein’s expression.  In a study 

by Fujieda et al., the use of the cholesterol medication, pravastatin, was demonstrated to 

decrease the expression of p53 and subsequent apoptosis in the renal systems of subjects 

being treated with cisplatin.  As such, pravastatin was deemed a logical candidate to 
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attempt to decrease the level of hearing threshold shifts associated with cisplatin-induced 

ototoxicity.  Nevertheless, following this study, no significant difference hearing 

threshold decline was noted between subjects receiving pravastatin versus those that did 

not. 

However, the results of this experiment do not definitively indicate lack of effect 

when using pravastatin in conjunction cisplatin.  The absence of significant findings 

could be the result of a variety of factors.  First of all, the dosing of pravastatin used in 

this protocol may have been at insufficient levels in order to produce a significant effect.  

In order to examine the impact of different levels of pravastatin, in future research, it 

would be necessary to increase the number of animal subjects used in the study and to 

complete a multi-treatment protocol.  Furthermore, the injection of pravastatin 

intraperitoneally may not be the ideal route in order for the drug to reach the cochlea.  

Other options would be using an intravenous injection or directly placing the solution on 

the round window of the cochlea.  Additionally, the use of saline hydration in order to 

flush out the kidneys and prevent renal failure may have also removed the pravastatin 

from the subject’s bloodstream and prevented any significant impact.  However, a 

protocol without saline hydration would likely result in a high mortality rate due to 

cisplatin-induced renal failure.  Ultimately, it would be beneficial to assess the 

pharmacokinetics of pravastatin to determine how much of the drug is able to enter the 

cochlea with any given injection route and dose, and to determine how long the 

pravastatin stays in the cochlea in order to maximize the potential for a protective effect.  
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While further research will be necessary to determine whether pravastatin has 

otoprotective properties against cisplatin-induced hearing loss, the need for such agents 

continues to be crucial for cancer patients.  The American Cancer Association estimates 

that approximately 1.5 million are newly diagnosed with cancer each year and 

approximately 1 million of these persons will receive some sort of chemotherapy 

treatment (ACA, 2009).  With many chemotherapy medications, including cisplatin, 

possessing ototoxic properties, an unknown but undoubtedly large number of these 

persons will experience some degree of hearing loss.  Thus, the discovery of useful 

otoproective agents would remove the threat of a lifelong side effect to cisplatin and other 

chemotherapy medications.  
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CHAPTER 5: CONCLUSIONS 

 

 As one of the main side effects of cisplatin treatment is ototoxicity, this study 

sought to find a possible otoprotective agent in the cholesterol medication, pravastatin.  

Following administration of pravastatin to an experimental group and saline solution to a 

control group, both being treated with cisplatin, no significant differences were found 

either in cisplatin-induced hearing threshold shift or decline in overall weight.  While this 

experiment did not reveal significant findings, it should be noted that more 

comprehensive research would be required to draw definitive conclusions on any possible 

otoprotective benefits. 
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